1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** RTL function inlining: relational specification *)
Require Import Coqlib.
Require Import Wfsimpl.
Require Import Errors.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Globalenvs.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import Inlining.
(** ** Soundness of function environments. *)
(** A (compile-time) function environment is compatible with a
(run-time) global environment if the following condition holds. *)
Definition fenv_compat (ge: genv) (fenv: funenv) : Prop :=
forall id b f,
fenv!id = Some f -> Genv.find_symbol ge id = Some b ->
Genv.find_funct_ptr ge b = Some (Internal f).
Remark add_globdef_compat:
forall ge fenv idg,
fenv_compat ge fenv ->
fenv_compat (Genv.add_global ge idg) (Inlining.add_globdef fenv idg).
Proof.
intros. destruct idg as [id gd]. red; simpl; intros.
unfold Genv.find_symbol in H1; simpl in H1.
unfold Genv.find_funct_ptr; simpl.
rewrite PTree.gsspec in H1. destruct (peq id0 id).
(* same *)
subst id0. inv H1. destruct gd. destruct f0.
destruct (should_inline id f0).
rewrite PTree.gss in H0. rewrite ZMap.gss. inv H0; auto.
rewrite PTree.grs in H0; discriminate.
rewrite PTree.grs in H0; discriminate.
rewrite PTree.grs in H0; discriminate.
(* different *)
destruct gd. rewrite ZMap.gso. eapply H; eauto.
destruct f0. destruct (should_inline id f0).
rewrite PTree.gso in H0; auto.
rewrite PTree.gro in H0; auto.
rewrite PTree.gro in H0; auto.
exploit Genv.genv_symb_range; eauto. intros [A B]. unfold ZIndexed.t; omega.
rewrite PTree.gro in H0; auto. eapply H; eauto.
Qed.
Lemma funenv_program_compat:
forall p, fenv_compat (Genv.globalenv p) (funenv_program p).
Proof.
intros.
unfold Genv.globalenv, funenv_program.
assert (forall gl ge fenv,
fenv_compat ge fenv ->
fenv_compat (Genv.add_globals ge gl) (fold_left add_globdef gl fenv)).
induction gl; simpl; intros. auto. apply IHgl. apply add_globdef_compat; auto.
apply H. red; intros. rewrite PTree.gempty in H0; discriminate.
Qed.
(** ** Soundness of the computed bounds over function resources *)
Remark Pmax_l: forall x y, Ple x (Pmax x y).
Proof. intros; xomega. Qed.
Remark Pmax_r: forall x y, Ple y (Pmax x y).
Proof. intros; xomega. Qed.
Lemma max_pc_function_sound:
forall f pc i, f.(fn_code)!pc = Some i -> Ple pc (max_pc_function f).
Proof.
intros until i. unfold max_pc_function.
apply PTree_Properties.fold_rec with (P := fun c m => c!pc = Some i -> Ple pc m).
(* extensionality *)
intros. apply H0. rewrite H; auto.
(* base case *)
rewrite PTree.gempty. congruence.
(* inductive case *)
intros. rewrite PTree.gsspec in H2. destruct (peq pc k).
inv H2. apply Pmax_r.
apply Ple_trans with a. auto. apply Pmax_l.
Qed.
Lemma max_def_function_instr:
forall f pc i, f.(fn_code)!pc = Some i -> Ple (max_def_instr i) (max_def_function f).
Proof.
intros. unfold max_def_function. eapply Ple_trans. 2: eapply Pmax_l.
revert H.
apply PTree_Properties.fold_rec with (P := fun c m => c!pc = Some i -> Ple (max_def_instr i) m).
(* extensionality *)
intros. apply H0. rewrite H; auto.
(* base case *)
rewrite PTree.gempty. congruence.
(* inductive case *)
intros. rewrite PTree.gsspec in H2. destruct (peq pc k).
inv H2. apply Pmax_r.
apply Ple_trans with a. auto. apply Pmax_l.
Qed.
Lemma max_def_function_params:
forall f r, In r f.(fn_params) -> Ple r (max_def_function f).
