1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
open Printf
open Camlcoq
open Datatypes
open AST
open Registers
open Machregs
open Locations
open Conventions1
open Conventions
open XTL
(* Iterated Register Coalescing: George and Appel's graph coloring algorithm *)
type var_stats = {
mutable cost: int; (* estimated cost of a spill *)
mutable usedefs: int (* number of uses and defs *)
}
(* Representation of the interference graph. Each node of the graph
(i.e. each variable) is represented as follows. *)
type node =
{ ident: int; (*r unique identifier *)
typ: typ; (*r its type *)
var: var; (*r the XTL variable it comes from *)
regclass: int; (*r identifier of register class *)
mutable accesses: int; (*r number of defs and uses *)
mutable spillcost: float; (*r estimated cost of spilling *)
mutable adjlist: node list; (*r all nodes it interferes with *)
mutable degree: int; (*r number of adjacent nodes *)
mutable movelist: move list; (*r list of moves it is involved in *)
mutable extra_adj: node list; (*r extra interferences (see below) *)
mutable extra_pref: move list; (*r extra preferences (see below) *)
mutable alias: node option; (*r [Some n] if coalesced with [n] *)
mutable color: loc option; (*r chosen color *)
mutable nstate: nodestate; (*r in which set of nodes it is *)
mutable nprev: node; (*r for double linking *)
mutable nnext: node (*r for double linking *)
}
(* These are the possible states for nodes. *)
and nodestate =
| Colored
| Initial
| SimplifyWorklist
| FreezeWorklist
| SpillWorklist
| CoalescedNodes
| SelectStack
(* Each move (i.e. wish to be put in the same location) is represented
as follows. *)
and move =
{ src: node; (*r source of the move *)
dst: node; (*r destination of the move *)
mutable mstate: movestate; (*r in which set of moves it is *)
mutable mprev: move; (*r for double linking *)
mutable mnext: move (*r for double linking *)
}
(* These are the possible states for moves *)
and movestate =
| CoalescedMoves
| ConstrainedMoves
| FrozenMoves
| WorklistMoves
| ActiveMoves
(* Note on "precolored" nodes and how they are handled:
The register allocator can express interferences and preferences between
any two values of type [var]: either pseudoregisters, to be colored by IRC,
or fixed, "precolored" locations.
I and P between two pseudoregisters are recorded in the graph that IRC
modifies, via the [adjlist] and [movelist] fields.
I and P between a pseudoregister and a machine register are also
recorded in the IRC graph, but only in the [adjlist] and [movelist]
fields of the pseudoregister. This is the special case described
in George and Appel's papers.
I and P between a pseudoregister and a stack slot
are omitted from the IRC graph, as they contribute nothing to the
simplification and coalescing process. We record them in the
[extra_adj] and [extra_pref] fields, where they can be honored
after IRC elimination, when assigning a stack slot to a spilled variable. *)
let name_of_loc = function
| R r ->
begin match Machregsaux.name_of_register r with
| None -> "fixed-reg"
| Some s -> s
end
| S (Local, ofs, ty) ->
sprintf "L%c%ld" (PrintXTL.short_name_of_type ty) (camlint_of_coqint ofs)
| S (Incoming, ofs, ty) ->
sprintf "I%c%ld" (PrintXTL.short_name_of_type ty) (camlint_of_coqint ofs)
| S (Outgoing, ofs, ty) ->
sprintf "O%c%ld" (PrintXTL.short_name_of_type ty) (camlint_of_coqint ofs)
