summaryrefslogtreecommitdiff
path: root/backend/Constpropproof.v
blob: 7ac433912dd7db6b7a5e30602149a0d0445dfd16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness proof for constant propagation. *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Events.
Require Import Memory.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import Lattice.
Require Import Kildall.
Require Import ConstpropOp.
Require Import Constprop.
Require Import ConstpropOpproof.

(** * Correctness of the static analysis *)

Section ANALYSIS.

Variable ge: genv.
Variable sp: val.

Definition regs_match_approx (a: D.t) (rs: regset) : Prop :=
  forall r, val_match_approx ge sp (D.get r a) rs#r.

Lemma regs_match_approx_top:
  forall rs, regs_match_approx D.top rs.
Proof.
  intros. red; intros. simpl. rewrite PTree.gempty. 
  unfold Approx.top, val_match_approx. auto.
Qed.

Lemma val_match_approx_increasing:
  forall a1 a2 v,
  Approx.ge a1 a2 -> val_match_approx ge sp a2 v -> val_match_approx ge sp a1 v.
Proof.
  intros until v.
  intros [A|[B|C]].
  subst a1. simpl. auto.
  subst a2. simpl. tauto.
  subst a2. auto.
Qed.

Lemma regs_match_approx_increasing:
  forall a1 a2 rs,
  D.ge a1 a2 -> regs_match_approx a2 rs -> regs_match_approx a1 rs.
Proof.
  unfold D.ge, regs_match_approx. intros.
  apply val_match_approx_increasing with (D.get r a2); auto.
Qed.

Lemma regs_match_approx_update:
  forall ra rs a v r,
  val_match_approx ge sp a v ->
  regs_match_approx ra rs ->
  regs_match_approx (D.set r a ra) (rs#r <- v).
Proof.
  intros; red; intros. rewrite Regmap.gsspec. 
  case (peq r0 r); intro.
  subst r0. rewrite D.gss. auto.
  rewrite D.gso; auto. 
Qed.

Lemma approx_regs_val_list:
  forall ra rs rl,
  regs_match_approx ra rs ->
  val_list_match_approx ge sp (approx_regs ra rl) rs##rl.
Proof.
  induction rl; simpl; intros.
  constructor.
  constructor. apply H. auto.
Qed.

(** The correctness of the static analysis follows from the results
  of module [ConstpropOpproof] and the fact that the result of
  the static analysis is a solution of the forward dataflow inequations. *)

Lemma analyze_correct_1:
  forall f pc rs pc' i,
  f.(fn_code)!pc = Some i ->
  In pc' (successors_instr i) ->
  regs_match_approx (transfer f pc (analyze f)!!pc) rs ->
  regs_match_approx (analyze f)!!pc' rs.
Proof.
  intros until i. unfold analyze. 
  caseEq (DS.fixpoint (successors f) (transfer f)
                      ((fn_entrypoint f, D.top) :: nil)).
  intros approxs; intros.
  apply regs_match_approx_increasing with (transfer f pc approxs!!pc).
  eapply DS.fixpoint_solution; eauto.
  unfold successors_list, successors. rewrite PTree.gmap1. rewrite H0. auto.
  auto.
  intros. rewrite PMap.gi. apply regs_match_approx_top. 
Qed.

Lemma analyze_correct_3:
  forall f rs,
  regs_match_approx (analyze f)!!(f.(fn_entrypoint)) rs.
Proof.
  intros. unfold analyze. 
  caseEq (DS.fixpoint (successors f) (transfer f)
                      ((fn_entrypoint f, D.top) :: nil)).
  intros approxs; intros.
  apply regs_match_approx_increasing with D.top.
  eapply DS.fixpoint_entry; eauto. auto with coqlib.
  apply regs_match_approx_top. 
  intros. rewrite PMap.gi. apply regs_match_approx_top.
Qed.

End ANALYSIS.

(** * Correctness of the code transformation *)

(** We now show that the transformed code after constant propagation
  has the same semantics as the original code. *)

Section PRESERVATION.

Variable prog: program.
Let tprog := transf_program prog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
  intros; unfold ge, tge, tprog, transf_program. 
  apply Genv.find_symbol_transf.
Qed.

Lemma varinfo_preserved:
  forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof.
  intros; unfold ge, tge, tprog, transf_program. 
  apply Genv.find_var_info_transf.
Qed.