Proof.
assert (A: forall l m, Ple m (fold_left (fun m r => Pmax m r) l m)).
induction l; simpl; intros.
apply Ple_refl.
eapply Ple_trans. 2: eauto. apply Pmax_l.
assert (B: forall l m r, In r l -> Ple r (fold_left (fun m r => Pmax m r) l m)).
induction l; simpl; intros.
contradiction.
destruct H. subst a. eapply Ple_trans. 2: eapply A. apply Pmax_r.
eauto.
unfold max_def_function; intros.
eapply Ple_trans. 2: eapply Pmax_r. eauto.
Qed.
(** ** Working with the state monad *)
Remark bind_inversion:
forall (A B: Type) (f: mon A) (g: A -> mon B)
(y: B) (s1 s3: state) (i: sincr s1 s3),
bind f g s1 = R y s3 i ->
exists x, exists s2, exists i1, exists i2,
f s1 = R x s2 i1 /\ g x s2 = R y s3 i2.
Proof.
unfold bind; intros. destruct (f s1). exists x; exists s'; exists I.
destruct (g x s'). inv H. exists I0; auto.
Qed.
Ltac monadInv1 H :=
match type of H with
| (R _ _ _ = R _ _ _) =>
inversion H; clear H; try subst
| (ret _ _ = R _ _ _) =>
inversion H; clear H; try subst
| (bind ?F ?G ?S = R ?X ?S' ?I) =>
let x := fresh "x" in (
let s := fresh "s" in (
let i1 := fresh "INCR" in (
let i2 := fresh "INCR" in (
let EQ1 := fresh "EQ" in (
let EQ2 := fresh "EQ" in (
destruct (bind_inversion _ _ F G X S S' I H) as [x [s [i1 [i2 [EQ1 EQ2]]]]];
clear H;
try (monadInv1 EQ2)))))))
end.
Ltac monadInv H :=
match type of H with
| (ret _ _ = R _ _ _) => monadInv1 H
| (bind ?F ?G ?S = R ?X ?S' ?I) => monadInv1 H
| (?F _ _ _ _ _ _ _ _ = R _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ _ _ _ _ _ = R _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ _ _ _ _ = R _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ _ _ _ = R _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ _ _ = R _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ _ = R _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ = R _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ = R _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
end.
Fixpoint mlist_iter2 {A B: Type} (f: A -> B -> mon unit) (l: list (A*B)): mon unit :=
match l with
| nil => ret tt
| (x,y) :: l' => do z <- f x y; mlist_iter2 f l'
end.
Remark mlist_iter2_fold:
forall (A B: Type) (f: A -> B -> mon unit) l s,
exists i,
mlist_iter2 f l s =
R tt (fold_left (fun a p => match f (fst p) (snd p) a with R _ s2 _ => s2 end) l s) i.
Proof.
induction l; simpl; intros.
exists (sincr_refl s); auto.
destruct a as [x y]. unfold bind. simpl. destruct (f x y s) as [xx s1 i1].
destruct (IHl s1) as [i2 EQ]. rewrite EQ. econstructor; eauto.
Qed.
Lemma ptree_mfold_spec:
forall (A: Type) (f: positive -> A -> mon unit) t s x s' i,
ptree_mfold f t s = R x s' i ->
exists i', mlist_iter2 f (PTree.elements t) s = R tt s' i'.
Proof.
intros.
destruct (mlist_iter2_fold _ _ f (PTree.elements t) s) as [i' EQ].
unfold ptree_mfold in H. inv H. rewrite PTree.fold_spec.
econstructor. eexact EQ.
Qed.
(** ** Relational specification of the translation of moves *)
Inductive tr_moves (c: code) : node -> list reg -> list reg -> node -> Prop :=
| tr_moves_cons: forall pc1 src srcs dst dsts pc2 pc3,
tr_moves c pc1 srcs dsts pc2 ->
c!pc2 = Some(Iop Omove (src :: nil) dst pc3) ->
tr_moves c pc1 (src :: srcs) (dst :: dsts) pc3
| tr_moves_nil: forall srcs dsts pc,
srcs = nil \/ dsts = nil ->
tr_moves c pc srcs dsts pc.
Lemma add_moves_unchanged:
forall srcs dsts pc2 s pc1 s' i pc,
add_moves srcs dsts pc2 s = R pc1 s' i ->
Ple pc s.(st_nextnode) \/ Plt s'.(st_nextnode) pc ->
s'.(st_code)!pc = s.(st_code)!pc.
