summaryrefslogtreecommitdiff
path: root/backend/Deadcodeproof.v
blob: 2fdedc63361af2a43d3e17345902194fa85718d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Elimination of unneeded computations over RTL: correctness proof. *)

Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import IntvSets.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Events.
Require Import Smallstep.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import Lattice.
Require Import Kildall.
Require Import ValueDomain.
Require Import ValueAnalysis.
Require Import NeedDomain.
Require Import NeedOp.
Require Import Deadcode.

(** * Relating the memory states *)

(** The [magree] predicate is a variant of [Mem.extends] where we
  allow the contents of the two memory states to differ arbitrarily
  on some locations.  The predicate [P] is true on the locations whose
  contents must be in the [lessdef] relation. *)

Definition locset := block -> Z -> Prop.

Record magree (m1 m2: mem) (P: locset) : Prop := mk_magree {
  ma_perm:
    forall b ofs k p,
    Mem.perm m1 b ofs k p ->
    Mem.perm m2 b ofs k p;
  ma_memval:
    forall b ofs,
    Mem.perm m1 b ofs Cur Readable ->
    P b ofs ->
    memval_lessdef (ZMap.get ofs (PMap.get b (Mem.mem_contents m1)))
                   (ZMap.get ofs (PMap.get b (Mem.mem_contents m2)));
  ma_nextblock:
    Mem.nextblock m2 = Mem.nextblock m1
}.

Lemma magree_monotone:
  forall m1 m2 (P Q: locset),
  magree m1 m2 P ->
  (forall b ofs, Q b ofs -> P b ofs) ->
  magree m1 m2 Q.
Proof.
  intros. destruct H. constructor; auto.
Qed.

Lemma mextends_agree:
  forall m1 m2 P, Mem.extends m1 m2 -> magree m1 m2 P.
Proof.
  intros. destruct H. destruct mext_inj. constructor; intros.
- replace ofs with (ofs + 0) by omega. eapply mi_perm; eauto. auto.
- exploit mi_memval; eauto. unfold inject_id; eauto. 
  rewrite Zplus_0_r. auto. 
- auto.
Qed.

Lemma magree_extends:
  forall m1 m2 (P: locset),
  (forall b ofs, P b ofs) ->
  magree m1 m2 P -> Mem.extends m1 m2.
Proof.
  intros. destruct H0. constructor; auto. constructor; unfold inject_id; intros.
- inv H0. rewrite Zplus_0_r. eauto. 
- inv H0. apply Zdivide_0. 
- inv H0. rewrite Zplus_0_r. eapply ma_memval0; eauto.
Qed.

Lemma magree_loadbytes:
  forall m1 m2 P b ofs n bytes,
  magree m1 m2 P ->
  Mem.loadbytes m1 b ofs n = Some bytes ->
  (forall i, ofs <= i < ofs + n -> P b i) ->
  exists bytes', Mem.loadbytes m2 b ofs n = Some bytes' /\ list_forall2 memval_lessdef bytes bytes'.
Proof.
  assert (GETN: forall c1 c2 n ofs,
    (forall i, ofs <= i < ofs + Z.of_nat n -> memval_lessdef (ZMap.get i c1) (ZMap.get i c2)) ->
    list_forall2 memval_lessdef (Mem.getN n ofs c1) (Mem.getN n ofs c2)).
  {
    induction n; intros; simpl. 
    constructor.
    rewrite inj_S in H. constructor.
    apply H. omega. 
    apply IHn. intros; apply H; omega.
  }
Local Transparent Mem.loadbytes.
  unfold Mem.loadbytes; intros. destruct H. 
  destruct (Mem.range_perm_dec m1 b ofs (ofs + n) Cur Readable); inv H0.
  rewrite pred_dec_true. econstructor; split; eauto.
  apply GETN. intros. rewrite nat_of_Z_max in H.
  assert (ofs <= i < ofs + n) by xomega. 
  apply ma_memval0; auto.
  red; intros; eauto. 
Qed.

Lemma magree_load:
  forall m1 m2 P chunk b ofs v,
  magree m1 m2 P ->
  Mem.load chunk m1 b ofs = Some v ->
  (forall i, ofs <= i < ofs + size_chunk chunk -> P b i) ->
  exists v', Mem.load chunk m2 b ofs = Some v' /\ Val.lessdef v v'.
Proof.
  intros. exploit Mem.load_valid_access; eauto. intros [A B]. 
  exploit Mem.load_loadbytes; eauto. intros [bytes [C D]].
  exploit magree_loadbytes; eauto. intros [bytes' [E F]].
  exists (decode_val chunk bytes'); split. 
  apply Mem.loadbytes_load; auto. 
  apply val_inject_id. subst v. apply decode_val_inject; auto. 
Qed.