Lemma functions_translated:
  forall (v: val) (f: fundef),
  Genv.find_funct ge v = Some f ->
  Genv.find_funct tge v = Some (transf_fundef f).
Proof.  
  intros.
  exact (Genv.find_funct_transf transf_fundef _ _ H).
Qed.

Lemma function_ptr_translated:
  forall (b: block) (f: fundef),
  Genv.find_funct_ptr ge b = Some f ->
  Genv.find_funct_ptr tge b = Some (transf_fundef f).
Proof.  
  intros. 
  exact (Genv.find_funct_ptr_transf transf_fundef _ _ H).
Qed.

Lemma sig_function_translated:
  forall f,
  funsig (transf_fundef f) = funsig f.
Proof.
  intros. destruct f; reflexivity.
Qed.

Definition regs_lessdef (rs1 rs2: regset) : Prop :=
  forall r, Val.lessdef (rs1#r) (rs2#r).

Lemma regs_lessdef_regs:
  forall rs1 rs2, regs_lessdef rs1 rs2 ->
  forall rl, Val.lessdef_list rs1##rl rs2##rl.
Proof.
  induction rl; constructor; auto.
Qed.

Lemma set_reg_lessdef:
  forall r v1 v2 rs1 rs2,
  Val.lessdef v1 v2 -> regs_lessdef rs1 rs2 -> regs_lessdef (rs1#r <- v1) (rs2#r <- v2).
Proof.
  intros; red; intros. repeat rewrite Regmap.gsspec. 
  destruct (peq r0 r); auto.
Qed.

Lemma init_regs_lessdef:
  forall rl vl1 vl2,
  Val.lessdef_list vl1 vl2 ->
  regs_lessdef (init_regs vl1 rl) (init_regs vl2 rl).
Proof.
  induction rl; simpl; intros.
  red; intros. rewrite Regmap.gi. auto.
  inv H. red; intros. rewrite Regmap.gi. auto.
  apply set_reg_lessdef; auto.
Qed.

Lemma transf_ros_correct:
  forall sp ros rs rs' f approx,
  regs_match_approx ge sp approx rs ->
  find_function ge ros rs = Some f ->
  regs_lessdef rs rs' ->
  find_function tge (transf_ros approx ros) rs' = Some (transf_fundef f).
Proof.
  intros. destruct ros; simpl in *.
  generalize (H r); intro MATCH. generalize (H1 r); intro LD.
  destruct (rs#r); simpl in H0; try discriminate.
  destruct (Int.eq_dec i Int.zero); try discriminate.
  inv LD. 
  assert (find_function tge (inl _ r) rs' = Some (transf_fundef f)).
    simpl. rewrite <- H4. simpl. rewrite dec_eq_true. apply function_ptr_translated. auto.
  destruct (D.get r approx); auto.
  predSpec Int.eq Int.eq_spec i0 Int.zero; intros; auto.
  simpl in *. unfold symbol_address in MATCH. rewrite symbols_preserved.
  destruct (Genv.find_symbol ge i); try discriminate. 
  inv MATCH. apply function_ptr_translated; auto.
  rewrite symbols_preserved. destruct (Genv.find_symbol ge i); try discriminate.
  apply function_ptr_translated; auto.
Qed.

(** The proof of semantic preservation is a simulation argument
  based on diagrams of the following form:
<<
           st1 --------------- st2
            |                   |
           t|                   |t
            |                   |
            v                   v
           st1'--------------- st2'
>>
  The left vertical arrow represents a transition in the
  original RTL code.  The top horizontal bar is the [match_states]
  invariant between the initial state [st1] in the original RTL code
  and an initial state [st2] in the transformed code.
  This invariant expresses that all code fragments appearing in [st2]
  are obtained by [transf_code] transformation of the corresponding
  fragments in [st1].  Moreover, the values of registers in [st1]
  must match their compile-time approximations at the current program
  point.
  These two parts of the diagram are the hypotheses.  In conclusions,
  we want to prove the other two parts: the right vertical arrow,
  which is a transition in the transformed RTL code, and the bottom
  horizontal bar, which means that the [match_state] predicate holds
  between the final states [st1'] and [st2']. *)

Inductive match_stackframes: stackframe -> stackframe -> Prop :=
   match_stackframe_intro:
      forall res sp pc rs f rs',
      regs_lessdef rs rs' ->
      (forall v, regs_match_approx ge sp (analyze f)!!pc (rs#res <- v)) ->
    match_stackframes
        (Stackframe res f sp pc rs)
        (Stackframe res (transf_function f) sp pc rs').