Proof.
induction srcs; simpl; intros.
monadInv H. auto.
destruct dsts; monadInv H. auto.
transitivity (st_code s0)!pc. eapply IHsrcs; eauto. monadInv EQ; simpl. xomega.
monadInv EQ; simpl. apply PTree.gso.
inversion INCR0; simpl in *. xomega.
Qed.
Lemma add_moves_spec:
forall srcs dsts pc2 s pc1 s' i c,
add_moves srcs dsts pc2 s = R pc1 s' i ->
(forall pc, Plt s.(st_nextnode) pc -> Ple pc s'.(st_nextnode) -> c!pc = s'.(st_code)!pc) ->
tr_moves c pc1 srcs dsts pc2.
Proof.
induction srcs; simpl; intros.
monadInv H. apply tr_moves_nil; auto.
destruct dsts; monadInv H. apply tr_moves_nil; auto.
apply tr_moves_cons with x. eapply IHsrcs; eauto.
intros. inversion INCR. apply H0; xomega.
monadInv EQ.
rewrite H0. erewrite add_moves_unchanged; eauto.
simpl. apply PTree.gss.
simpl. xomega.
xomega.
inversion INCR; inversion INCR0; simpl in *; xomega.
Qed.
(** ** Relational specification of CFG expansion *)
Section INLINING_SPEC.
Variable fenv: funenv.
Definition context_below (ctx1 ctx2: context): Prop :=
Ple (Pplus ctx1.(dreg) ctx1.(mreg)) ctx2.(dreg).
Definition context_stack_call (ctx1 ctx2: context): Prop :=
ctx1.(mstk) >= 0 /\ ctx1.(dstk) + ctx1.(mstk) <= ctx2.(dstk).
Definition context_stack_tailcall (ctx1: context) (f: function) (ctx2: context) : Prop :=
ctx2.(dstk) = align ctx1.(dstk) (min_alignment f.(fn_stacksize)).
Section INLINING_BODY_SPEC.
Variable stacksize: Z.
Inductive tr_instr: context -> node -> instruction -> code -> Prop :=
| tr_nop: forall ctx pc c s,
c!(spc ctx pc) = Some (Inop (spc ctx s)) ->
tr_instr ctx pc (Inop s) c
| tr_op: forall ctx pc c op args res s,
Ple res ctx.(mreg) ->
c!(spc ctx pc) = Some (Iop (sop ctx op) (sregs ctx args) (sreg ctx res) (spc ctx s)) ->
tr_instr ctx pc (Iop op args res s) c
| tr_load: forall ctx pc c chunk addr args res s,
Ple res ctx.(mreg) ->
c!(spc ctx pc) = Some (Iload chunk (saddr ctx addr) (sregs ctx args) (sreg ctx res) (spc ctx s)) ->
tr_instr ctx pc (Iload chunk addr args res s) c
| tr_store: forall ctx pc c chunk addr args src s,
c!(spc ctx pc) = Some (Istore chunk (saddr ctx addr) (sregs ctx args) (sreg ctx src) (spc ctx s)) ->
tr_instr ctx pc (Istore chunk addr args src s) c
| tr_call: forall ctx pc c sg ros args res s,
Ple res ctx.(mreg) ->
c!(spc ctx pc) = Some (Icall sg (sros ctx ros) (sregs ctx args) (sreg ctx res) (spc ctx s)) ->
tr_instr ctx pc (Icall sg ros args res s) c
| tr_call_inlined:forall ctx pc sg id args res s c f pc1 ctx',
Ple res ctx.(mreg) ->
fenv!id = Some f ->
c!(spc ctx pc) = Some(Inop pc1) ->
tr_moves c pc1 (sregs ctx args) (sregs ctx' f.(fn_params)) (spc ctx' f.(fn_entrypoint)) ->
tr_funbody ctx' f c ->
ctx'.(retinfo) = Some(spc ctx s, sreg ctx res) ->
context_below ctx ctx' ->
context_stack_call ctx ctx' ->
tr_instr ctx pc (Icall sg (inr _ id) args res s) c
| tr_tailcall: forall ctx pc c sg ros args,
c!(spc ctx pc) = Some (Itailcall sg (sros ctx ros) (sregs ctx args)) ->
ctx.(retinfo) = None ->
tr_instr ctx pc (Itailcall sg ros args) c
