1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for constant propagation. *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Events.
Require Import Memory.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import Lattice.
Require Import Kildall.
Require Import ValueDomain.
Require Import ValueAOp.
Require Import ValueAnalysis.
Require Import ConstpropOp.
Require Import Constprop.
Require Import ConstpropOpproof.
Section PRESERVATION.
Variable prog: program.
Let tprog := transf_program prog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Let rm := romem_for_program prog.
(** * Correctness of the code transformation *)
(** We now show that the transformed code after constant propagation
has the same semantics as the original code. *)
Lemma symbols_preserved:
forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
intros; unfold ge, tge, tprog, transf_program.
apply Genv.find_symbol_transf.
Qed.
Lemma varinfo_preserved:
forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof.
intros; unfold ge, tge, tprog, transf_program.
apply Genv.find_var_info_transf.
Qed.
Lemma functions_translated:
forall (v: val) (f: fundef),
Genv.find_funct ge v = Some f ->
Genv.find_funct tge v = Some (transf_fundef rm f).
Proof.
intros.
exact (Genv.find_funct_transf (transf_fundef rm) _ _ H).
Qed.
Lemma function_ptr_translated:
forall (b: block) (f: fundef),
Genv.find_funct_ptr ge b = Some f ->
Genv.find_funct_ptr tge b = Some (transf_fundef rm f).
Proof.
intros.
exact (Genv.find_funct_ptr_transf (transf_fundef rm) _ _ H).
Qed.
Lemma sig_function_translated:
forall f,
funsig (transf_fundef rm f) = funsig f.
Proof.
intros. destruct f; reflexivity.
Qed.
Definition regs_lessdef (rs1 rs2: regset) : Prop :=
forall r, Val.lessdef (rs1#r) (rs2#r).
Lemma regs_lessdef_regs:
forall rs1 rs2, regs_lessdef rs1 rs2 ->
forall rl, Val.lessdef_list rs1##rl rs2##rl.
Proof.
induction rl; constructor; auto.
Qed.
Lemma set_reg_lessdef:
forall r v1 v2 rs1 rs2,
Val.lessdef v1 v2 -> regs_lessdef rs1 rs2 -> regs_lessdef (rs1#r <- v1) (rs2#r <- v2).
Proof.
intros; red; intros. repeat rewrite Regmap.gsspec.
destruct (peq r0 r); auto.
Qed.
Lemma init_regs_lessdef:
forall rl vl1 vl2,
Val.lessdef_list vl1 vl2 ->
regs_lessdef (init_regs vl1 rl) (init_regs vl2 rl).
Proof.
induction rl; simpl; intros.
red; intros. rewrite Regmap.gi. auto.
inv H. red; intros. rewrite Regmap.gi. auto.
apply set_reg_lessdef; auto.
Qed.
Lemma transf_ros_correct:
forall bc rs ae ros f rs',
genv_match bc ge ->
ematch bc rs ae ->
find_function ge ros rs = Some f ->
regs_lessdef rs rs' ->
find_function tge (transf_ros ae ros) rs' = Some (transf_fundef rm f).
Proof.
intros until rs'; intros GE EM FF RLD. destruct ros; simpl in *.
- (* function pointer *)
generalize (EM r); fold (areg ae r); intro VM. generalize (RLD r); intro LD.
assert (DEFAULT: find_function tge (inl _ r) rs' = Some (transf_fundef rm f)).
{
simpl. inv LD. apply functions_translated; auto. rewrite <- H0 in FF; discriminate.
}
destruct (areg ae r); auto. destruct p; auto.
predSpec Int.eq Int.eq_spec ofs Int.zero; intros; auto.
subst ofs. exploit vmatch_ptr_gl; eauto. intros LD'. inv LD'; try discriminate.
rewrite H1 in FF. unfold symbol_address in FF.
simpl. rewrite symbols_preserved.
destruct (Genv.find_symbol ge id) as [b|]; try discriminate.
simpl in FF. rewrite dec_eq_true in FF.
apply function_ptr_translated; auto.
rewrite <- H0 in FF; discriminate.
- (* function symbol *)
rewrite symbols_preserved.
destruct (Genv.find_symbol ge i) as [b|]; try discriminate.
apply function_ptr_translated; auto.
Qed.
Lemma const_for_result_correct:
forall a op bc v sp m,
const_for_result a = Some op ->
vmatch bc v a ->
bc sp = BCstack ->
genv_match bc ge ->
exists v', eval_operation tge (Vptr sp Int.zero) op nil m = Some v' /\ Val.lessdef v v'.
