summaryrefslogtreecommitdiff
path: root/backend/InterfGraph.v
blob: 877c7c6ea99e45ae8ca59a2e83d982119d657f12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Representation of interference graphs for register allocation. *)

Require Import Coqlib.
Require Import FSets.
Require Import FSetAVL.
Require Import Ordered.
Require Import Registers.
Require Import Locations.

(** Interference graphs are undirected graphs with two kinds of nodes:
- RTL pseudo-registers;
- Machine registers.

and four kind of edges:
- Conflict edges between two pseudo-registers.
  (Meaning: these two pseudo-registers must not be assigned the same
   location.)
- Conflict edges between a pseudo-register and a machine register
  (Meaning: this pseudo-register must not be assigned this machine
   register.)
- Preference edges between two pseudo-registers.
  (Meaning: the generated code would be more efficient if those two
   pseudo-registers were assigned the same location, but if this is not
   possible, the generated code will still be correct.)
- Preference edges between a pseudo-register and a machine register
  (Meaning: the generated code would be more efficient if this
   pseudo-register was assigned this machine register, but if this is not
   possible, the generated code will still be correct.)

A graph is represented by four finite sets of edges (one of each kind
above).  An edge is represented by a pair of two pseudo-registers or
a pair (pseudo-register, machine register).  
In the case of two pseudo-registers ([r1], [r2]), we adopt the convention
that [r1] <= [r2], so as to reflect the undirected nature of the edge.
*)

Module OrderedReg <: OrderedType with Definition t := reg := OrderedPositive.
Module OrderedRegReg := OrderedPair(OrderedReg)(OrderedReg).
Module OrderedMreg := OrderedIndexed(IndexedMreg).
Module OrderedRegMreg := OrderedPair(OrderedReg)(OrderedMreg).

Module SetRegReg := FSetAVL.Make(OrderedRegReg).
Module SetRegMreg := FSetAVL.Make(OrderedRegMreg).

Record graph: Type := mkgraph {
  interf_reg_reg: SetRegReg.t;
  interf_reg_mreg: SetRegMreg.t;
  pref_reg_reg: SetRegReg.t;
  pref_reg_mreg: SetRegMreg.t
}.

Definition empty_graph :=
  mkgraph SetRegReg.empty SetRegMreg.empty
          SetRegReg.empty SetRegMreg.empty.

(** The following functions add a new edge (if not already present)
  to the given graph. *)

Definition ordered_pair (x y: reg) :=
  if plt x y then (x, y) else (y, x).

Definition add_interf (x y: reg) (g: graph) :=
  mkgraph (SetRegReg.add (ordered_pair x y) g.(interf_reg_reg))
          g.(interf_reg_mreg)
          g.(pref_reg_reg)
          g.(pref_reg_mreg).

Definition add_interf_mreg  (x: reg) (y: mreg) (g: graph) :=
  mkgraph g.(interf_reg_reg)
          (SetRegMreg.add (x, y) g.(interf_reg_mreg))
          g.(pref_reg_reg)
          g.(pref_reg_mreg).

Definition add_pref (x y: reg) (g: graph) :=
  mkgraph g.(interf_reg_reg)
          g.(interf_reg_mreg)
          (SetRegReg.add (ordered_pair x y) g.(pref_reg_reg))
          g.(pref_reg_mreg).

Definition add_pref_mreg  (x: reg) (y: mreg) (g: graph) :=
  mkgraph g.(interf_reg_reg)
          g.(interf_reg_mreg)
          g.(pref_reg_reg)
          (SetRegMreg.add (x, y) g.(pref_reg_mreg)).

(** [interfere x y g] holds iff there is a conflict edge in [g]
  between the two pseudo-registers [x] and [y]. *)

Definition interfere (x y: reg) (g: graph) : Prop :=
  SetRegReg.In (ordered_pair x y) g.(interf_reg_reg).