Lemma magree_storebytes_parallel:
  forall m1 m2 (P Q: locset) b ofs bytes1 m1' bytes2,
  magree m1 m2 P ->
  Mem.storebytes m1 b ofs bytes1 = Some m1' ->
  (forall b' i, Q b' i ->
                b' <> b \/ i < ofs \/ ofs + Z_of_nat (length bytes1) <= i ->
                P b' i) ->
  list_forall2 memval_lessdef bytes1 bytes2 ->
  exists m2', Mem.storebytes m2 b ofs bytes2 = Some m2' /\ magree m1' m2' Q.
Proof.
  assert (SETN: forall (access: Z -> Prop) bytes1 bytes2,
    list_forall2 memval_lessdef bytes1 bytes2 ->
    forall p c1 c2,
    (forall i, access i -> i < p \/ p + Z.of_nat (length bytes1) <= i -> memval_lessdef (ZMap.get i c1) (ZMap.get i c2)) ->
    forall q, access q ->
    memval_lessdef (ZMap.get q (Mem.setN bytes1 p c1))
                   (ZMap.get q (Mem.setN bytes2 p c2))).
  {
    induction 1; intros; simpl.
  - apply H; auto. simpl. omega.
  - simpl length in H1; rewrite inj_S in H1. 
    apply IHlist_forall2; auto. 
    intros. rewrite ! ZMap.gsspec. destruct (ZIndexed.eq i p). auto. 
    apply H1; auto. unfold ZIndexed.t in *; omega. 
  }
  intros. 
  destruct (Mem.range_perm_storebytes m2 b ofs bytes2) as [m2' ST2].
  { erewrite <- list_forall2_length by eauto. red; intros.
    eapply ma_perm; eauto. 
    eapply Mem.storebytes_range_perm; eauto. }
  exists m2'; split; auto. 
  constructor; intros.
- eapply Mem.perm_storebytes_1; eauto. eapply ma_perm; eauto.
  eapply Mem.perm_storebytes_2; eauto. 
- rewrite (Mem.storebytes_mem_contents _ _ _ _ _ H0).
  rewrite (Mem.storebytes_mem_contents _ _ _ _ _ ST2).
  rewrite ! PMap.gsspec. destruct (peq b0 b).
+ subst b0. apply SETN with (access := fun ofs => Mem.perm m1' b ofs Cur Readable /\ Q b ofs); auto.
  intros. destruct H5. eapply ma_memval; eauto.
  eapply Mem.perm_storebytes_2; eauto.
  apply H1; auto.
+ eapply ma_memval; eauto. eapply Mem.perm_storebytes_2; eauto. apply H1; auto.
- rewrite (Mem.nextblock_storebytes _ _ _ _ _ H0).
  rewrite (Mem.nextblock_storebytes _ _ _ _ _ ST2).
  eapply ma_nextblock; eauto. 
Qed.

Lemma magree_store_parallel:
  forall m1 m2 (P Q: locset) chunk b ofs v1 m1' v2,
  magree m1 m2 P ->
  Mem.store chunk m1 b ofs v1 = Some m1' ->
  vagree v1 v2 (store_argument chunk) ->
  (forall b' i, Q b' i ->
                b' <> b \/ i < ofs \/ ofs + size_chunk chunk <= i ->
                P b' i) ->
  exists m2', Mem.store chunk m2 b ofs v2 = Some m2' /\ magree m1' m2' Q.
Proof.
  intros. 
  exploit Mem.store_valid_access_3; eauto. intros [A B]. 
  exploit Mem.store_storebytes; eauto. intros SB1.
  exploit magree_storebytes_parallel. eauto. eauto. 
  instantiate (1 := Q). intros. rewrite encode_val_length in H4.
  rewrite <- size_chunk_conv in H4. apply H2; auto. 
  eapply store_argument_sound; eauto. 
  intros [m2' [SB2 AG]]. 
  exists m2'; split; auto.
  apply Mem.storebytes_store; auto. 
Qed.

Lemma magree_storebytes_left:
  forall m1 m2 P b ofs bytes1 m1',
  magree m1 m2 P ->
  Mem.storebytes m1 b ofs bytes1 = Some m1' ->
  (forall i, ofs <= i < ofs + Z_of_nat (length bytes1) -> ~(P b i)) ->
  magree m1' m2 P.
Proof.
  intros. constructor; intros.
- eapply ma_perm; eauto. eapply Mem.perm_storebytes_2; eauto. 
- rewrite (Mem.storebytes_mem_contents _ _ _ _ _ H0).
  rewrite PMap.gsspec. destruct (peq b0 b).
+ subst b0. rewrite Mem.setN_outside. eapply ma_memval; eauto. eapply Mem.perm_storebytes_2; eauto.
  destruct (zlt ofs0 ofs); auto. destruct (zle (ofs + Z.of_nat (length bytes1)) ofs0); try omega.
  elim (H1 ofs0). omega. auto. 
+ eapply ma_memval; eauto. eapply Mem.perm_storebytes_2; eauto.
- rewrite (Mem.nextblock_storebytes _ _ _ _ _ H0).
  eapply ma_nextblock; eauto. 
Qed.

Lemma magree_store_left:
  forall m1 m2 P chunk b ofs v1 m1',
  magree m1 m2 P ->
  Mem.store chunk m1 b ofs v1 = Some m1' ->
  (forall i, ofs <= i < ofs + size_chunk chunk -> ~(P b i)) ->
  magree m1' m2 P.
Proof.
  intros. eapply magree_storebytes_left; eauto.
  eapply Mem.store_storebytes; eauto. 
  intros. rewrite encode_val_length in H2.
  rewrite <- size_chunk_conv in H2. apply H1; auto. 
Qed.