let name_of_node n =
match n.var with
| V(r, ty) -> sprintf "x%ld" (P.to_int32 r)
| L l -> name_of_loc l
(* The algorithm manipulates partitions of the nodes and of the moves
according to their states, frequently moving a node or a move from
a state to another, and frequently enumerating all nodes or all moves
of a given state. To support these operations efficiently,
nodes or moves having the same state are put into imperative doubly-linked
lists, allowing for constant-time insertion and removal, and linear-time
scanning. We now define the operations over these doubly-linked lists. *)
module DLinkNode = struct
type t = node
let make state =
let rec empty =
{ ident = 0; typ = Tint; var = V(P.one, Tint); regclass = 0;
adjlist = []; degree = 0; accesses = 0; spillcost = 0.0;
movelist = []; extra_adj = []; extra_pref = [];
alias = None; color = None;
nstate = state; nprev = empty; nnext = empty }
in empty
let dummy = make Colored
let clear dl = dl.nnext <- dl; dl.nprev <- dl
let notempty dl = dl.nnext != dl
let insert n dl =
n.nstate <- dl.nstate;
n.nnext <- dl.nnext; n.nprev <- dl;
dl.nnext.nprev <- n; dl.nnext <- n
let remove n dl =
assert (n.nstate = dl.nstate);
n.nnext.nprev <- n.nprev; n.nprev.nnext <- n.nnext
let move n dl1 dl2 =
remove n dl1; insert n dl2
let pick dl =
let n = dl.nnext in remove n dl; n
let iter f dl =
let rec iter n = if n != dl then (f n; iter n.nnext)
in iter dl.nnext
let fold f dl accu =
let rec fold n accu = if n == dl then accu else fold n.nnext (f n accu)
in fold dl.nnext accu
end
module DLinkMove = struct
type t = move
let make state =
let rec empty =
{ src = DLinkNode.dummy; dst = DLinkNode.dummy;
mstate = state; mprev = empty; mnext = empty }
in empty
let dummy = make CoalescedMoves
let clear dl = dl.mnext <- dl; dl.mprev <- dl
let notempty dl = dl.mnext != dl
let insert m dl =
m.mstate <- dl.mstate;
m.mnext <- dl.mnext; m.mprev <- dl;
dl.mnext.mprev <- m; dl.mnext <- m
let remove m dl =
assert (m.mstate = dl.mstate);
m.mnext.mprev <- m.mprev; m.mprev.mnext <- m.mnext
let move m dl1 dl2 =
remove m dl1; insert m dl2
let pick dl =
let m = dl.mnext in remove m dl; m
let iter f dl =
let rec iter m = if m != dl then (f m; iter m.mnext)
in iter dl.mnext
let fold f dl accu =
let rec fold m accu = if m == dl then accu else fold m.mnext (f m accu)
in fold dl.mnext accu
end
(* Auxiliary data structures *)
module IntSet = Set.Make(struct
type t = int
let compare (x:int) (y:int) = compare x y
end)
module IntPairSet = Set.Make(struct
type t = int * int
let compare ((x1, y1): (int * int)) (x2, y2) =
if x1 < x2 then -1 else
if x1 > x2 then 1 else
if y1 < y2 then -1 else
if y1 > y2 then 1 else
0
end)
(* The global state of the algorithm *)
type graph = {
(* Machine registers available for allocation *)
caller_save_registers: mreg array array;
callee_save_registers: mreg array array;
num_available_registers: int array;
start_points: int array;
allocatable_registers: mreg list;
(* Costs for pseudo-registers *)
stats_of_reg: reg -> var_stats;
(* Mapping from XTL variables to nodes *)
varTable: (var, node) Hashtbl.t;
mutable nextIdent: int;
(* The adjacency set *)
mutable adjSet: IntPairSet.t;
(* Low-degree, non-move-related nodes *)
simplifyWorklist: DLinkNode.t;
(* Low-degree, move-related nodes *)
freezeWorklist: DLinkNode.t;
(* High-degree nodes *)
spillWorklist: DLinkNode.t;