| tr_tailcall_call: forall ctx pc c sg ros args res s,
c!(spc ctx pc) = Some (Icall sg (sros ctx ros) (sregs ctx args) res s) ->
ctx.(retinfo) = Some(s, res) ->
tr_instr ctx pc (Itailcall sg ros args) c
| tr_tailcall_inlined: forall ctx pc sg id args c f pc1 ctx',
fenv!id = Some f ->
c!(spc ctx pc) = Some(Inop pc1) ->
tr_moves c pc1 (sregs ctx args) (sregs ctx' f.(fn_params)) (spc ctx' f.(fn_entrypoint)) ->
tr_funbody ctx' f c ->
ctx'.(retinfo) = ctx.(retinfo) ->
context_below ctx ctx' ->
context_stack_tailcall ctx f ctx' ->
tr_instr ctx pc (Itailcall sg (inr _ id) args) c
| tr_builtin: forall ctx pc c ef args res s,
Ple res ctx.(mreg) ->
c!(spc ctx pc) = Some (Ibuiltin ef (sregs ctx args) (sreg ctx res) (spc ctx s)) ->
tr_instr ctx pc (Ibuiltin ef args res s) c
| tr_cond: forall ctx pc cond args s1 s2 c,
c!(spc ctx pc) = Some (Icond cond (sregs ctx args) (spc ctx s1) (spc ctx s2)) ->
tr_instr ctx pc (Icond cond args s1 s2) c
| tr_jumptable: forall ctx pc r tbl c,
c!(spc ctx pc) = Some (Ijumptable (sreg ctx r) (List.map (spc ctx) tbl)) ->
tr_instr ctx pc (Ijumptable r tbl) c
| tr_return: forall ctx pc or c,
c!(spc ctx pc) = Some (Ireturn (option_map (sreg ctx) or)) ->
ctx.(retinfo) = None ->
tr_instr ctx pc (Ireturn or) c
| tr_return_inlined: forall ctx pc or c rinfo,
c!(spc ctx pc) = Some (inline_return ctx or rinfo) ->
ctx.(retinfo) = Some rinfo ->
tr_instr ctx pc (Ireturn or) c
with tr_funbody: context -> function -> code -> Prop :=
| tr_funbody_intro: forall ctx f c,
(forall r, In r f.(fn_params) -> Ple r ctx.(mreg)) ->
(forall pc i, f.(fn_code)!pc = Some i -> tr_instr ctx pc i c) ->
ctx.(mstk) = Zmax f.(fn_stacksize) 0 ->
(min_alignment f.(fn_stacksize) | ctx.(dstk)) ->
ctx.(dstk) >= 0 -> ctx.(dstk) + ctx.(mstk) <= stacksize ->
tr_funbody ctx f c.
Definition fenv_agree (fe: funenv) : Prop :=
forall id f, fe!id = Some f -> fenv!id = Some f.
Section EXPAND_INSTR.
Variable fe: funenv.
Hypothesis FE: fenv_agree fe.
Variable rec: forall fe', (size_fenv fe' < size_fenv fe)%nat -> context -> function -> mon unit.
Hypothesis rec_unchanged:
forall fe' (L: (size_fenv fe' < size_fenv fe)%nat) ctx f s x s' i pc,
rec fe' L ctx f s = R x s' i ->
Ple ctx.(dpc) s.(st_nextnode) ->
Ple pc ctx.(dpc) ->
s'.(st_code)!pc = s.(st_code)!pc.
Remark set_instr_other:
forall pc instr s x s' i pc',
set_instr pc instr s = R x s' i ->
pc' <> pc ->
s'.(st_code)!pc' = s.(st_code)!pc'.
Proof.
intros. monadInv H; simpl. apply PTree.gso; auto.
Qed.
Remark set_instr_same:
forall pc instr s x s' i c,
set_instr pc instr s = R x s' i ->
c!(pc) = s'.(st_code)!pc ->
c!(pc) = Some instr.
Proof.
intros. rewrite H0. monadInv H; simpl. apply PTree.gss.
Qed.
Lemma expand_instr_unchanged:
forall ctx pc instr s x s' i pc',
expand_instr fe rec ctx pc instr s = R x s' i ->
Ple ctx.(dpc) s.(st_nextnode) ->
Ple pc' s.(st_nextnode) ->
pc' <> spc ctx pc ->
s'.(st_code)!pc' = s.(st_code)!pc'.
Proof.
generalize set_instr_other; intros A.
intros. unfold expand_instr in H; destruct instr; eauto.