Proof.
unfold const_for_result; intros.
destruct a; try discriminate.
- (* integer *)
inv H. inv H0. exists (Vint n); auto.
- (* float *)
destruct (generate_float_constants tt); inv H. inv H0. exists (Vfloat f); auto.
- (* pointer *)
destruct p; try discriminate.
+ (* global *)
inv H. exists (symbol_address ge id ofs); split.
unfold symbol_address. rewrite <- symbols_preserved. reflexivity.
eapply vmatch_ptr_gl; eauto.
+ (* stack *)
inv H. exists (Vptr sp ofs); split.
simpl; rewrite Int.add_zero_l; auto.
eapply vmatch_ptr_stk; eauto.
Qed.
Inductive match_pc (f: function) (ae: AE.t): nat -> node -> node -> Prop :=
| match_pc_base: forall n pc,
match_pc f ae n pc pc
| match_pc_nop: forall n pc s pcx,
f.(fn_code)!pc = Some (Inop s) ->
match_pc f ae n s pcx ->
match_pc f ae (S n) pc pcx
| match_pc_cond: forall n pc cond args s1 s2 b pcx,
f.(fn_code)!pc = Some (Icond cond args s1 s2) ->
resolve_branch (eval_static_condition cond (aregs ae args)) = Some b ->
match_pc f ae n (if b then s1 else s2) pcx ->
match_pc f ae (S n) pc pcx.
Lemma match_successor_rec:
forall f ae n pc, match_pc f ae n pc (successor_rec n f ae pc).
Proof.
induction n; simpl; intros.
- apply match_pc_base.
- destruct (fn_code f)!pc as [[]|] eqn:INSTR; try apply match_pc_base.
eapply match_pc_nop; eauto.
destruct (resolve_branch (eval_static_condition c (aregs ae l))) as [b|] eqn:COND.
eapply match_pc_cond; eauto.
apply match_pc_base.
Qed.
Lemma match_successor:
forall f ae pc, match_pc f ae num_iter pc (successor f ae pc).
Proof.
unfold successor; intros. apply match_successor_rec.
Qed.
Section BUILTIN_STRENGTH_REDUCTION.
Variable bc: block_classification.
Hypothesis GE: genv_match bc ge.
Variable ae: AE.t.
Variable rs: regset.
Hypothesis MATCH: ematch bc rs ae.
Lemma annot_strength_reduction_correct:
forall targs args targs' args' eargs,
annot_strength_reduction ae targs args = (targs', args') ->
eventval_list_match ge eargs (annot_args_typ targs) rs##args ->
exists eargs',
eventval_list_match ge eargs' (annot_args_typ targs') rs##args'
/\ annot_eventvals targs' eargs' = annot_eventvals targs eargs.
Proof.
induction targs; simpl; intros.
- inv H. simpl. exists eargs; auto.
- destruct a.
+ destruct args as [ | arg args0]; simpl in H0; inv H0.
destruct (annot_strength_reduction ae targs args0) as [targs'' args''] eqn:E.
exploit IHtargs; eauto. intros [eargs'' [A B]].
assert (DFL:
exists eargs',
eventval_list_match ge eargs' (annot_args_typ (AA_arg ty :: targs'')) rs##(arg :: args'')
/\ annot_eventvals (AA_arg ty :: targs'') eargs' = ev1 :: annot_eventvals targs evl).
{
exists (ev1 :: eargs''); split.
simpl; constructor; auto. simpl. congruence.
}
destruct ty; destruct (areg ae arg) as [] eqn:E2; inv H; auto.
* exists eargs''; split; auto; simpl; f_equal; auto.
generalize (MATCH arg); fold (areg ae arg); rewrite E2; intros VM.
inv VM. rewrite <- H0 in *. inv H5; auto.
* destruct (generate_float_constants tt); inv H1; auto.
exists eargs''; split; auto; simpl; f_equal; auto.
generalize (MATCH arg); fold (areg ae arg); rewrite E2; intros VM.
inv VM. rewrite <- H0 in *. inv H5; auto.
+ destruct (annot_strength_reduction ae targs args) as [targs'' args''] eqn:E.
inv H.
exploit IHtargs; eauto. intros [eargs'' [A B]].
exists eargs''; simpl; split; auto. congruence.
+ destruct (annot_strength_reduction ae targs args) as [targs'' args''] eqn:E.
inv H.
exploit IHtargs; eauto. intros [eargs'' [A B]].
exists eargs''; simpl; split; auto. congruence.