(* Nodes that have been coalesced *)
coalescedNodes: DLinkNode.t;
(* Moves that have been coalesced *)
coalescedMoves: DLinkMove.t;
(* Moves whose source and destination interfere *)
constrainedMoves: DLinkMove.t;
(* Moves that will no longer be considered for coalescing *)
frozenMoves: DLinkMove.t;
(* Moves enabled for possible coalescing *)
worklistMoves: DLinkMove.t;
(* Moves not yet ready for coalescing *)
activeMoves: DLinkMove.t
}
(* Register classes and reserved registers *)
let num_register_classes = 2
let class_of_type = function
| Tint -> 0
| Tfloat | Tsingle -> 1
| Tlong -> assert false
let type_of_class c =
if c = 0 then Tint else Tfloat
let reserved_registers = ref ([]: mreg list)
let rec remove_reserved = function
| [] -> []
| hd :: tl ->
if List.mem hd !reserved_registers
then remove_reserved tl
else hd :: remove_reserved tl
(* Initialize and return an empty graph *)
let init costs =
let int_caller_save = remove_reserved int_caller_save_regs
and float_caller_save = remove_reserved float_caller_save_regs
and int_callee_save = remove_reserved int_callee_save_regs
and float_callee_save = remove_reserved float_callee_save_regs in
{
caller_save_registers =
[| Array.of_list int_caller_save; Array.of_list float_caller_save |];
callee_save_registers =
[| Array.of_list int_callee_save; Array.of_list float_callee_save |];
num_available_registers =
[| List.length int_caller_save + List.length int_callee_save;
List.length float_caller_save + List.length float_callee_save |];
start_points =
[| 0; 0 |];
allocatable_registers =
int_caller_save @ int_callee_save @ float_caller_save @ float_callee_save;
stats_of_reg = costs;
varTable = Hashtbl.create 253;
nextIdent = 0;
adjSet = IntPairSet.empty;
simplifyWorklist = DLinkNode.make SimplifyWorklist;
freezeWorklist = DLinkNode.make FreezeWorklist;
spillWorklist = DLinkNode.make SpillWorklist;
coalescedNodes = DLinkNode.make CoalescedNodes;
coalescedMoves = DLinkMove.make CoalescedMoves;
constrainedMoves = DLinkMove.make ConstrainedMoves;
frozenMoves = DLinkMove.make FrozenMoves;
worklistMoves = DLinkMove.make WorklistMoves;
activeMoves = DLinkMove.make ActiveMoves
}
(* Create nodes corresponding to XTL variables *)
let weightedSpillCost st =
if st.cost < max_int
then float_of_int st.cost
else infinity
let newNodeOfReg g r ty =
let st = g.stats_of_reg r in
g.nextIdent <- g.nextIdent + 1;
{ ident = g.nextIdent; typ = ty;
var = V(r, ty); regclass = class_of_type ty;
accesses = st.usedefs;
spillcost = weightedSpillCost st;
adjlist = []; degree = 0; movelist = []; extra_adj = []; extra_pref = [];
alias = None;
color = None;
nstate = Initial;
nprev = DLinkNode.dummy; nnext = DLinkNode.dummy }
let newNodeOfLoc g l =
let ty = Loc.coq_type l in
g.nextIdent <- g.nextIdent + 1;
{ ident = g.nextIdent; typ = ty;
var = L l; regclass = class_of_type ty;
accesses = 0; spillcost = 0.0;
adjlist = []; degree = 0; movelist = []; extra_adj = []; extra_pref = [];
alias = None;
color = Some l;
nstate = Colored;
nprev = DLinkNode.dummy; nnext = DLinkNode.dummy }
let nodeOfVar g v =
try
Hashtbl.find g.varTable v
with Not_found ->
let n =
match v with V(r, ty) -> newNodeOfReg g r ty | L l -> newNodeOfLoc g l in
Hashtbl.add g.varTable v n;
n
(* Determine if two nodes interfere *)
let interfere g n1 n2 =
let i1 = n1.ident and i2 = n2.ident in
let p = if i1 < i2 then (i1, i2) else (i2, i1) in