Inductive match_states: state -> state -> Prop :=
  | match_states_intro:
      forall s sp pc rs m f s' rs' m'
           (MATCH: regs_match_approx ge sp (analyze f)!!pc rs)
           (STACKS: list_forall2 match_stackframes s s')
           (REGS: regs_lessdef rs rs')
           (MEM: Mem.extends m m'),
      match_states (State s f sp pc rs m)
                   (State s' (transf_function f) sp pc rs' m')
  | match_states_call:
      forall s f args m s' args' m'
           (STACKS: list_forall2 match_stackframes s s')
           (ARGS: Val.lessdef_list args args')
           (MEM: Mem.extends m m'),
      match_states (Callstate s f args m)
                   (Callstate s' (transf_fundef f) args' m')
  | match_states_return:
      forall s v m s' v' m'
           (STACKS: list_forall2 match_stackframes s s')
           (RES: Val.lessdef v v')
           (MEM: Mem.extends m m'),
      list_forall2 match_stackframes s s' ->
      match_states (Returnstate s v m)
                   (Returnstate s' v' m').

Ltac TransfInstr :=
  match goal with
  | H1: (PTree.get ?pc ?c = Some ?instr), f: function |- _ =>
      cut ((transf_function f).(fn_code)!pc = Some(transf_instr (analyze f)!!pc instr));
      [ simpl transf_instr
      | unfold transf_function, transf_code; simpl; rewrite PTree.gmap; 
        unfold option_map; rewrite H1; reflexivity ]
  end.

(** The proof of simulation proceeds by case analysis on the transition
  taken in the source code. *)

Lemma transf_step_correct:
  forall s1 t s2,
  step ge s1 t s2 ->
  forall s1' (MS: match_states s1 s1'),
  exists s2', step tge s1' t s2' /\ match_states s2 s2'.
Proof.
  induction 1; intros; inv MS.

  (* Inop *)
  exists (State s' (transf_function f) sp pc' rs' m'); split.
  TransfInstr; intro. eapply exec_Inop; eauto.
  econstructor; eauto.
  eapply analyze_correct_1 with (pc := pc); eauto.
  simpl; auto.
  unfold transfer; rewrite H. auto.

  (* Iop *)
  assert (MATCH': regs_match_approx ge sp (analyze f) # pc' rs # res <- v).
    eapply analyze_correct_1 with (pc := pc); eauto. simpl; auto.
    unfold transfer; rewrite H. 
    apply regs_match_approx_update; auto. 
    eapply eval_static_operation_correct; eauto.
    apply approx_regs_val_list; auto.
  TransfInstr.
  exploit eval_static_operation_correct; eauto. eapply approx_regs_val_list; eauto. intros VM.
  destruct (eval_static_operation op (approx_regs (analyze f) # pc args)); intros; simpl in VM.
  (* Novalue *)
  contradiction.
  (* Unknown *)
  exploit op_strength_reduction_correct. eexact MATCH. reflexivity. eauto. 
  destruct (op_strength_reduction op args (approx_regs (analyze f) # pc args)) as [op' args'].
  intros [v' [EV' LD']].
  assert (EV'': exists v'', eval_operation ge sp op' rs'##args' m' = Some v'' /\ Val.lessdef v' v'').
    eapply eval_operation_lessdef; eauto. eapply regs_lessdef_regs; eauto.
  destruct EV'' as [v'' [EV'' LD'']].
  exists (State s' (transf_function f) sp pc' (rs'#res <- v'') m'); split.
  econstructor. eauto. rewrite <- EV''. apply eval_operation_preserved. exact symbols_preserved.
  econstructor; eauto. apply set_reg_lessdef; auto. eapply Val.lessdef_trans; eauto.
  (* I i *)
  subst v. exists (State s' (transf_function f) sp pc' (rs'#res <- (Vint i)) m'); split.
  econstructor; eauto.
  econstructor; eauto. apply set_reg_lessdef; auto.
  (* F *)
  subst v. exists (State s' (transf_function f) sp pc' (rs'#res <- (Vfloat f0)) m'); split.
  econstructor; eauto.
  econstructor; eauto. apply set_reg_lessdef; auto.
  (* G *)
  subst v. exists (State s' (transf_function f) sp pc' (rs'#res <- (symbol_address tge i i0)) m'); split.
  econstructor; eauto.
  econstructor; eauto. apply set_reg_lessdef; auto.
  unfold symbol_address. rewrite symbols_preserved; auto. 
  (* S *)
  subst v. exists (State s' (transf_function f) sp pc' (rs'#res <- (Val.add sp (Vint i))) m'); split.
  econstructor; eauto.
  econstructor; eauto. apply set_reg_lessdef; auto.