Lemma magree_free:
  forall m1 m2 (P Q: locset) b lo hi m1',
  magree m1 m2 P ->
  Mem.free m1 b lo hi = Some m1' ->
  (forall b' i, Q b' i ->
                b' <> b \/ ~(lo <= i < hi) ->
                P b' i) ->
  exists m2', Mem.free m2 b lo hi = Some m2' /\ magree m1' m2' Q.
Proof.
  intros. 
  destruct (Mem.range_perm_free m2 b lo hi) as [m2' FREE].
  red; intros. eapply ma_perm; eauto. eapply Mem.free_range_perm; eauto. 
  exists m2'; split; auto.
  constructor; intros.
- (* permissions *)
  assert (Mem.perm m2 b0 ofs k p). { eapply ma_perm; eauto. eapply Mem.perm_free_3; eauto. }
  exploit Mem.perm_free_inv; eauto. intros [[A B] | A]; auto.
  subst b0. eelim Mem.perm_free_2. eexact H0. eauto. eauto. 
- (* contents *)
  rewrite (Mem.free_result _ _ _ _ _ H0).
  rewrite (Mem.free_result _ _ _ _ _ FREE). 
  simpl. eapply ma_memval; eauto. eapply Mem.perm_free_3; eauto.
  apply H1; auto. destruct (eq_block b0 b); auto.
  subst b0. right. red; intros. eelim Mem.perm_free_2. eexact H0. eauto. eauto. 
- (* nextblock *)
  rewrite (Mem.free_result _ _ _ _ _ H0).
  rewrite (Mem.free_result _ _ _ _ _ FREE).
  simpl. eapply ma_nextblock; eauto.
Qed.

(** * Properties of the need environment *)

Lemma add_need_all_eagree:
  forall e e' r ne,
  eagree e e' (add_need_all r ne) -> eagree e e' ne.
Proof.
  intros; red; intros. generalize (H r0). unfold add_need_all. 
  rewrite NE.gsspec. destruct (peq r0 r); auto with na. 
Qed.

Lemma add_need_all_lessdef:
  forall e e' r ne,
  eagree e e' (add_need_all r ne) -> Val.lessdef e#r e'#r.
Proof.
  intros. generalize (H r); unfold add_need_all. 
  rewrite NE.gsspec, peq_true. auto with na.
Qed.

Lemma add_need_eagree:
  forall e e' r nv ne,
  eagree e e' (add_need r nv ne) -> eagree e e' ne.
Proof.
  intros; red; intros. generalize (H r0); unfold add_need.
  rewrite NE.gsspec. destruct (peq r0 r); auto.
  subst r0. intros. eapply nge_agree; eauto. apply nge_lub_r.
Qed.

Lemma add_need_vagree:
  forall e e' r nv ne,
  eagree e e' (add_need r nv ne) -> vagree e#r e'#r nv.
Proof.
  intros. generalize (H r); unfold add_need.
  rewrite NE.gsspec, peq_true. intros. eapply nge_agree; eauto. apply nge_lub_l.
Qed.

Lemma add_needs_all_eagree:
  forall rl e e' ne,
  eagree e e' (add_needs_all rl ne) -> eagree e e' ne.
Proof.
  induction rl; simpl; intros.
  auto.
  apply IHrl. eapply add_need_all_eagree; eauto. 
Qed.

Lemma add_needs_all_lessdef:
  forall rl e e' ne,
  eagree e e' (add_needs_all rl ne) -> Val.lessdef_list e##rl e'##rl.
Proof.
  induction rl; simpl; intros. 
  constructor.
  constructor. eapply add_need_all_lessdef; eauto. 
  eapply IHrl. eapply add_need_all_eagree; eauto. 
Qed.

Lemma add_needs_eagree:
  forall rl nvl e e' ne,
  eagree e e' (add_needs rl nvl ne) -> eagree e e' ne.
Proof.
  induction rl; simpl; intros.
  auto.
  destruct nvl. apply add_needs_all_eagree with (a :: rl); auto.
  eapply IHrl. eapply add_need_eagree; eauto. 
Qed.

Lemma add_needs_vagree:
  forall rl nvl e e' ne,
  eagree e e' (add_needs rl nvl ne) -> vagree_list e##rl e'##rl nvl.
Proof.
  induction rl; simpl; intros.
  constructor.
  destruct nvl.
  apply vagree_lessdef_list. eapply add_needs_all_lessdef with (rl := a :: rl); eauto.
  constructor. eapply add_need_vagree; eauto. 
  eapply IHrl. eapply add_need_eagree; eauto. 
Qed.

Lemma add_ros_need_eagree:
  forall e e' ros ne, eagree e e' (add_ros_need_all ros ne) -> eagree e e' ne.
Proof.
  intros. destruct ros; simpl in *. eapply add_need_all_eagree; eauto. auto. 
Qed.

Hint Resolve add_need_all_eagree add_need_all_lessdef
             add_need_eagree add_need_vagree
             add_needs_all_eagree add_needs_all_lessdef
             add_needs_eagree add_needs_vagree
             add_ros_need_eagree: na.

Lemma eagree_init_regs:
  forall rl vl1 vl2 ne,
  Val.lessdef_list vl1 vl2 ->  
  eagree (init_regs vl1 rl) (init_regs vl2 rl) ne.
Proof.
  induction rl; intros until ne; intros LD; simpl.
- red; auto with na.
- inv LD. 
  + red; auto with na. 
  + apply eagree_update; auto with na.
Qed.

(** * Basic properties of the translation *)

Section PRESERVATION.

Variable prog: program.
Variable tprog: program.
Hypothesis TRANSF: transf_program prog = OK tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Let rm := romem_for_program prog.

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
  intro. unfold ge, tge.
  apply Genv.find_symbol_transf_partial with (transf_fundef rm).
  exact TRANSF.
Qed.

Lemma varinfo_preserved:
  forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof.
  intro. unfold ge, tge.
  apply Genv.find_var_info_transf_partial with (transf_fundef rm).
  exact TRANSF.
Qed.