IntPairSet.mem p g.adjSet
(* Add an edge to the graph. *)
let recordInterf n1 n2 =
match n2.color with
| None | Some (R _) ->
if n1.regclass = n2.regclass then begin
n1.adjlist <- n2 :: n1.adjlist;
n1.degree <- 1 + n1.degree
end else begin
n1.extra_adj <- n2 :: n1.extra_adj
end
| Some (S _) ->
(*i printf "extra adj %s to %s\n" (name_of_node n1) (name_of_node n2); *)
n1.extra_adj <- n2 :: n1.extra_adj
let addEdge g n1 n2 =
(*i printf "edge %s -- %s;\n" (name_of_node n1) (name_of_node n2);*)
assert (n1 != n2);
if not (interfere g n1 n2) then begin
let i1 = n1.ident and i2 = n2.ident in
let p = if i1 < i2 then (i1, i2) else (i2, i1) in
g.adjSet <- IntPairSet.add p g.adjSet;
if n1.nstate <> Colored then recordInterf n1 n2;
if n2.nstate <> Colored then recordInterf n2 n1
end
(* Add a move preference. *)
let recordMove g n1 n2 =
let m =
{ src = n1; dst = n2; mstate = WorklistMoves;
mnext = DLinkMove.dummy; mprev = DLinkMove.dummy } in
n1.movelist <- m :: n1.movelist;
n2.movelist <- m :: n2.movelist;
DLinkMove.insert m g.worklistMoves
let recordExtraPref n1 n2 =
let m =
{ src = n1; dst = n2; mstate = FrozenMoves;
mnext = DLinkMove.dummy; mprev = DLinkMove.dummy } in
n1.extra_pref <- m :: n1.extra_pref
let addMovePref g n1 n2 =
assert (n1.regclass = n2.regclass);
match n1.color, n2.color with
| None, None ->
recordMove g n1 n2
| Some (R mr1), None ->
if List.mem mr1 g.allocatable_registers then recordMove g n1 n2
| None, Some (R mr2) ->
if List.mem mr2 g.allocatable_registers then recordMove g n1 n2
| Some (S _), None ->
recordExtraPref n2 n1
| None, Some (S _) ->
recordExtraPref n1 n2
| _, _ ->
()
(* Apply the given function to the relevant adjacent nodes of a node *)
let iterAdjacent f n =
List.iter
(fun n ->
match n.nstate with
| SelectStack | CoalescedNodes -> ()
| _ -> f n)
n.adjlist
(* Determine the moves affecting a node *)
let moveIsActiveOrWorklist m =
match m.mstate with
| ActiveMoves | WorklistMoves -> true
| _ -> false
let nodeMoves n =
List.filter moveIsActiveOrWorklist n.movelist
(* Determine whether a node is involved in a move *)
let moveRelated n =
List.exists moveIsActiveOrWorklist n.movelist
(* Initial partition of nodes into spill / freeze / simplify *)
let initialNodePartition g =
let part_node v n =
match n.nstate with
| Initial ->
let k = g.num_available_registers.(n.regclass) in
if n.degree >= k then
DLinkNode.insert n g.spillWorklist
else if moveRelated n then
DLinkNode.insert n g.freezeWorklist
else
DLinkNode.insert n g.simplifyWorklist
| Colored -> ()
| _ -> assert false in
Hashtbl.iter part_node g.varTable
(* Check invariants *)
let degreeInvariant g n =
let c = ref 0 in
iterAdjacent (fun n -> incr c) n;
if !c <> n.degree then
failwith("degree invariant violated by " ^ name_of_node n)
let simplifyWorklistInvariant g n =
if n.degree < g.num_available_registers.(n.regclass)
&& not (moveRelated n)
then ()
else failwith("simplify worklist invariant violated by " ^ name_of_node n)
let freezeWorklistInvariant g n =
if n.degree < g.num_available_registers.(n.regclass)
&& moveRelated n
then ()
else failwith("freeze worklist invariant violated by " ^ name_of_node n)
let spillWorklistInvariant g n =
if n.degree >= g.num_available_registers.(n.regclass)
then ()
else failwith("spill worklist invariant violated by " ^ name_of_node n)
let checkInvariants g =
DLinkNode.iter
(fun n -> degreeInvariant g n; simplifyWorklistInvariant g n)