Qed.
Lemma vmatch_ptr_gl':
forall v id ofs,
vmatch bc v (Ptr (Gl id ofs)) ->
v = Vundef \/ exists b, Genv.find_symbol ge id = Some b /\ v = Vptr b ofs.
Proof.
intros. inv H; auto. inv H2. right; exists b; split; auto. eapply GE; eauto.
Qed.
Lemma builtin_strength_reduction_correct:
forall ef args m t vres m',
external_call ef ge rs##args m t vres m' ->
let (ef', args') := builtin_strength_reduction ae ef args in
external_call ef' ge rs##args' m t vres m'.
Proof.
intros until m'. functional induction (builtin_strength_reduction ae ef args); intros; auto.
+ simpl in H. assert (V: vmatch bc (rs#r1) (Ptr (Gl symb n1))) by (rewrite <- e1; apply MATCH).
exploit vmatch_ptr_gl'; eauto. intros [A | [b [A B]]].
* simpl in H; rewrite A in H; inv H.
* simpl; rewrite volatile_load_global_charact. exists b; split; congruence.
+ simpl in H. assert (V: vmatch bc (rs#r1) (Ptr (Gl symb n1))) by (rewrite <- e1; apply MATCH).
exploit vmatch_ptr_gl'; eauto. intros [A | [b [A B]]].
* simpl in H; rewrite A in H; inv H.
* simpl; rewrite volatile_store_global_charact. exists b; split; congruence.
+ inv H. exploit annot_strength_reduction_correct; eauto. intros [eargs' [A B]].
rewrite <- B. econstructor; eauto.
Qed.
End BUILTIN_STRENGTH_REDUCTION.
(** The proof of semantic preservation is a simulation argument
based on "option" diagrams of the following form:
<<
n
st1 --------------- st2
| |
t| |t or (? and n' < n)
| |
v v
st1'--------------- st2'
n'
>>
The left vertical arrow represents a transition in the
original RTL code. The top horizontal bar is the [match_states]
invariant between the initial state [st1] in the original RTL code
and an initial state [st2] in the transformed code.
This invariant expresses that all code fragments appearing in [st2]
are obtained by [transf_code] transformation of the corresponding
fragments in [st1]. Moreover, the state [st1] must match its compile-time
approximations at the current program point.
These two parts of the diagram are the hypotheses. In conclusions,
we want to prove the other two parts: the right vertical arrow,
which is a transition in the transformed RTL code, and the bottom
horizontal bar, which means that the [match_state] predicate holds
between the final states [st1'] and [st2']. *)
Inductive match_stackframes: stackframe -> stackframe -> Prop :=
match_stackframe_intro:
forall res sp pc rs f rs',
regs_lessdef rs rs' ->
match_stackframes
(Stackframe res f sp pc rs)
(Stackframe res (transf_function rm f) sp pc rs').
Inductive match_states: nat -> state -> state -> Prop :=
| match_states_intro:
forall s sp pc rs m f s' pc' rs' m' bc ae n
(MATCH: ematch bc rs ae)
(STACKS: list_forall2 match_stackframes s s')
(PC: match_pc f ae n pc pc')
(REGS: regs_lessdef rs rs')
(MEM: Mem.extends m m'),
match_states n (State s f sp pc rs m)
(State s' (transf_function rm f) sp pc' rs' m')
| match_states_call:
forall s f args m s' args' m'
(STACKS: list_forall2 match_stackframes s s')
(ARGS: Val.lessdef_list args args')
(MEM: Mem.extends m m'),
match_states O (Callstate s f args m)
(Callstate s' (transf_fundef rm f) args' m')
| match_states_return:
forall s v m s' v' m'
(STACKS: list_forall2 match_stackframes s s')
(RES: Val.lessdef v v')
(MEM: Mem.extends m m'),
list_forall2 match_stackframes s s' ->
match_states O (Returnstate s v m)
(Returnstate s' v' m').
Lemma match_states_succ:
forall s f sp pc rs m s' rs' m',
sound_state prog (State s f sp pc rs m) ->
list_forall2 match_stackframes s s' ->
regs_lessdef rs rs' ->
Mem.extends m m' ->
match_states O (State s f sp pc rs m)
(State s' (transf_function rm f) sp pc rs' m').
Proof.
intros. inv H.
apply match_states_intro with (bc := bc) (ae := ae); auto.
constructor.
Qed.