Lemma functions_translated:
  forall (v: val) (f: RTL.fundef),
  Genv.find_funct ge v = Some f ->
  exists tf,
  Genv.find_funct tge v = Some tf /\ transf_fundef rm f = OK tf.
Proof (Genv.find_funct_transf_partial (transf_fundef rm) _ TRANSF).

Lemma function_ptr_translated:
  forall (b: block) (f: RTL.fundef),
  Genv.find_funct_ptr ge b = Some f ->
  exists tf,
  Genv.find_funct_ptr tge b = Some tf /\ transf_fundef rm f = OK tf.
Proof (Genv.find_funct_ptr_transf_partial (transf_fundef rm) _ TRANSF).

Lemma sig_function_translated:
  forall f tf,
  transf_fundef rm f = OK tf ->
  funsig tf = funsig f.
Proof.
  intros; destruct f; monadInv H.
  unfold transf_function in EQ. 
  destruct (analyze (vanalyze rm f) f); inv EQ; auto. 
  auto.
Qed.

Lemma stacksize_translated:
  forall f tf,
  transf_function rm f = OK tf -> tf.(fn_stacksize) = f.(fn_stacksize).
Proof.
  unfold transf_function; intros. destruct (analyze (vanalyze rm f) f); inv H; auto.
Qed.

Lemma transf_function_at:
  forall f tf an pc instr,
  transf_function rm f = OK tf ->
  analyze (vanalyze rm f) f = Some an ->
  f.(fn_code)!pc = Some instr ->
  tf.(fn_code)!pc = Some(transf_instr (vanalyze rm f) an pc instr).
Proof.
  intros. unfold transf_function in H. rewrite H0 in H. inv H; simpl. 
  rewrite PTree.gmap. rewrite H1; auto. 
Qed.

Lemma is_dead_sound_1:
  forall nv, is_dead nv = true -> nv = Nothing.
Proof.
  destruct nv; simpl; congruence. 
Qed.

Lemma is_dead_sound_2:
  forall nv, is_dead nv = false -> nv <> Nothing.
Proof.
  intros; red; intros. subst nv; discriminate.
Qed.

Hint Resolve is_dead_sound_1 is_dead_sound_2: na.

Lemma is_int_zero_sound:
  forall nv, is_int_zero nv = true -> nv = I Int.zero.
Proof.
  unfold is_int_zero; destruct nv; try discriminate.
  predSpec Int.eq Int.eq_spec m Int.zero; congruence.
Qed.  

Lemma find_function_translated:
  forall ros rs fd trs ne,
  find_function ge ros rs = Some fd ->
  eagree rs trs (add_ros_need_all ros ne) ->
  exists tfd, find_function tge ros trs = Some tfd /\ transf_fundef rm fd = OK tfd.
Proof.
  intros. destruct ros as [r|id]; simpl in *.
- assert (LD: Val.lessdef rs#r trs#r) by eauto with na. inv LD.
  apply functions_translated; auto.
  rewrite <- H2 in H; discriminate.
- rewrite symbols_preserved. destruct (Genv.find_symbol ge id); try discriminate.
  apply function_ptr_translated; auto.
Qed.

(** * Semantic invariant *)

Inductive match_stackframes: stackframe -> stackframe -> Prop :=
  | match_stackframes_intro:
      forall res f sp pc e tf te an
        (FUN: transf_function rm f = OK tf)
        (ANL: analyze (vanalyze rm f) f = Some an)
        (RES: forall v tv,
              Val.lessdef v tv ->
              eagree (e#res <- v) (te#res<- tv)
                     (fst (transfer f (vanalyze rm f) pc an!!pc))),
      match_stackframes (Stackframe res f (Vptr sp Int.zero) pc e)
                        (Stackframe res tf (Vptr sp Int.zero) pc te).

Inductive match_states: state -> state -> Prop :=
  | match_regular_states:
      forall s f sp pc e m ts tf te tm an
        (STACKS: list_forall2 match_stackframes s ts)
        (FUN: transf_function rm f = OK tf)
        (ANL: analyze (vanalyze rm f) f = Some an)
        (ENV: eagree e te (fst (transfer f (vanalyze rm f) pc an!!pc)))
        (MEM: magree m tm (nlive ge sp (snd (transfer f (vanalyze rm f) pc an!!pc)))),
      match_states (State s f (Vptr sp Int.zero) pc e m)
                   (State ts tf (Vptr sp Int.zero) pc te tm)
  | match_call_states:
      forall s f args m ts tf targs tm
        (STACKS: list_forall2 match_stackframes s ts)
        (FUN: transf_fundef rm f = OK tf)
        (ARGS: Val.lessdef_list args targs)
        (MEM: Mem.extends m tm),
      match_states (Callstate s f args m)
                   (Callstate ts tf targs tm)
  | match_return_states:
      forall s v m ts tv tm
        (STACKS: list_forall2 match_stackframes s ts)
        (RES: Val.lessdef v tv)
        (MEM: Mem.extends m tm),
      match_states (Returnstate s v m)
                   (Returnstate ts tv tm).

(** [match_states] and CFG successors *)

Lemma analyze_successors:
  forall f an pc instr pc',
  analyze (vanalyze rm f) f = Some an ->
  f.(fn_code)!pc = Some instr ->
  In pc' (successors_instr instr) ->
  NA.ge an!!pc (transfer f (vanalyze rm f) pc' an!!pc').
Proof.
  intros. eapply DS.fixpoint_solution; eauto.
  intros. unfold transfer; rewrite H2. destruct a. apply DS.L.eq_refl.
Qed.