g.simplifyWorklist;
DLinkNode.iter
(fun n -> degreeInvariant g n; freezeWorklistInvariant g n)
g.freezeWorklist;
DLinkNode.iter
(fun n -> degreeInvariant g n; spillWorklistInvariant g n)
g.spillWorklist
(* Enable moves that have become low-degree related *)
let enableMoves g n =
List.iter
(fun m ->
if m.mstate = ActiveMoves
then DLinkMove.move m g.activeMoves g.worklistMoves)
(nodeMoves n)
(* Simulate the removal of a node from the graph *)
let decrementDegree g n =
let k = g.num_available_registers.(n.regclass) in
let d = n.degree in
n.degree <- d - 1;
if d = k then begin
enableMoves g n;
iterAdjacent (enableMoves g) n;
if moveRelated n
then DLinkNode.move n g.spillWorklist g.freezeWorklist
else DLinkNode.move n g.spillWorklist g.simplifyWorklist
end
(* Simulate the effect of combining nodes [n1] and [n3] on [n2],
where [n2] is a node adjacent to [n3]. *)
let combineEdge g n1 n2 =
assert (n1 != n2);
if interfere g n1 n2 then begin
(* The two edges n2--n3 and n2--n1 become one, so degree of n2 decreases *)
decrementDegree g n2
end else begin
(* Add new edge *)
let i1 = n1.ident and i2 = n2.ident in
let p = if i1 < i2 then (i1, i2) else (i2, i1) in
g.adjSet <- IntPairSet.add p g.adjSet;
if n1.nstate <> Colored then begin
n1.adjlist <- n2 :: n1.adjlist;
n1.degree <- 1 + n1.degree
end;
if n2.nstate <> Colored then begin
n2.adjlist <- n1 :: n2.adjlist;
(* n2's degree stays the same because the old edge n2--n3 disappears
and becomes the new edge n2--n1 *)
end
end
(* Simplification of a low-degree node *)
let simplify g =
let n = DLinkNode.pick g.simplifyWorklist in
(*i printf "Simplifying %s\n" (name_of_node n); *)
n.nstate <- SelectStack;
iterAdjacent (decrementDegree g) n;
n
(* Briggs's conservative coalescing criterion. In the terminology of
Hailperin, "Comparing Conservative Coalescing Criteria",
TOPLAS 27(3) 2005, this is the full Briggs criterion, slightly
more powerful than the one in George and Appel's paper. *)
let canCoalesceBriggs g u v =
let seen = ref IntSet.empty in
let k = g.num_available_registers.(u.regclass) in
let c = ref 0 in
let consider other n =
if not (IntSet.mem n.ident !seen) then begin
seen := IntSet.add n.ident !seen;
(* if n interferes with both u and v, its degree will decrease by one
after coalescing *)
let degree_after_coalescing =
if interfere g n other then n.degree - 1 else n.degree in
if degree_after_coalescing >= k || n.nstate = Colored then begin
incr c;
if !c >= k then raise Exit
end
end in
try
iterAdjacent (consider v) u;
iterAdjacent (consider u) v;
(*i printf " Briggs: OK for %s and %s\n" (name_of_node u) (name_of_node v); *)
true
with Exit ->
(*i printf " Briggs: no\n"; *)
false
(* George's conservative coalescing criterion: all high-degree neighbors
of [v] are neighbors of [u]. *)
let canCoalesceGeorge g u v =
let k = g.num_available_registers.(u.regclass) in
let isOK t =
if t.nstate = Colored then
if u.nstate = Colored || interfere g t u then () else raise Exit
else
if t.degree < k || interfere g t u then () else raise Exit
in
try
iterAdjacent isOK v;
(*i printf " George: OK for %s and %s\n" (name_of_node u) (name_of_node v); *)
true
with Exit ->
(*i printf " George: no\n"; *)
false
(* The combined coalescing criterion. [u] can be precolored, but
[v] is not. According to George and Appel's paper:
- If [u] is precolored, use George's criterion.