(* call *)
destruct (can_inline fe s1). eauto.
monadInv H. unfold inline_function in EQ. monadInv EQ.
transitivity (s2.(st_code)!pc'). eauto.
transitivity (s5.(st_code)!pc'). eapply add_moves_unchanged; eauto.
left. inversion INCR5. inversion INCR3. monadInv EQ1; simpl in *. xomega.
transitivity (s4.(st_code)!pc'). eapply rec_unchanged; eauto.
simpl. monadInv EQ; simpl. monadInv EQ1; simpl. xomega.
simpl. monadInv EQ1; simpl. auto.
monadInv EQ; simpl. monadInv EQ1; simpl. auto.
(* tailcall *)
destruct (can_inline fe s1).
destruct (retinfo ctx) as [[rpc rreg]|]; eauto.
monadInv H. unfold inline_tail_function in EQ. monadInv EQ.
transitivity (s2.(st_code)!pc'). eauto.
transitivity (s5.(st_code)!pc'). eapply add_moves_unchanged; eauto.
left. inversion INCR5. inversion INCR3. monadInv EQ1; simpl in *. xomega.
transitivity (s4.(st_code)!pc'). eapply rec_unchanged; eauto.
simpl. monadInv EQ; simpl. monadInv EQ1; simpl. xomega.
simpl. monadInv EQ1; simpl. auto.
monadInv EQ; simpl. monadInv EQ1; simpl. auto.
(* return *)
destruct (retinfo ctx) as [[rpc rreg]|]; eauto.
Qed.
Lemma iter_expand_instr_unchanged:
forall ctx pc l s x s' i,
mlist_iter2 (expand_instr fe rec ctx) l s = R x s' i ->
Ple ctx.(dpc) s.(st_nextnode) ->
Ple pc s.(st_nextnode) ->
~In pc (List.map (spc ctx) (List.map (@fst _ _) l)) ->
list_norepet (List.map (@fst _ _) l) ->
s'.(st_code)!pc = s.(st_code)!pc.
Proof.
induction l; simpl; intros.
(* base case *)
monadInv H. auto.
(* inductive case *)
destruct a as [pc1 instr1]; simpl in *.
monadInv H. inv H3.
transitivity ((st_code s0)!pc).
eapply IHl; eauto. destruct INCR; xomega. destruct INCR; xomega.
eapply expand_instr_unchanged; eauto.
Qed.
Lemma expand_cfg_rec_unchanged:
forall ctx f s x s' i pc,
expand_cfg_rec fe rec ctx f s = R x s' i ->
Ple ctx.(dpc) s.(st_nextnode) ->
Ple pc ctx.(dpc) ->
s'.(st_code)!pc = s.(st_code)!pc.
Proof.
intros. unfold expand_cfg_rec in H. monadInv H. inversion EQ.
transitivity ((st_code s0)!pc).
exploit ptree_mfold_spec; eauto. intros [INCR' ITER].
eapply iter_expand_instr_unchanged; eauto.
subst s0; auto.
subst s0; simpl. xomega.
red; intros. exploit list_in_map_inv; eauto. intros [pc1 [A B]].
subst pc. unfold spc in H1. xomega.
apply PTree.elements_keys_norepet.
subst s0; auto.
Qed.
Hypothesis rec_spec:
forall fe' (L: (size_fenv fe' < size_fenv fe)%nat) ctx f s x s' i c,
rec fe' L ctx f s = R x s' i ->
fenv_agree fe' ->
Ple (ctx.(dpc) + max_pc_function f) s.(st_nextnode) ->
ctx.(mreg) = max_def_function f ->
Ple (ctx.(dreg) + ctx.(mreg)) s.(st_nextreg) ->
ctx.(mstk) >= 0 ->
ctx.(mstk) = Zmax (fn_stacksize f) 0 ->
(min_alignment (fn_stacksize f) | ctx.(dstk)) ->
ctx.(dstk) >= 0 ->
s'.(st_stksize) <= stacksize ->
(forall pc, Plt ctx.(dpc) pc -> Ple pc s'.(st_nextnode) -> c!pc = s'.(st_code)!pc) ->
tr_funbody ctx f c.
Remark min_alignment_pos:
forall sz, min_alignment sz > 0.