Lemma match_succ_states:
  forall s f sp pc e m ts tf te tm an pc' instr ne nm
    (STACKS: list_forall2 match_stackframes s ts)
    (FUN: transf_function rm f = OK tf)
    (ANL: analyze (vanalyze rm f) f = Some an)
    (INSTR: f.(fn_code)!pc = Some instr)
    (SUCC: In pc' (successors_instr instr))
    (ANPC: an!!pc = (ne, nm))
    (ENV: eagree e te ne)
    (MEM: magree m tm (nlive ge sp nm)),
  match_states (State s f (Vptr sp Int.zero) pc' e m)
               (State ts tf (Vptr sp Int.zero) pc' te tm).
Proof.
  intros. exploit analyze_successors; eauto. rewrite ANPC; simpl. intros [A B]. 
  econstructor; eauto. 
  eapply eagree_ge; eauto. 
  eapply magree_monotone; eauto. intros; apply B; auto.  
Qed.

(** Properties of volatile memory accesses *)

(*
Lemma transf_volatile_load:

  forall s f sp pc e m te r tm nm chunk t v m',

  volatile_load_sem chunk ge (addr :: nil) m t v m' ->
  Val.lessdef addr taddr ->
  genv_match bc ge ->
  bc sp = BCstack ->
  pmatch 

  sound_state prog (State s f (Vptr sp Int.zero) pc e m) ->
  Val.lessdef e#r te#r ->
  magree m tm
        (nlive ge sp
           (nmem_add nm (aaddr (vanalyze rm f) # pc r) (size_chunk chunk))) ->
  m' = m /\
  exists tv, volatile_load_sem chunk ge (te#r :: nil) tm t tv tm /\ Val.lessdef v tv.
Proof.
  intros. inv H2. split; auto. rewrite <- H3 in H0; inv H0. inv H4.
- (* volatile *)
  exists (Val.load_result chunk v0); split; auto. 
  constructor. constructor; auto. 
- (* not volatile *)
  exploit magree_load; eauto.
  exploit aaddr_sound; eauto. intros (bc & P & Q & R).
  intros. eapply nlive_add; eauto.
  intros (v' & P & Q).
  exists v'; split. constructor. econstructor; eauto. auto.
Qed.
*)

Lemma transf_volatile_store:
  forall v1 v2 v1' v2' m tm chunk sp nm t v m',
  volatile_store_sem chunk ge (v1::v2::nil) m t v m' ->
  Val.lessdef v1 v1' ->
  vagree v2 v2' (store_argument chunk) ->
  magree m tm (nlive ge sp nm) ->
  v = Vundef /\
  exists tm', volatile_store_sem chunk ge (v1'::v2'::nil) tm t Vundef tm'
           /\ magree m' tm' (nlive ge sp nm).
Proof.
  intros. inv H. split; auto.
  inv H0. inv H9.
- (* volatile *)
  exists tm; split; auto. econstructor. econstructor; eauto. 
  eapply eventval_match_lessdef; eauto. apply store_argument_load_result; auto.
- (* not volatile *)
  exploit magree_store_parallel. eauto. eauto. eauto.
  instantiate (1 := nlive ge sp nm). auto. 
  intros (tm' & P & Q).
  exists tm'; split. econstructor. econstructor; eauto. auto.
Qed.

Lemma eagree_set_undef:
  forall e1 e2 ne r, eagree e1 e2 ne -> eagree (e1#r <- Vundef) e2 ne.
Proof.
  intros; red; intros. rewrite PMap.gsspec. destruct (peq r0 r); auto with na.
Qed.

(** * The simulation diagram *)

Theorem step_simulation:
  forall S1 t S2, step ge S1 t S2 ->
  forall S1', match_states S1 S1' -> sound_state prog S1 ->
  exists S2', step tge S1' t S2' /\ match_states S2 S2'.
Proof.

Ltac TransfInstr :=
  match goal with
  | [INSTR: (fn_code _)!_ = Some _,
     FUN: transf_function _ _ = OK _,
     ANL: analyze _ _ = Some _ |- _ ] =>
       generalize (transf_function_at _ _ _ _ _ FUN ANL INSTR);
       intro TI;
       unfold transf_instr in TI
  end.

Ltac UseTransfer :=
  match goal with
  | [INSTR: (fn_code _)!?pc = Some _,
     ANL: analyze _ _ = Some ?an |- _ ] =>
       destruct (an!!pc) as [ne nm] eqn:ANPC;
       unfold transfer in *;
       rewrite INSTR in *;
       simpl in *
  end.

  induction 1; intros S1' MS SS; inv MS.

- (* nop *)
  TransfInstr; UseTransfer.
  econstructor; split.
  eapply exec_Inop; eauto. 
  eapply match_succ_states; eauto. simpl; auto.