- If [u] is not precolored, use Briggs's criterion.
As noted by Hailperin, for non-precolored nodes, George's criterion
is incomparable with Briggs's: there are cases where G says yes
and B says no. Typically, [u] is a long-lived variable with many
interferences, and [v] is a short-lived temporary copy of [u]
that has no more interferences than [u]. Coalescing [u] and [v]
is "weakly safe" in Hailperin's terminology: [u] is no harder to color,
[u]'s neighbors are no harder to color either, but if we end up
spilling [u], we'll spill [v] as well. So, we restrict this heuristic
to [v] having a small number of uses.
*)
let thresholdGeorge = 3
let canCoalesce g u v =
(*i printf "canCoalesce %s[%.2f] %s[%.2f]\n"
(name_of_node u) u.spillcost (name_of_node v) v.spillcost; *)
if u.nstate = Colored
then canCoalesceGeorge g u v
else canCoalesceBriggs g u v
|| (u.spillcost < infinity && v.spillcost < infinity &&
((v.accesses <= thresholdGeorge && canCoalesceGeorge g u v)
|| (u.accesses <= thresholdGeorge && canCoalesceGeorge g v u)))
(* Update worklists after a move was processed *)
let addWorkList g u =
if (not (u.nstate = Colored))
&& u.degree < g.num_available_registers.(u.regclass)
&& (not (moveRelated u))
then DLinkNode.move u g.freezeWorklist g.simplifyWorklist
(* Return the canonical representative of a possibly coalesced node *)
let rec getAlias n =
match n.alias with None -> n | Some n' -> getAlias n'
(* Combine two nodes *)
let combine g u v =
(*i printf "Combining %s and %s\n" (name_of_node u) (name_of_node v); *)
(*i if u.spillcost = infinity then
printf "Warning: combining unspillable %s\n" (name_of_node u);
if v.spillcost = infinity then
printf "Warning: combining unspillable %s\n" (name_of_node v);*)
if v.nstate = FreezeWorklist
then DLinkNode.move v g.freezeWorklist g.coalescedNodes
else DLinkNode.move v g.spillWorklist g.coalescedNodes;
v.alias <- Some u;
(* Precolored nodes often have big movelists, and if one of [u] and [v]
is precolored, it is [u]. So, append [v.movelist] to [u.movelist]
instead of the other way around. *)
u.movelist <- List.rev_append v.movelist u.movelist;
u.spillcost <- u.spillcost +. v.spillcost;
iterAdjacent (combineEdge g u) v; (*r original code using [decrementDegree] is buggy *)
if u.nstate <> Colored then begin
u.extra_adj <- List.rev_append v.extra_adj u.extra_adj;
u.extra_pref <- List.rev_append v.extra_pref u.extra_pref
end;
enableMoves g v; (*r added as per Appel's book erratum *)
if u.degree >= g.num_available_registers.(u.regclass)
&& u.nstate = FreezeWorklist
then DLinkNode.move u g.freezeWorklist g.spillWorklist
(* Attempt coalescing *)
let coalesce g =
let m = DLinkMove.pick g.worklistMoves in
let x = getAlias m.src and y = getAlias m.dst in
let (u, v) = if y.nstate = Colored then (y, x) else (x, y) in
(*i printf "Attempt coalescing %s and %s\n" (name_of_node u) (name_of_node v);*)
if u == v then begin
DLinkMove.insert m g.coalescedMoves;
addWorkList g u
end else if v.nstate = Colored || interfere g u v then begin