Proof.
intros; unfold min_alignment.
destruct (zle sz 1). omega. destruct (zle sz 2). omega. destruct (zle sz 4); omega.
Qed.
Ltac inv_incr :=
match goal with
| [ H: sincr _ _ |- _ ] => destruct H; inv_incr
| _ => idtac
end.
Lemma expand_instr_spec:
forall ctx pc instr s x s' i c,
expand_instr fe rec ctx pc instr s = R x s' i ->
Ple (max_def_instr instr) ctx.(mreg) ->
Ple (spc ctx pc) s.(st_nextnode) ->
Ple (ctx.(dreg) + ctx.(mreg)) s.(st_nextreg) ->
ctx.(mstk) >= 0 -> ctx.(dstk) >= 0 ->
s'.(st_stksize) <= stacksize ->
(forall pc', Plt s.(st_nextnode) pc' -> Ple pc' s'.(st_nextnode) -> c!pc' = s'.(st_code)!pc') ->
c!(spc ctx pc) = s'.(st_code)!(spc ctx pc) ->
tr_instr ctx pc instr c.
Proof.
intros until c; intros EXP DEFS OPC OREG STK1 STK2 STK3 S1 S2.
generalize set_instr_same; intros BASE.
unfold expand_instr in EXP; destruct instr; simpl in DEFS;
try (econstructor; eauto; fail).
(* call *)
destruct (can_inline fe s1) as [|id f P Q].
(* not inlined *)
eapply tr_call; eauto.
(* inlined *)
subst s1.
monadInv EXP. unfold inline_function in EQ; monadInv EQ.
set (ctx' := callcontext ctx x1 x2 (max_def_function f) (fn_stacksize f) n r).
inversion EQ0; inversion EQ1; inversion EQ. inv_incr.
apply tr_call_inlined with (pc1 := x0) (ctx' := ctx') (f := f); auto.
eapply BASE; eauto.
eapply add_moves_spec; eauto.
intros. rewrite S1. eapply set_instr_other; eauto. unfold node; xomega. xomega. xomega.
eapply rec_spec; eauto.
red; intros. rewrite PTree.grspec in H. destruct (PTree.elt_eq id0 id); try discriminate. auto.
simpl. subst s2; simpl in *; xomega.
simpl. subst s3; simpl in *; xomega.
simpl. xomega.
simpl. apply align_divides. apply min_alignment_pos.
assert (dstk ctx + mstk ctx <= dstk ctx'). simpl. apply align_le. apply min_alignment_pos. omega.
omega.
intros. simpl in H. rewrite S1.
transitivity s1.(st_code)!pc0. eapply set_instr_other; eauto. unfold node in *; xomega.
eapply add_moves_unchanged; eauto. unfold node in *; xomega. xomega.
red; simpl. subst s2; simpl in *; xomega.
red; simpl. split. auto. apply align_le. apply min_alignment_pos.
(* tailcall *)
destruct (can_inline fe s1) as [|id f P Q].
(* not inlined *)
destruct (retinfo ctx) as [[rpc rreg] | ] eqn:?.
(* turned into a call *)
eapply tr_tailcall_call; eauto.
(* preserved *)
eapply tr_tailcall; eauto.
(* inlined *)
subst s1.
monadInv EXP. unfold inline_function in EQ; monadInv EQ.
set (ctx' := tailcontext ctx x1 x2 (max_def_function f) (fn_stacksize f)) in *.
inversion EQ0; inversion EQ1; inversion EQ. inv_incr.
apply tr_tailcall_inlined with (pc1 := x0) (ctx' := ctx') (f := f); auto.
eapply BASE; eauto.
eapply add_moves_spec; eauto.
intros. rewrite S1. eapply set_instr_other; eauto. unfold node; xomega. xomega. xomega.
eapply rec_spec; eauto.
red; intros. rewrite PTree.grspec in H. destruct (PTree.elt_eq id0 id); try discriminate. auto.
simpl. subst s2; simpl in *; xomega.
simpl. subst s3; simpl in *; xomega.
simpl. xomega.
simpl. apply align_divides. apply min_alignment_pos.
assert (dstk ctx <= dstk ctx'). simpl. apply align_le. apply min_alignment_pos. omega.
omega.
intros. simpl in H. rewrite S1.
transitivity s1.(st_code)!pc0. eapply set_instr_other; eauto. unfold node in *; xomega.
eapply add_moves_unchanged; eauto. unfold node in *; xomega. xomega.
red; simpl. subst s2; simpl in *; xomega.
red; auto.