- (* op *)
  TransfInstr; UseTransfer.
  destruct (is_dead (nreg ne res)) eqn:DEAD;
  [idtac|destruct (is_int_zero (nreg ne res)) eqn:INTZERO;
  [idtac|destruct (operation_is_redundant op (nreg ne res)) eqn:REDUNDANT]].
+ (* dead instruction, turned into a nop *)
  econstructor; split.
  eapply exec_Inop; eauto. 
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update_dead; auto with na. 
+ (* instruction with needs = [I Int.zero], turned into a load immediate of zero. *)
  econstructor; split.
  eapply exec_Iop with (v := Vint Int.zero); eauto. 
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update; auto. 
  rewrite is_int_zero_sound by auto.
  destruct v; simpl; auto. apply iagree_zero.
+ (* redundant operation *)
  destruct args.
  * (* kept as is because no arguments -- should never happen *)
  simpl in *. 
  exploit needs_of_operation_sound. eapply ma_perm; eauto. 
  eauto. instantiate (1 := nreg ne res). eauto with na. eauto with na. intros [tv [A B]].
  econstructor; split. 
  eapply exec_Iop with (v := tv); eauto.
  rewrite <- A. apply eval_operation_preserved. exact symbols_preserved.
  eapply match_succ_states; eauto. simpl; auto. 
  apply eagree_update; auto.
  * (* turned into a move *)
  unfold fst in ENV. unfold snd in MEM. simpl in H0.
  assert (VA: vagree v te#r (nreg ne res)).
  { eapply operation_is_redundant_sound with (arg1' := te#r) (args' := te##args).
    eauto. eauto. exploit add_needs_vagree; eauto. }
  econstructor; split.
  eapply exec_Iop; eauto. simpl; reflexivity. 
  eapply match_succ_states; eauto. simpl; auto. 
  eapply eagree_update; eauto 2 with na. 
+ (* preserved operation *)
  simpl in *.
  exploit needs_of_operation_sound. eapply ma_perm; eauto. eauto. eauto 2 with na. eauto with na.
  intros [tv [A B]].
  econstructor; split. 
  eapply exec_Iop with (v := tv); eauto.
  rewrite <- A. apply eval_operation_preserved. exact symbols_preserved.
  eapply match_succ_states; eauto. simpl; auto. 
  apply eagree_update; eauto 2 with na.

- (* load *)
  TransfInstr; UseTransfer.
  destruct (is_dead (nreg ne dst)) eqn:DEAD;
  [idtac|destruct (is_int_zero (nreg ne dst)) eqn:INTZERO];
  simpl in *.
+ (* dead instruction, turned into a nop *)
  econstructor; split.
  eapply exec_Inop; eauto. 
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update_dead; auto with na. 
+ (* instruction with needs = [I Int.zero], turned into a load immediate of zero. *)
  econstructor; split.
  eapply exec_Iop with (v := Vint Int.zero); eauto. 
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update; auto. 
  rewrite is_int_zero_sound by auto.
  destruct v; simpl; auto. apply iagree_zero.
+ (* preserved *)
  exploit eval_addressing_lessdef. eapply add_needs_all_lessdef; eauto. eauto. 
  intros (ta & U & V). inv V; try discriminate.
  destruct ta; simpl in H1; try discriminate.
  exploit magree_load; eauto. 
  exploit aaddressing_sound; eauto. intros (bc & A & B & C).
  intros. apply nlive_add with bc i; assumption. 
  intros (tv & P & Q).
  econstructor; split.
  eapply exec_Iload with (a := Vptr b i). eauto. 
  rewrite <- U. apply eval_addressing_preserved. exact symbols_preserved.
  eauto. 
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update; eauto 2 with na. 
  eapply magree_monotone; eauto. intros. apply incl_nmem_add; auto. 

- (* store *)
  TransfInstr; UseTransfer.
  destruct (nmem_contains nm (aaddressing (vanalyze rm f) # pc addr args)
             (size_chunk chunk)) eqn:CONTAINS.
+ (* preserved *)
  simpl in *. 
  exploit eval_addressing_lessdef. eapply add_needs_all_lessdef; eauto. eauto. 
  intros (ta & U & V). inv V; try discriminate.
  destruct ta; simpl in H1; try discriminate.
  exploit magree_store_parallel. eauto. eauto. instantiate (1 := te#src). eauto with na.
  instantiate (1 := nlive ge sp0 nm). 
  exploit aaddressing_sound; eauto. intros (bc & A & B & C).
  intros. apply nlive_remove with bc b i; assumption. 
  intros (tm' & P & Q).
  econstructor; split.
  eapply exec_Istore with (a := Vptr b i). eauto. 
  rewrite <- U. apply eval_addressing_preserved. exact symbols_preserved.
  eauto.
  eapply match_succ_states; eauto. simpl; auto.
  eauto 3 with na. 
+ (* dead instruction, turned into a nop *)
  destruct a; simpl in H1; try discriminate.
  econstructor; split.
  eapply exec_Inop; eauto. 
  eapply match_succ_states; eauto. simpl; auto.
  eapply magree_store_left; eauto.
  exploit aaddressing_sound; eauto. intros (bc & A & B & C).
  intros. eapply nlive_contains; eauto. 

- (* call *)
  TransfInstr; UseTransfer.
  exploit find_function_translated; eauto 2 with na. intros (tfd & A & B).
  econstructor; split.
  eapply exec_Icall; eauto. apply sig_function_translated; auto. 
  constructor. 
  constructor; auto. econstructor; eauto. 
  intros.
  edestruct analyze_successors; eauto. simpl; eauto. 
  eapply eagree_ge; eauto. rewrite ANPC. simpl. 
  apply eagree_update; eauto with na.
  auto. eauto 2 with na. eapply magree_extends; eauto. apply nlive_all. 

- (* tailcall *)
  TransfInstr; UseTransfer.
  exploit find_function_translated; eauto 2 with na. intros (tfd & A & B).
  exploit magree_free. eauto. eauto. instantiate (1 := nlive ge stk nmem_all). 
  intros; eapply nlive_dead_stack; eauto. 
  intros (tm' & C & D). 
  econstructor; split.
  eapply exec_Itailcall; eauto. apply sig_function_translated; auto. 
  erewrite stacksize_translated by eauto. eexact C.
  constructor; eauto 2 with na. eapply magree_extends; eauto. apply nlive_all.