Lemma transf_instr_at:
forall f pc i,
f.(fn_code)!pc = Some i ->
(transf_function rm f).(fn_code)!pc = Some(transf_instr f (analyze rm f) rm pc i).
Proof.
intros. simpl. rewrite PTree.gmap. rewrite H. auto.
Qed.
Ltac TransfInstr :=
match goal with
| H1: (PTree.get ?pc (fn_code ?f) = Some ?instr),
H2: (analyze (romem_for_program prog) ?f)#?pc = VA.State ?ae ?am |- _ =>
fold rm in H2; generalize (transf_instr_at _ _ _ H1); unfold transf_instr; rewrite H2
end.
(** The proof of simulation proceeds by case analysis on the transition
taken in the source code. *)
Lemma transf_step_correct:
forall s1 t s2,
step ge s1 t s2 ->
forall n1 s1' (SS1: sound_state prog s1) (SS2: sound_state prog s2) (MS: match_states n1 s1 s1'),
(exists n2, exists s2', step tge s1' t s2' /\ match_states n2 s2 s2')
\/ (exists n2, n2 < n1 /\ t = E0 /\ match_states n2 s2 s1')%nat.
Proof.
induction 1; intros; inv SS1; inv MS; try (inv PC; try congruence).
(* Inop, preserved *)
rename pc'0 into pc. TransfInstr; intros.
left; econstructor; econstructor; split.
eapply exec_Inop; eauto.
eapply match_states_succ; eauto.
(* Inop, skipped over *)
assert (s0 = pc') by congruence. subst s0.
right; exists n; split. omega. split. auto.
apply match_states_intro with bc0 ae0; auto.
(* Iop *)
rename pc'0 into pc. TransfInstr.
set (a := eval_static_operation op (aregs ae args)).
set (ae' := AE.set res a ae).
assert (VMATCH: vmatch bc v a) by (eapply eval_static_operation_sound; eauto with va).
assert (MATCH': ematch bc (rs#res <- v) ae') by (eapply ematch_update; eauto).
destruct (const_for_result a) as [cop|] eqn:?; intros.
(* constant is propagated *)
exploit const_for_result_correct; eauto. intros (v' & A & B).
left; econstructor; econstructor; split.
eapply exec_Iop; eauto.
apply match_states_intro with bc ae'; auto.
apply match_successor.
apply set_reg_lessdef; auto.
(* operator is strength-reduced *)
assert(OP:
let (op', args') := op_strength_reduction op args (aregs ae args) in
exists v',
eval_operation ge (Vptr sp0 Int.zero) op' rs ## args' m = Some v' /\
Val.lessdef v v').
{ eapply op_strength_reduction_correct with (ae := ae); eauto with va. }
destruct (op_strength_reduction op args (aregs ae args)) as [op' args'].
destruct OP as [v' [EV' LD']].
assert (EV'': exists v'', eval_operation ge (Vptr sp0 Int.zero) op' rs'##args' m' = Some v'' /\ Val.lessdef v' v'').
{ eapply eval_operation_lessdef; eauto. eapply regs_lessdef_regs; eauto. }
destruct EV'' as [v'' [EV'' LD'']].
left; econstructor; econstructor; split.
eapply exec_Iop; eauto.
erewrite eval_operation_preserved. eexact EV''. exact symbols_preserved.
apply match_states_intro with bc ae'; auto.
apply match_successor.
apply set_reg_lessdef; auto. eapply Val.lessdef_trans; eauto.
(* Iload *)
rename pc'0 into pc. TransfInstr.
set (aa := eval_static_addressing addr (aregs ae args)).
assert (VM1: vmatch bc a aa) by (eapply eval_static_addressing_sound; eauto with va).
set (av := loadv chunk rm am aa).
assert (VM2: vmatch bc v av) by (eapply loadv_sound; eauto).
destruct (const_for_result av) as [cop|] eqn:?; intros.
(* constant-propagated *)
exploit const_for_result_correct; eauto. intros (v' & A & B).
left; econstructor; econstructor; split.
eapply exec_Iop; eauto.
eapply match_states_succ; eauto.
apply set_reg_lessdef; auto.
(* strength-reduced *)
assert (ADDR:
let (addr', args') := addr_strength_reduction addr args (aregs ae args) in
exists a',
eval_addressing ge (Vptr sp0 Int.zero) addr' rs ## args' = Some a' /\
Val.lessdef a a').