(* return *)
destruct (retinfo ctx) as [[rpc rreg] | ] eqn:?.
(* inlined *)
eapply tr_return_inlined; eauto.
(* unchanged *)
eapply tr_return; eauto.
Qed.
Lemma iter_expand_instr_spec:
forall ctx l s x s' i c,
mlist_iter2 (expand_instr fe rec ctx) l s = R x s' i ->
list_norepet (List.map (@fst _ _) l) ->
(forall pc instr, In (pc, instr) l -> Ple (max_def_instr instr) ctx.(mreg)) ->
(forall pc instr, In (pc, instr) l -> Ple (spc ctx pc) s.(st_nextnode)) ->
Ple (ctx.(dreg) + ctx.(mreg)) s.(st_nextreg) ->
ctx.(mstk) >= 0 -> ctx.(dstk) >= 0 ->
s'.(st_stksize) <= stacksize ->
(forall pc', Plt s.(st_nextnode) pc' -> Ple pc' s'.(st_nextnode) -> c!pc' = s'.(st_code)!pc') ->
(forall pc instr, In (pc, instr) l -> c!(spc ctx pc) = s'.(st_code)!(spc ctx pc)) ->
forall pc instr, In (pc, instr) l -> tr_instr ctx pc instr c.
Proof.
induction l; simpl; intros.
(* base case *)
contradiction.
(* inductive case *)
destruct a as [pc1 instr1]; simpl in *. inv H0. monadInv H. inv_incr.
assert (A: Ple ctx.(dpc) s0.(st_nextnode)).
assert (B: Ple (spc ctx pc) (st_nextnode s)) by eauto. unfold spc in B; xomega.
destruct H9. inv H.
(* same pc *)
eapply expand_instr_spec; eauto.
omega.
intros.
transitivity ((st_code s')!pc').
apply H7. auto. xomega.
eapply iter_expand_instr_unchanged; eauto.
red; intros. rewrite list_map_compose in H9. exploit list_in_map_inv; eauto.
intros [[pc0 instr0] [P Q]]. simpl in P.
assert (Ple (spc ctx pc0) (st_nextnode s)) by eauto. xomega.
transitivity ((st_code s')!(spc ctx pc)).
eapply H8; eauto.
eapply iter_expand_instr_unchanged; eauto.
assert (Ple (spc ctx pc) (st_nextnode s)) by eauto. xomega.
red; intros. rewrite list_map_compose in H. exploit list_in_map_inv; eauto.
intros [[pc0 instr0] [P Q]]. simpl in P. unfold spc in P.
assert (pc = pc0) by (unfold node; xomega). subst pc0.
elim H12. change pc with (fst (pc, instr0)). apply List.in_map; auto.
(* older pc *)
inv_incr. eapply IHl; eauto.
intros. eapply Ple_trans; eauto.
intros; eapply Ple_trans; eauto.
intros. apply H7; auto. xomega.
Qed.
Lemma expand_cfg_rec_spec:
forall ctx f s x s' i c,
expand_cfg_rec fe rec ctx f s = R x s' i ->
Ple (ctx.(dpc) + max_pc_function f) s.(st_nextnode) ->
ctx.(mreg) = max_def_function f ->
Ple (ctx.(dreg) + ctx.(mreg)) s.(st_nextreg) ->
ctx.(mstk) >= 0 ->
ctx.(mstk) = Zmax (fn_stacksize f) 0 ->
(min_alignment (fn_stacksize f) | ctx.(dstk)) ->
ctx.(dstk) >= 0 ->
s'.(st_stksize) <= stacksize ->
(forall pc', Plt ctx.(dpc) pc' -> Ple pc' s'.(st_nextnode) -> c!pc' = s'.(st_code)!pc') ->
tr_funbody ctx f c.