- (* builtin *)
  TransfInstr; UseTransfer. revert ENV MEM TI. 
  functional induction (transfer_builtin (vanalyze rm f)#pc ef args res ne nm);
  simpl in *; intros.
+ (* volatile load *)
  assert (LD: Val.lessdef rs#a1 te#a1) by eauto 2 with na.
  inv H0. rewrite <- H1 in LD; inv LD.
  assert (X: exists tv, volatile_load ge chunk tm b ofs t tv /\ Val.lessdef v tv).
  {
    inv H2. 
  * exists (Val.load_result chunk v0); split; auto. constructor; auto. 
  * exploit magree_load; eauto. 
    exploit aaddr_sound; eauto. intros (bc & A & B & C).
    intros. eapply nlive_add; eassumption. 
    intros (tv & P & Q). 
    exists tv; split; auto. constructor; auto. 
  }
  destruct X as (tv & A & B).
  econstructor; split.
  eapply exec_Ibuiltin; eauto.
  eapply external_call_symbols_preserved.
  simpl. rewrite <- H4. constructor. eauto.   
  exact symbols_preserved. exact varinfo_preserved.
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update; eauto 2 with na.
  eapply magree_monotone; eauto. intros. apply incl_nmem_add; auto. 
+ (* volatile global load *)
  inv H0. 
  assert (X: exists tv, volatile_load ge chunk tm b ofs t tv /\ Val.lessdef v tv).
  {
    inv H2. 
  * exists (Val.load_result chunk v0); split; auto. constructor; auto. 
  * exploit magree_load; eauto.
    inv SS. intros. eapply nlive_add; eauto. constructor. apply GE. auto. 
    intros (tv & P & Q). 
    exists tv; split; auto. constructor; auto. 
  }
  destruct X as (tv & A & B).
  econstructor; split.
  eapply exec_Ibuiltin; eauto.
  eapply external_call_symbols_preserved.
  simpl. econstructor; eauto.   
  exact symbols_preserved. exact varinfo_preserved.
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update; eauto 2 with na.
  eapply magree_monotone; eauto. intros. apply incl_nmem_add; auto. 
+ (* volatile store *)
  exploit transf_volatile_store. eauto. 
  instantiate (1 := te#a1). eauto 3 with na.
  instantiate (1 := te#a2). eauto 3 with na. 
  eauto.
  intros (EQ & tm' & A & B). subst v. 
  econstructor; split.
  eapply exec_Ibuiltin; eauto.
  eapply external_call_symbols_preserved. simpl; eauto. 
  exact symbols_preserved. exact varinfo_preserved.
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update; eauto 3 with na.
+ (* volatile global store *)
  rewrite volatile_store_global_charact in H0. destruct H0 as (b & P & Q).
  exploit transf_volatile_store. eauto. eauto. 
  instantiate (1 := te#a1). eauto 2 with na. 
  eauto.
  intros (EQ & tm' & A & B). subst v. 
  econstructor; split.
  eapply exec_Ibuiltin; eauto.
  eapply external_call_symbols_preserved. simpl. 
  rewrite volatile_store_global_charact. exists b; split; eauto. 
  exact symbols_preserved. exact varinfo_preserved.
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update; eauto 2 with na.
+ (* memcpy *)
  rewrite e1 in TI.
  inv H0. 
  set (adst := aaddr (vanalyze rm f) # pc dst) in *.
  set (asrc := aaddr (vanalyze rm f) # pc src) in *.
  exploit magree_loadbytes. eauto. eauto. 
  exploit aaddr_sound. eauto. symmetry; eexact H2.
  intros (bc & A & B & C).
  intros. eapply nlive_add; eassumption. 
  intros (tbytes & P & Q).
  exploit magree_storebytes_parallel.
  eapply magree_monotone. eexact MEM. 
  instantiate (1 := nlive ge sp0 (nmem_remove nm adst sz)).
  intros. apply incl_nmem_add; auto.
  eauto. 
  instantiate (1 := nlive ge sp0 nm). 
  exploit aaddr_sound. eauto. symmetry; eexact H1.
  intros (bc & A & B & C).
  intros. eapply nlive_remove; eauto.
  erewrite Mem.loadbytes_length in H10 by eauto. 
  rewrite nat_of_Z_eq in H10 by omega. auto.
  eauto. 
  intros (tm' & A & B).
  assert (LD1: Val.lessdef rs#src te#src) by eauto 3 with na. rewrite <- H2 in LD1.
  assert (LD2: Val.lessdef rs#dst te#dst) by eauto 3 with na. rewrite <- H1 in LD2.
  econstructor; split.
  eapply exec_Ibuiltin; eauto.
  eapply external_call_symbols_preserved. simpl.
  inv LD1. inv LD2. econstructor; eauto.  
  exact symbols_preserved. exact varinfo_preserved.
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update; eauto 3 with na.
+ (* memcpy eliminated *)
  rewrite e1 in TI. inv H0.
  set (adst := aaddr (vanalyze rm f) # pc dst) in *.
  set (asrc := aaddr (vanalyze rm f) # pc src) in *.
  econstructor; split.
  eapply exec_Inop; eauto. 
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_set_undef; auto.
  eapply magree_storebytes_left; eauto.
  exploit aaddr_sound. eauto. symmetry; eexact H1.
  intros (bc & A & B & C).
  intros. eapply nlive_contains; eauto.
  erewrite Mem.loadbytes_length in H0 by eauto. 
  rewrite nat_of_Z_eq in H0 by omega. auto.
+ (* annot *)
  inv H0. 
  econstructor; split. 
  eapply exec_Ibuiltin; eauto. 
  eapply external_call_symbols_preserved. simpl; constructor. 
  eapply eventval_list_match_lessdef; eauto 2 with na.
  exact symbols_preserved. exact varinfo_preserved.
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update; eauto 2 with na.
+ (* annot val *)  
  inv H0. destruct _x; inv H1. destruct _x; inv H4.
  econstructor; split. 
  eapply exec_Ibuiltin; eauto. 
  eapply external_call_symbols_preserved. simpl; constructor. 
  eapply eventval_match_lessdef; eauto 2 with na.
  exact symbols_preserved. exact varinfo_preserved.
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update; eauto 3 with na.
+ (* all other builtins *)
  assert ((fn_code tf)!pc = Some(Ibuiltin _x _x0 res pc')).
  {
    destruct _x; auto. destruct _x0; auto. destruct _x0; auto. destruct _x0; auto. contradiction. 
  }
  clear y TI. 
  exploit external_call_mem_extends; eauto 2 with na. 
  eapply magree_extends; eauto. intros. apply nlive_all. 
  intros (v' & tm' & A & B & C & D & E). 
  econstructor; split.
  eapply exec_Ibuiltin; eauto. 
  eapply external_call_symbols_preserved. eauto.
  exact symbols_preserved. exact varinfo_preserved.
  eapply match_succ_states; eauto. simpl; auto.
  apply eagree_update; eauto 3 with na.
  eapply mextends_agree; eauto. 