{ eapply addr_strength_reduction_correct with (ae := ae); eauto with va. }
destruct (addr_strength_reduction addr args (aregs ae args)) as [addr' args'].
destruct ADDR as (a' & P & Q).
exploit eval_addressing_lessdef. eapply regs_lessdef_regs; eauto. eexact P.
intros (a'' & U & V).
assert (W: eval_addressing tge (Vptr sp0 Int.zero) addr' rs'##args' = Some a'').
{ rewrite <- U. apply eval_addressing_preserved. exact symbols_preserved. }
exploit Mem.loadv_extends. eauto. eauto. apply Val.lessdef_trans with a'; eauto.
intros (v' & X & Y).
left; econstructor; econstructor; split.
eapply exec_Iload; eauto.
eapply match_states_succ; eauto. apply set_reg_lessdef; auto.
(* Istore *)
rename pc'0 into pc. TransfInstr.
assert (ADDR:
let (addr', args') := addr_strength_reduction addr args (aregs ae args) in
exists a',
eval_addressing ge (Vptr sp0 Int.zero) addr' rs ## args' = Some a' /\
Val.lessdef a a').
{ eapply addr_strength_reduction_correct with (ae := ae); eauto with va. }
destruct (addr_strength_reduction addr args (aregs ae args)) as [addr' args'].
destruct ADDR as (a' & P & Q).
exploit eval_addressing_lessdef. eapply regs_lessdef_regs; eauto. eexact P.
intros (a'' & U & V).
assert (W: eval_addressing tge (Vptr sp0 Int.zero) addr' rs'##args' = Some a'').
{ rewrite <- U. apply eval_addressing_preserved. exact symbols_preserved. }
exploit Mem.storev_extends. eauto. eauto. apply Val.lessdef_trans with a'; eauto. apply REGS.
intros (m2' & X & Y).
left; econstructor; econstructor; split.
eapply exec_Istore; eauto.
eapply match_states_succ; eauto.
(* Icall *)
rename pc'0 into pc.
exploit transf_ros_correct; eauto. intro FIND'.
TransfInstr; intro.
left; econstructor; econstructor; split.
eapply exec_Icall; eauto. apply sig_function_translated; auto.
constructor; auto. constructor; auto.
econstructor; eauto.
apply regs_lessdef_regs; auto.
(* Itailcall *)
exploit Mem.free_parallel_extends; eauto. intros [m2' [A B]].
exploit transf_ros_correct; eauto. intros FIND'.
TransfInstr; intro.
left; econstructor; econstructor; split.
eapply exec_Itailcall; eauto. apply sig_function_translated; auto.
constructor; auto.
apply regs_lessdef_regs; auto.
(* Ibuiltin *)
rename pc'0 into pc.
Opaque builtin_strength_reduction.
exploit builtin_strength_reduction_correct; eauto.
TransfInstr.
destruct (builtin_strength_reduction ae ef args) as [ef' args'].
intros P Q.
exploit external_call_mem_extends; eauto.
instantiate (1 := rs'##args'). apply regs_lessdef_regs; auto.
intros [v' [m2' [A [B [C D]]]]].
left; econstructor; econstructor; split.
eapply exec_Ibuiltin. eauto.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
eapply match_states_succ; eauto. simpl; auto.
apply set_reg_lessdef; auto.
(* Icond, preserved *)
rename pc' into pc. TransfInstr.
set (ac := eval_static_condition cond (aregs ae args)).
assert (C: cmatch (eval_condition cond rs ## args m) ac)
by (eapply eval_static_condition_sound; eauto with va).
rewrite H0 in C.
generalize (cond_strength_reduction_correct bc ae rs m EM cond args (aregs ae args) (refl_equal _)).
destruct (cond_strength_reduction cond args (aregs ae args)) as [cond' args'].
intros EV1 TCODE.
left; exists O; exists (State s' (transf_function rm f) (Vptr sp0 Int.zero) (if b then ifso else ifnot) rs' m'); split.
destruct (resolve_branch ac) eqn: RB.
assert (b0 = b) by (eapply resolve_branch_sound; eauto). subst b0.
destruct b; eapply exec_Inop; eauto.
eapply exec_Icond; eauto.
eapply eval_condition_lessdef with (vl1 := rs##args'); eauto. eapply regs_lessdef_regs; eauto. congruence.
eapply match_states_succ; eauto.
(* Icond, skipped over *)
rewrite H1 in H; inv H.
set (ac := eval_static_condition cond (aregs ae0 args)) in *.
assert (C: cmatch (eval_condition cond rs ## args m) ac)
by (eapply eval_static_condition_sound; eauto with va).
rewrite H0 in C.
assert (b0 = b) by (eapply resolve_branch_sound; eauto). subst b0.
right; exists n; split. omega. split. auto.
econstructor; eauto.