  (* Iload *)
  TransfInstr. 
  generalize (addr_strength_reduction_correct ge sp (analyze f)!!pc rs
                  MATCH addr args (approx_regs (analyze f) # pc args) (refl_equal _)).
  destruct (addr_strength_reduction addr args (approx_regs (analyze f) # pc args)) as [addr' args'].
  intros P Q. rewrite H0 in P.
  assert (ADDR': exists a', eval_addressing ge sp addr' rs'##args' = Some a' /\ Val.lessdef a a').
    eapply eval_addressing_lessdef; eauto. eapply regs_lessdef_regs; eauto.
  destruct ADDR' as [a' [A B]].
  assert (C: eval_addressing tge sp addr' rs'##args' = Some a').
    rewrite <- A. apply eval_addressing_preserved. exact symbols_preserved.
  exploit Mem.loadv_extends; eauto. intros [v' [D E]].
  exists (State s' (transf_function f) sp pc' (rs'#dst <- v') m'); split.
  eapply exec_Iload; eauto.
  econstructor; eauto. 
  eapply analyze_correct_1; eauto. simpl; auto. 
  unfold transfer; rewrite H. 
  apply regs_match_approx_update; auto. simpl; auto.
  apply set_reg_lessdef; auto. 

  (* Istore *)
  TransfInstr.
  generalize (addr_strength_reduction_correct ge sp (analyze f)!!pc rs
                  MATCH addr args (approx_regs (analyze f) # pc args) (refl_equal _)).
  destruct (addr_strength_reduction addr args (approx_regs (analyze f) # pc args)) as [addr' args'].
  intros P Q. rewrite H0 in P.
  assert (ADDR': exists a', eval_addressing ge sp addr' rs'##args' = Some a' /\ Val.lessdef a a').
    eapply eval_addressing_lessdef; eauto. eapply regs_lessdef_regs; eauto.
  destruct ADDR' as [a' [A B]].
  assert (C: eval_addressing tge sp addr' rs'##args' = Some a').
    rewrite <- A. apply eval_addressing_preserved. exact symbols_preserved.
  exploit Mem.storev_extends; eauto. intros [m2' [D E]].
  exists (State s' (transf_function f) sp pc' rs' m2'); split.
  eapply exec_Istore; eauto.
  econstructor; eauto. 
  eapply analyze_correct_1; eauto. simpl; auto. 
  unfold transfer; rewrite H. auto. 

  (* Icall *)
  exploit transf_ros_correct; eauto. intro FIND'.
  TransfInstr; intro.
  econstructor; split.
  eapply exec_Icall; eauto. apply sig_function_translated; auto.
  constructor; auto. constructor; auto.
  econstructor; eauto. 
  intros. eapply analyze_correct_1; eauto. simpl; auto.
  unfold transfer; rewrite H.
  apply regs_match_approx_update; auto. simpl. auto.
  apply regs_lessdef_regs; auto. 

  (* Itailcall *)
  exploit Mem.free_parallel_extends; eauto. intros [m2' [A B]].
  exploit transf_ros_correct; eauto. intros FIND'.
  TransfInstr; intro.
  econstructor; split.
  eapply exec_Itailcall; eauto. apply sig_function_translated; auto.
  constructor; auto. apply regs_lessdef_regs; auto. 

  (* Ibuiltin *)
  exploit external_call_mem_extends; eauto. 
  instantiate (1 := rs'##args). apply regs_lessdef_regs; auto.
  intros [v' [m2' [A [B [C D]]]]].
  TransfInstr. intro.
  exists (State s' (transf_function f) sp pc' (rs'#res <- v') m2'); split.
  eapply exec_Ibuiltin; eauto.
  eapply external_call_symbols_preserved; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  econstructor; eauto. 
  eapply analyze_correct_1; eauto. simpl; auto. 
  unfold transfer; rewrite H. 
  apply regs_match_approx_update; auto. simpl; auto.
  apply set_reg_lessdef; auto.