- (* conditional *)
  TransfInstr; UseTransfer.
  econstructor; split.
  eapply exec_Icond; eauto. 
  eapply needs_of_condition_sound. eapply ma_perm; eauto. eauto. eauto with na. 
  eapply match_succ_states; eauto 2 with na. 
  simpl; destruct b; auto. 

- (* jumptable *)
  TransfInstr; UseTransfer.
  assert (LD: Val.lessdef rs#arg te#arg) by eauto 2 with na. 
  rewrite H0 in LD. inv LD. 
  econstructor; split.
  eapply exec_Ijumptable; eauto. 
  eapply match_succ_states; eauto 2 with na. 
  simpl. eapply list_nth_z_in; eauto. 

- (* return *)
  TransfInstr; UseTransfer.
  exploit magree_free. eauto. eauto. instantiate (1 := nlive ge stk nmem_all). 
  intros; eapply nlive_dead_stack; eauto. 
  intros (tm' & A & B). 
  econstructor; split.
  eapply exec_Ireturn; eauto. 
  erewrite stacksize_translated by eauto. eexact A. 
  constructor; auto.
  destruct or; simpl; eauto 2 with na.
  eapply magree_extends; eauto. apply nlive_all.

- (* internal function *)
  monadInv FUN. generalize EQ. unfold transf_function. intros EQ'.
  destruct (analyze (vanalyze rm f) f) as [an|] eqn:AN; inv EQ'.
  exploit Mem.alloc_extends; eauto. apply Zle_refl. apply Zle_refl.
  intros (tm' & A & B). 
  econstructor; split.
  econstructor; simpl; eauto. 
  simpl. econstructor; eauto. 
  apply eagree_init_regs; auto. 
  apply mextends_agree; auto. 

- (* external function *)
  exploit external_call_mem_extends; eauto.
  intros (res' & tm' & A & B & C & D & E). 
  simpl in FUN. inv FUN.
  econstructor; split.
  econstructor; eauto.
  eapply external_call_symbols_preserved; eauto. 
  exact symbols_preserved. exact varinfo_preserved.
  econstructor; eauto. 

- (* return *)
  inv STACKS. inv H1. 
  econstructor; split.
  constructor. 
  econstructor; eauto. apply mextends_agree; auto. 
Qed.

Lemma transf_initial_states:
  forall st1, initial_state prog st1 ->
  exists st2, initial_state tprog st2 /\ match_states st1 st2.
Proof.
  intros. inversion H.
  exploit function_ptr_translated; eauto. intros (tf & A & B).
  exists (Callstate nil tf nil m0); split.
  econstructor; eauto.
  eapply Genv.init_mem_transf_partial; eauto.
  rewrite (transform_partial_program_main _ _ TRANSF).
  rewrite symbols_preserved. eauto.
  rewrite <- H3. apply sig_function_translated; auto.
  constructor. constructor. auto. constructor. apply Mem.extends_refl.
Qed.

Lemma transf_final_states:
  forall st1 st2 r, 
  match_states st1 st2 -> final_state st1 r -> final_state st2 r.
Proof.
  intros. inv H0. inv H. inv STACKS. inv RES. constructor. 
Qed.

(** * Semantic preservation *)

Theorem transf_program_correct:
  forward_simulation (RTL.semantics prog) (RTL.semantics tprog).
Proof.
  intros.
  apply forward_simulation_step with
     (match_states := fun s1 s2 => sound_state prog s1 /\ match_states s1 s2).
- exact symbols_preserved.
- simpl; intros. exploit transf_initial_states; eauto. intros [st2 [A B]].
  exists st2; intuition. eapply sound_initial; eauto. 
- simpl; intros. destruct H. eapply transf_final_states; eauto. 
- simpl; intros. destruct H0.
  assert (sound_state prog s1') by (eapply sound_step; eauto).
  fold ge; fold tge. exploit step_simulation; eauto. intros [st2' [A B]].
  exists st2'; auto. 
Qed.

End PRESERVATION.