(** [interfere_mreg x y g] holds iff there is a conflict edge in [g]
  between the pseudo-register [x] and the machine register [y]. *)

Definition interfere_mreg (x: reg) (y: mreg) (g: graph) : Prop :=
  SetRegMreg.In (x, y) g.(interf_reg_mreg).

Lemma ordered_pair_charact:
  forall x y,
  ordered_pair x y = (x, y) \/ ordered_pair x y = (y, x).
Proof.
  unfold ordered_pair; intros.
  case (plt x y); intro; tauto.
Qed.

Lemma ordered_pair_sym:
  forall x y, ordered_pair y x = ordered_pair x y.
Proof.
  unfold ordered_pair; intros.
  destruct (plt y x); destruct (plt x y).
  elim (Plt_strict x). eapply Plt_trans; eauto. 
  auto.
  auto.
  destruct (Pos.lt_total x y) as [A | [A | A]]. 
  elim n0; auto.
  congruence.
  elim n; auto.
Qed.

Lemma interfere_sym:
  forall x y g, interfere x y g -> interfere y x g.
Proof.
  unfold interfere; intros.
  rewrite ordered_pair_sym. auto.
Qed.

(** [graph_incl g1 g2] holds if [g2] contains all the conflict edges of [g1]
  and possibly more. *)

Definition graph_incl (g1 g2: graph) : Prop :=
  (forall x y, interfere x y g1 -> interfere x y g2) /\
  (forall x y, interfere_mreg x y g1 -> interfere_mreg x y g2).

Lemma graph_incl_trans:
  forall g1 g2 g3, graph_incl g1 g2 -> graph_incl g2 g3 -> graph_incl g1 g3.
Proof.
  unfold graph_incl; intros. 
  elim H0; elim H; intros.
  split; eauto.
Qed.

(** We show that the [add_] functions correctly record the desired
  conflicts, and preserve whatever conflict edges were already present. *)

Lemma add_interf_correct:
  forall x y g,
  interfere x y (add_interf x y g).
Proof.
  intros. unfold interfere, add_interf; simpl.
  apply SetRegReg.add_1. auto. 
Qed.

Lemma add_interf_incl:
  forall a b g,  graph_incl g (add_interf a b g).
Proof.
  intros. split; intros.
  unfold add_interf, interfere; simpl.
  apply SetRegReg.add_2. exact H.
  exact H.
Qed.

Lemma add_interf_mreg_correct:
  forall x y g,
  interfere_mreg x y (add_interf_mreg x y g).
Proof.
  intros. unfold interfere_mreg, add_interf_mreg; simpl.
  apply SetRegMreg.add_1. auto. 
Qed.

Lemma add_interf_mreg_incl:
  forall a b g,  graph_incl g (add_interf_mreg a b g).
Proof.
  intros. split; intros.
  exact H.
  unfold add_interf_mreg, interfere_mreg; simpl.
  apply SetRegMreg.add_2. exact H.
Qed.

Lemma add_pref_incl:
  forall a b g,  graph_incl g (add_pref a b g).
Proof.
  intros. split; intros.
  exact H.
  exact H.
Qed.

Lemma add_pref_mreg_incl:
  forall a b g,  graph_incl g (add_pref_mreg a b g).
Proof.
  intros. split; intros.
  exact H.
  exact H.
Qed.

(** [all_interf_regs g] returns the set of pseudo-registers that
  are nodes of [g]. *)

Definition add_intf2 (r1r2: reg * reg) (u: Regset.t) : Regset.t :=
  Regset.add (fst r1r2) (Regset.add (snd r1r2) u).
Definition add_intf1 (r1m2: reg * mreg) (u: Regset.t) : Regset.t :=
  Regset.add (fst r1m2) u.