  (* Icond *)
  TransfInstr. 
  generalize (cond_strength_reduction_correct ge sp (analyze f)#pc rs m
                    MATCH cond args (approx_regs (analyze f) # pc args) (refl_equal _)).
  destruct (cond_strength_reduction cond args (approx_regs (analyze f) # pc args)) as [cond' args'].
  intros EV1. 
  exists (State s' (transf_function f) sp (if b then ifso else ifnot) rs' m'); split. 
  destruct (eval_static_condition cond (approx_regs (analyze f) # pc args)) as []_eqn.
  assert (eval_condition cond rs ## args m = Some b0).
    eapply eval_static_condition_correct; eauto. eapply approx_regs_val_list; eauto.
  assert (b = b0) by congruence. subst b0.
  destruct b; eapply exec_Inop; eauto. 
  eapply exec_Icond; eauto.
  eapply eval_condition_lessdef with (vl1 := rs##args'); eauto. eapply regs_lessdef_regs; eauto. congruence.
  econstructor; eauto. 
  eapply analyze_correct_1; eauto. destruct b; simpl; auto. 
  unfold transfer; rewrite H. auto. 

  (* Ijumptable *)
  assert (A: (fn_code (transf_function f))!pc = Some(Ijumptable arg tbl)
             \/ (fn_code (transf_function f))!pc = Some(Inop pc')).
  TransfInstr. destruct (approx_reg (analyze f) # pc arg) as []_eqn; auto.
  generalize (MATCH arg). unfold approx_reg in Heqt. rewrite Heqt. rewrite H0. 
  simpl. intro EQ; inv EQ. rewrite H1. auto.
  assert (B: rs'#arg = Vint n).
  generalize (REGS arg); intro LD; inv LD; congruence.
  exists (State s' (transf_function f) sp pc' rs' m'); split.
  destruct A. eapply exec_Ijumptable; eauto. eapply exec_Inop; eauto. 
  econstructor; eauto.
  eapply analyze_correct_1; eauto.
  simpl. eapply list_nth_z_in; eauto.
  unfold transfer; rewrite  H; auto.

  (* Ireturn *)
  exploit Mem.free_parallel_extends; eauto. intros [m2' [A B]].
  exists (Returnstate s' (regmap_optget or Vundef rs') m2'); split.
  eapply exec_Ireturn; eauto. TransfInstr; auto.
  constructor; auto.
  destruct or; simpl; auto. 

  (* internal function *)
  exploit Mem.alloc_extends. eauto. eauto. apply Zle_refl. apply Zle_refl.
  intros [m2' [A B]].
  simpl. unfold transf_function.
  econstructor; split.
  eapply exec_function_internal; simpl; eauto.
  simpl. econstructor; eauto.
  apply analyze_correct_3; auto.
  apply init_regs_lessdef; auto.

  (* external function *)
  exploit external_call_mem_extends; eauto. 
  intros [v' [m2' [A [B [C D]]]]].
  simpl. econstructor; split.
  eapply exec_function_external; eauto.
  eapply external_call_symbols_preserved; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  constructor; auto.

  (* return *)
  inv H3. inv H1. 
  econstructor; split.
  eapply exec_return; eauto. 
  econstructor; eauto. apply set_reg_lessdef; auto. 
Qed.

Lemma transf_initial_states:
  forall st1, initial_state prog st1 ->
  exists st2, initial_state tprog st2 /\ match_states st1 st2.
Proof.
  intros. inversion H.
  exploit function_ptr_translated; eauto. intro FIND.
  exists (Callstate nil (transf_fundef f) nil m0); split.
  econstructor; eauto.
  apply Genv.init_mem_transf; auto.
  replace (prog_main tprog) with (prog_main prog).
  rewrite symbols_preserved. eauto.
  reflexivity.
  rewrite <- H3. apply sig_function_translated.
  constructor. constructor. constructor. apply Mem.extends_refl.
Qed.

Lemma transf_final_states:
  forall st1 st2 r, 
  match_states st1 st2 -> final_state st1 r -> final_state st2 r.
Proof.
  intros. inv H0. inv H. inv STACKS. inv RES. constructor. 
Qed.

(** The preservation of the observable behavior of the program then
  follows. *)

Theorem transf_program_correct:
  forward_simulation (RTL.semantics prog) (RTL.semantics tprog).
Proof.
  eapply forward_simulation_step.
  eexact symbols_preserved.
  eexact transf_initial_states.
  eexact transf_final_states.
  exact transf_step_correct. 
Qed.

End PRESERVATION.