DLinkMove.insert m g.constrainedMoves;
addWorkList g u;
addWorkList g v
end else if canCoalesce g u v then begin
DLinkMove.insert m g.coalescedMoves;
combine g u v;
addWorkList g u
end else begin
DLinkMove.insert m g.activeMoves
end
(* Freeze moves associated with node [u] *)
let freezeMoves g u =
let u' = getAlias u in
let freeze m =
let y = getAlias m.src in
let v = if y == u' then getAlias m.dst else y in
DLinkMove.move m g.activeMoves g.frozenMoves;
if not (moveRelated v)
&& v.degree < g.num_available_registers.(v.regclass)
&& v.nstate <> Colored
then DLinkNode.move v g.freezeWorklist g.simplifyWorklist in
List.iter freeze (nodeMoves u)
(* Pick a move and freeze it *)
let freeze g =
let u = DLinkNode.pick g.freezeWorklist in
(*i printf "Freezing %s\n" (name_of_node u); *)
DLinkNode.insert u g.simplifyWorklist;
freezeMoves g u
(* This is the original spill cost function from Chaitin 1982 *)
(*
let spillCost n =
(*i
printf "spillCost %s: cost = %.2f degree = %d rank = %.2f\n"
(name_of_node n) n.spillcost n.degree
(n.spillcost /. float n.degree);
*)
n.spillcost /. float n.degree
*)
(* This is spill cost function h_0 from Bernstein et al 1989. It performs
slightly better than Chaitin's and than functions h_1 and h_2. *)
let spillCost n =
let deg = float n.degree in n.spillcost /. (deg *. deg)
(* Spill a node *)
let selectSpill g =
(*i printf "Attempt spilling\n"; *)
(* Find a spillable node of minimal cost *)
let (n, cost) =
DLinkNode.fold
(fun n (best_node, best_cost as best) ->
let cost = spillCost n in
if cost <= best_cost then (n, cost) else best)
g.spillWorklist (DLinkNode.dummy, infinity) in
assert (n != DLinkNode.dummy);
if cost = infinity then begin
printf "Warning: spilling unspillable %s\n" (name_of_node n);
printf " spill queue is:";
DLinkNode.iter (fun n -> printf " %s" (name_of_node n)) g.spillWorklist;
printf "\n"
end;
DLinkNode.remove n g.spillWorklist;
(*i printf "Spilling %s\n" (name_of_node n); *)
freezeMoves g n;
n.nstate <- SelectStack;
iterAdjacent (decrementDegree g) n;
n
(* Produce the order of nodes that we'll use for coloring *)
let rec nodeOrder g stack =
(*i checkInvariants g; *)
if DLinkNode.notempty g.simplifyWorklist then
(let n = simplify g in nodeOrder g (n :: stack))
else if DLinkMove.notempty g.worklistMoves then
(coalesce g; nodeOrder g stack)
else if DLinkNode.notempty g.freezeWorklist then
(freeze g; nodeOrder g stack)
else if DLinkNode.notempty g.spillWorklist then
(let n = selectSpill g in nodeOrder g (n :: stack))
else
stack
(* Assign a color (i.e. a hardware register or a stack location)
to a node. The color is chosen among the colors that are not
assigned to nodes with which this node interferes. The choice
is guided by the following heuristics: consider first caller-save
hardware register of the correct type; second, callee-save registers;
third, a stack location. Callee-save registers and stack locations
are ``expensive'' resources, so we try to minimize their number
by picking the smallest available callee-save register or stack location.