Definition all_interf_regs (g: graph) : Regset.t :=
  let s1 := SetRegMreg.fold add_intf1 g.(interf_reg_mreg) Regset.empty in
  let s2 := SetRegMreg.fold add_intf1 g.(pref_reg_mreg) s1 in
  let s3 := SetRegReg.fold add_intf2 g.(interf_reg_reg) s2 in
  SetRegReg.fold add_intf2 g.(pref_reg_reg) s3.

Lemma in_setregreg_fold:
  forall g r1 r2 u,
  SetRegReg.In (r1, r2) g \/ Regset.In r1 u /\ Regset.In r2 u ->
  Regset.In r1 (SetRegReg.fold add_intf2 g u) /\
  Regset.In r2 (SetRegReg.fold add_intf2 g u).
Proof.
  set (add_intf2' := fun u r1r2 => add_intf2 r1r2 u).
  assert (forall l r1 r2 u,
    InA OrderedRegReg.eq (r1,r2) l \/ Regset.In r1 u /\ Regset.In r2 u ->
    Regset.In r1 (List.fold_left add_intf2' l u) /\
    Regset.In r2 (List.fold_left add_intf2' l u)).
  induction l; intros; simpl.
  elim H; intro. inversion H0. auto.
  apply IHl. destruct a as [a1 a2].
  elim H; intro. inversion H0; subst. 
  red in H2. simpl in H2. destruct H2. subst r1 r2.
  right; unfold add_intf2', add_intf2; simpl; split.
  apply Regset.add_1. auto. 
  apply Regset.add_2. apply Regset.add_1. auto. 
  tauto.
  right; unfold add_intf2', add_intf2; simpl; split;
  apply Regset.add_2; apply Regset.add_2; tauto.

  intros. rewrite SetRegReg.fold_1. apply H. 
  intuition. 
Qed.

Lemma in_setregreg_fold':
  forall g r u,
  Regset.In r u ->
  Regset.In r (SetRegReg.fold add_intf2 g u).
Proof.
  intros. exploit in_setregreg_fold. eauto. 
  intros [A B]. eauto.
Qed.

Lemma in_setregmreg_fold:
  forall g r1 mr2 u,
  SetRegMreg.In (r1, mr2) g \/ Regset.In r1 u ->
  Regset.In r1 (SetRegMreg.fold add_intf1 g u).
Proof.
  set (add_intf1' := fun u r1mr2 => add_intf1 r1mr2 u).
  assert (forall l r1 mr2 u,
    InA OrderedRegMreg.eq (r1,mr2) l \/ Regset.In r1 u ->
    Regset.In r1 (List.fold_left add_intf1' l u)).
  induction l; intros; simpl.
  elim H; intro. inversion H0. auto.
  apply IHl with mr2. destruct a as [a1 a2].
  elim H; intro. inversion H0; subst. 
  red in H2. simpl in H2. destruct H2. subst r1 mr2.
  right; unfold add_intf1', add_intf1; simpl.
  apply Regset.add_1; auto.
  tauto.
  right; unfold add_intf1', add_intf1; simpl.
  apply Regset.add_2; auto.

  intros. rewrite SetRegMreg.fold_1. apply H with mr2. 
  intuition.
Qed.

Lemma all_interf_regs_correct_1:
  forall r1 r2 g,
  SetRegReg.In (r1, r2) g.(interf_reg_reg) ->
  Regset.In r1 (all_interf_regs g) /\
  Regset.In r2 (all_interf_regs g).
Proof.
  intros. unfold all_interf_regs. 
  apply in_setregreg_fold. right.
  apply in_setregreg_fold. tauto.
Qed.

Lemma all_interf_regs_correct_2:
  forall r1 mr2 g,
  SetRegMreg.In (r1, mr2) g.(interf_reg_mreg) ->
  Regset.In r1 (all_interf_regs g).
Proof.
  intros. unfold all_interf_regs.
  apply in_setregreg_fold'. apply in_setregreg_fold'. 
  apply in_setregmreg_fold with mr2. right. 
  apply in_setregmreg_fold with mr2. eauto.
Qed.