(* Ijumptable *)
rename pc'0 into pc.
assert (A: (fn_code (transf_function rm f))!pc = Some(Ijumptable arg tbl)
\/ (fn_code (transf_function rm f))!pc = Some(Inop pc')).
{ TransfInstr.
destruct (areg ae arg) eqn:A; auto.
generalize (EM arg). fold (areg ae arg); rewrite A.
intros V; inv V. replace n0 with n by congruence.
rewrite H1. auto. }
assert (rs'#arg = Vint n).
{ generalize (REGS arg). rewrite H0. intros LD; inv LD; auto. }
left; exists O; exists (State s' (transf_function rm f) (Vptr sp0 Int.zero) pc' rs' m'); split.
destruct A. eapply exec_Ijumptable; eauto. eapply exec_Inop; eauto.
eapply match_states_succ; eauto.
(* Ireturn *)
exploit Mem.free_parallel_extends; eauto. intros [m2' [A B]].
left; exists O; exists (Returnstate s' (regmap_optget or Vundef rs') m2'); split.
eapply exec_Ireturn; eauto. TransfInstr; auto.
constructor; auto.
destruct or; simpl; auto.
(* internal function *)
exploit Mem.alloc_extends. eauto. eauto. apply Zle_refl. apply Zle_refl.
intros [m2' [A B]].
assert (X: exists bc ae, ematch bc (init_regs args (fn_params f)) ae).
{ inv SS2. exists bc0; exists ae; auto. }
destruct X as (bc1 & ae1 & MATCH).
simpl. unfold transf_function.
left; exists O; econstructor; split.
eapply exec_function_internal; simpl; eauto.
simpl. econstructor; eauto.
constructor.
apply init_regs_lessdef; auto.
(* external function *)
exploit external_call_mem_extends; eauto.
intros [v' [m2' [A [B [C D]]]]].
simpl. left; econstructor; econstructor; split.
eapply exec_function_external; eauto.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
constructor; auto.
(* return *)
assert (X: exists bc ae, ematch bc (rs#res <- vres) ae).
{ inv SS2. exists bc0; exists ae; auto. }
destruct X as (bc1 & ae1 & MATCH).
inv H4. inv H1.
left; exists O; econstructor; split.
eapply exec_return; eauto.
econstructor; eauto. constructor. apply set_reg_lessdef; auto.
Qed.
Lemma transf_initial_states:
forall st1, initial_state prog st1 ->
exists n, exists st2, initial_state tprog st2 /\ match_states n st1 st2.
Proof.
intros. inversion H.
exploit function_ptr_translated; eauto. intro FIND.
exists O; exists (Callstate nil (transf_fundef rm f) nil m0); split.
econstructor; eauto.
apply Genv.init_mem_transf; auto.
replace (prog_main tprog) with (prog_main prog).
rewrite symbols_preserved. eauto.
reflexivity.
rewrite <- H3. apply sig_function_translated.
constructor. constructor. constructor. apply Mem.extends_refl.
Qed.
Lemma transf_final_states:
forall n st1 st2 r,
match_states n st1 st2 -> final_state st1 r -> final_state st2 r.
Proof.
intros. inv H0. inv H. inv STACKS. inv RES. constructor.
Qed.
(** The preservation of the observable behavior of the program then
follows. *)
Theorem transf_program_correct:
forward_simulation (RTL.semantics prog) (RTL.semantics tprog).
Proof.
apply Forward_simulation with
(fsim_order := lt)
(fsim_match_states := fun n s1 s2 => sound_state prog s1 /\ match_states n s1 s2).
- apply lt_wf.
- simpl; intros. exploit transf_initial_states; eauto. intros (n & st2 & A & B).
exists n, st2; intuition. eapply sound_initial; eauto.
- simpl; intros. destruct H. eapply transf_final_states; eauto.
- simpl; intros. destruct H0.
assert (sound_state prog s1') by (eapply sound_step; eauto).
fold ge; fold tge.
exploit transf_step_correct; eauto.
intros [ [n2 [s2' [A B]]] | [n2 [A [B C]]]].
exists n2; exists s2'; split; auto. left; apply plus_one; auto.
exists n2; exists s2; split; auto. right; split; auto. subst t; apply star_refl.
- eexact symbols_preserved.
Qed.
End PRESERVATION.
|