In contrast, caller-save registers are ``free'', so we pick an
available one pseudo-randomly. *)
module Regset =
Set.Make(struct type t = mreg let compare = compare end)
let find_reg g conflicts regclass =
let rec find avail curr last =
if curr >= last then None else begin
let r = avail.(curr) in
if Regset.mem r conflicts
then find avail (curr + 1) last
else Some (R r)
end in
let caller_save = g.caller_save_registers.(regclass)
and callee_save = g.callee_save_registers.(regclass)
and start = g.start_points.(regclass) in
match find caller_save start (Array.length caller_save) with
| Some _ as res ->
g.start_points.(regclass) <-
(if start + 1 < Array.length caller_save then start + 1 else 0);
res
| None ->
match find caller_save 0 start with
| Some _ as res ->
g.start_points.(regclass) <-
(if start + 1 < Array.length caller_save then start + 1 else 0);
res
| None ->
find callee_save 0 (Array.length callee_save)
(* Aggressive coalescing of stack slots. When assigning a slot,
try first the slots assigned to the pseudoregs for which we
have a preference, provided no conflict occurs. *)
let rec reuse_slot conflicts n mvlist =
match mvlist with
| [] -> None
| mv :: rem ->
let attempt_reuse n' =
match n'.color with
| Some(S(Local, _, _) as l)
when List.for_all (Loc.diff_dec l) conflicts -> Some l
| _ -> reuse_slot conflicts n rem in
let src = getAlias mv.src and dst = getAlias mv.dst in
if n == src then attempt_reuse dst
else if n == dst then attempt_reuse src
else reuse_slot conflicts n rem (* should not happen? *)
(* If no reuse possible, assign lowest nonconflicting stack slot. *)
let compare_slots s1 s2 =
match s1, s2 with
| S(_, ofs1, _), S(_, ofs2, _) -> Z.compare ofs1 ofs2
| _, _ -> assert false
let find_slot conflicts typ =
let rec find curr = function
| [] ->
S(Local, curr, typ)
| S(Local, ofs, typ') :: l ->
if Z.le (Z.add curr (typesize typ)) ofs then
S(Local, curr, typ)
else begin
let ofs' = Z.add ofs (typesize typ') in
find (if Z.le ofs' curr then curr else ofs') l
end
| _ :: l ->
find curr l
in find Z.zero (List.stable_sort compare_slots conflicts)
(* Record locations assigned to interfering nodes *)
let record_reg_conflict cnf n =
match (getAlias n).color with
| Some (R r) -> Regset.add r cnf
| _ -> cnf
let record_slot_conflict cnf n =
match (getAlias n).color with
| Some (S _ as l) -> l :: cnf
| _ -> cnf
(* Assign a location, the best we can *)
let assign_color g n =
let reg_conflicts =
List.fold_left record_reg_conflict Regset.empty n.adjlist in
(* First, try to assign a register *)
match find_reg g reg_conflicts n.regclass with
| Some loc ->
n.color <- Some loc
| None ->
(* Add extra conflicts for nonallocatable and preallocated stack slots *)
let slot_conflicts =
List.fold_left record_slot_conflict
(List.fold_left record_slot_conflict [] n.adjlist)
n.extra_adj in
(* Second, try to coalesce stack slots *)
match reuse_slot slot_conflicts n (n.extra_pref @ n.movelist) with
| Some loc ->
n.color <- Some loc
| None ->
(* Last, pick a Local stack slot *)
n.color <- Some (find_slot slot_conflicts (type_of_class n.regclass))
(* Extract the location of a variable *)
let location_of_var g v =
match v with
| L l -> l
| V(r, ty) ->
try
let n = Hashtbl.find g.varTable v in
let n' = getAlias n in
match n'.color with
| None -> assert false
| Some l -> l
with Not_found ->
match ty with
| Tint -> R dummy_int_reg
| Tfloat | Tsingle -> R dummy_float_reg
| Tlong -> assert false
(* The exported interface *)
let add_interf g v1 v2 =
addEdge g (nodeOfVar g v1) (nodeOfVar g v2)
let add_pref g v1 v2 =
addMovePref g (nodeOfVar g v1) (nodeOfVar g v2)
let coloring g =
initialNodePartition g;
List.iter (assign_color g) (nodeOrder g []);
location_of_var g (* total function var -> location *)
|