Proof.
intros. unfold expand_cfg_rec in H. monadInv H. inversion EQ.
constructor.
intros. rewrite H1. eapply max_def_function_params; eauto.
intros. exploit ptree_mfold_spec; eauto. intros [INCR' ITER].
eapply iter_expand_instr_spec; eauto.
apply PTree.elements_keys_norepet.
intros. rewrite H1. eapply max_def_function_instr; eauto.
eapply PTree.elements_complete; eauto.
intros.
assert (Ple pc0 (max_pc_function f)).
eapply max_pc_function_sound. eapply PTree.elements_complete; eauto.
unfold spc. subst s0; simpl; xomega.
subst s0; simpl; auto.
intros. apply H8; auto. subst s0; simpl in H11; xomega.
intros. apply H8. unfold spc; xomega.
assert (Ple pc0 (max_pc_function f)).
eapply max_pc_function_sound. eapply PTree.elements_complete; eauto.
unfold spc. inversion i; xomega.
apply PTree.elements_correct; auto.
auto. auto. auto.
inversion INCR0. subst s0; simpl in STKSIZE; xomega.
Qed.
End EXPAND_INSTR.
Lemma expand_cfg_unchanged:
forall fe ctx f s x s' i pc,
expand_cfg fe ctx f s = R x s' i ->
Ple ctx.(dpc) s.(st_nextnode) ->
Ple pc ctx.(dpc) ->
s'.(st_code)!pc = s.(st_code)!pc.
Proof.
intros fe0; pattern fe0. apply well_founded_ind with (R := ltof _ size_fenv).
apply well_founded_ltof.
intros. unfold expand_cfg in H0. rewrite unroll_Fixm in H0.
eapply expand_cfg_rec_unchanged; eauto. assumption.
Qed.
Lemma expand_cfg_spec:
forall fe ctx f s x s' i c,
expand_cfg fe ctx f s = R x s' i ->
fenv_agree fe ->
Ple (ctx.(dpc) + max_pc_function f) s.(st_nextnode) ->
ctx.(mreg) = max_def_function f ->
Ple (ctx.(dreg) + ctx.(mreg)) s.(st_nextreg) ->
ctx.(mstk) >= 0 ->
ctx.(mstk) = Zmax (fn_stacksize f) 0 ->
(min_alignment (fn_stacksize f) | ctx.(dstk)) ->
ctx.(dstk) >= 0 ->
s'.(st_stksize) <= stacksize ->
(forall pc', Plt ctx.(dpc) pc' -> Ple pc' s'.(st_nextnode) -> c!pc' = s'.(st_code)!pc') ->
tr_funbody ctx f c.
Proof.
intros fe0; pattern fe0. apply well_founded_ind with (R := ltof _ size_fenv).
apply well_founded_ltof.
intros. unfold expand_cfg in H0. rewrite unroll_Fixm in H0.
eapply expand_cfg_rec_spec; eauto.
simpl. intros. eapply expand_cfg_unchanged; eauto. assumption.
Qed.
End INLINING_BODY_SPEC.
(** ** Relational specification of the translation of a function *)
Inductive tr_function: function -> function -> Prop :=
| tr_function_intro: forall f f' ctx,
tr_funbody f'.(fn_stacksize) ctx f f'.(fn_code) ->
ctx.(dstk) = 0 ->
ctx.(retinfo) = None ->
f'.(fn_sig) = f.(fn_sig) ->
f'.(fn_params) = sregs ctx f.(fn_params) ->
f'.(fn_entrypoint) = spc ctx f.(fn_entrypoint) ->
0 <= fn_stacksize f' < Int.max_unsigned ->
tr_function f f'.
Lemma transf_function_spec:
forall f f', transf_function fenv f = OK f' -> tr_function f f'.
Proof.
intros. unfold transf_function in H.
destruct (expand_function fenv f initstate) as [ctx s i] eqn:?.
destruct (zlt (st_stksize s) Int.max_unsigned); inv H.
monadInv Heqr. set (ctx := initcontext x x0 (max_def_function f) (fn_stacksize f)) in *.
Opaque initstate.
destruct INCR3. inversion EQ1. inversion EQ.
apply tr_function_intro with ctx; auto.
eapply expand_cfg_spec with (fe := fenv); eauto.
red; auto.
unfold ctx; rewrite <- H1; rewrite <- H2; rewrite <- H3; simpl. xomega.
unfold ctx; rewrite <- H0; rewrite <- H1; simpl. xomega.
simpl. xomega.
simpl. apply Zdivide_0.
simpl. omega.
simpl. omega.
simpl. split; auto. destruct INCR2. destruct INCR1. destruct INCR0. destruct INCR.
simpl. change 0 with (st_stksize initstate). omega.
Qed.
End INLINING_SPEC.
|