summaryrefslogtreecommitdiff
path: root/backend/Cminor.v
blob: 2b9945ac7599714b3a5bec486a9937ed1d22407b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
(** Abstract syntax and semantics for the Cminor language. *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Events.
Require Import Values.
Require Import Mem.
Require Import Globalenvs.
Require Import Switch.

(** * Abstract syntax *)

(** Cminor is a low-level imperative language structured in expressions,
  statements, functions and programs.  We first define the constants
  and operators that occur within expressions. *)

Inductive constant : Set :=
  | Ointconst: int -> constant     (**r integer constant *)
  | Ofloatconst: float -> constant (**r floating-point constant *)
  | Oaddrsymbol: ident -> int -> constant (**r address of the symbol plus the offset *)
  | Oaddrstack: int -> constant.   (**r stack pointer plus the given offset *)

Inductive unary_operation : Set :=
  | Ocast8unsigned: unary_operation        (**r 8-bit zero extension  *)
  | Ocast8signed: unary_operation          (**r 8-bit sign extension  *)
  | Ocast16unsigned: unary_operation       (**r 16-bit zero extension  *)
  | Ocast16signed: unary_operation         (**r 16-bit sign extension *)
  | Onegint: unary_operation               (**r integer opposite *)
  | Onotbool: unary_operation              (**r boolean negation  *)
  | Onotint: unary_operation               (**r bitwise complement  *)
  | Onegf: unary_operation                 (**r float opposite *)
  | Oabsf: unary_operation                 (**r float absolute value *)
  | Osingleoffloat: unary_operation        (**r float truncation *)
  | Ointoffloat: unary_operation           (**r integer to float *)
  | Ofloatofint: unary_operation           (**r float to signed integer *)
  | Ofloatofintu: unary_operation.         (**r float to unsigned integer *)

Inductive binary_operation : Set :=
  | Oadd: binary_operation                 (**r integer addition *)
  | Osub: binary_operation                 (**r integer subtraction *)
  | Omul: binary_operation                 (**r integer multiplication *)
  | Odiv: binary_operation                 (**r integer signed division *)
  | Odivu: binary_operation                (**r integer unsigned division *)
  | Omod: binary_operation                 (**r integer signed modulus *)
  | Omodu: binary_operation                (**r integer unsigned modulus *)
  | Oand: binary_operation                 (**r bitwise ``and'' *)
  | Oor: binary_operation                  (**r bitwise ``or'' *)
  | Oxor: binary_operation                 (**r bitwise ``xor'' *)
  | Oshl: binary_operation                 (**r left shift *)
  | Oshr: binary_operation                 (**r right signed shift *)
  | Oshru: binary_operation                (**r right unsigned shift *)
  | Oaddf: binary_operation                (**r float addition *)
  | Osubf: binary_operation                (**r float subtraction *)
  | Omulf: binary_operation                (**r float multiplication *)
  | Odivf: binary_operation                (**r float division *)
  | Ocmp: comparison -> binary_operation   (**r integer signed comparison *)
  | Ocmpu: comparison -> binary_operation  (**r integer unsigned comparison *)
  | Ocmpf: comparison -> binary_operation. (**r float comparison *)

(** Expressions include reading local variables, constants and
  arithmetic operations, reading and writing store locations,
  function calls, and conditional expressions
  (similar to [e1 ? e2 : e3] in C).
  The [Elet] and [Eletvar] constructs enable sharing the computations
  of subexpressions.  De Bruijn notation is used: [Eletvar n] refers
  to the value bound by then [n+1]-th enclosing [Elet] construct. *)

Inductive expr : Set :=
  | Evar : ident -> expr
  | Econst : constant -> expr
  | Eunop : unary_operation -> expr -> expr
  | Ebinop : binary_operation -> expr -> expr -> expr
  | Eload : memory_chunk -> expr -> expr
  | Estore : memory_chunk -> expr -> expr -> expr
  | Ecall : signature -> expr -> exprlist -> expr
  | Econdition : expr -> expr -> expr -> expr
  | Elet : expr -> expr -> expr
  | Eletvar : nat -> expr
  | Ealloc : expr -> expr

with exprlist : Set :=
  | Enil: exprlist
  | Econs: expr -> exprlist -> exprlist.

(** Statements include expression evaluation, assignment to local variables,
  an if/then/else conditional, infinite loops, blocks and early block
  exits, and early function returns.  [Sexit n] terminates prematurely
  the execution of the [n+1] enclosing [Sblock] statements. *)

Inductive stmt : Set :=
  | Sskip: stmt
  | Sexpr: expr -> stmt
  | Sassign : ident -> expr -> stmt
  | Sseq: stmt -> stmt -> stmt
  | Sifthenelse: expr -> stmt -> stmt -> stmt
  | Sloop: stmt -> stmt
  | Sblock: stmt -> stmt
  | Sexit: nat -> stmt
  | Sswitch: expr -> list (int * nat) -> nat -> stmt
  | Sreturn: option expr -> stmt
  | Stailcall: signature -> expr -> exprlist -> stmt.

(** Functions are composed of a signature, a list of parameter names,
  a list of local variables, and a  statement representing
  the function body.  Each function can allocate a memory block of
  size [fn_stackspace] on entrance.  This block will be deallocated
  automatically before the function returns.  Pointers into this block
  can be taken with the [Oaddrstack] operator. *)

Record function : Set := mkfunction {
  fn_sig: signature;
  fn_params: list ident;
  fn_vars: list ident;
  fn_stackspace: Z;
  fn_body: stmt
}.

Definition fundef := AST.fundef function.
Definition program := AST.program fundef unit.

Definition funsig (fd: fundef) :=
  match fd with
  | Internal f => f.(fn_sig)
  | External ef => ef.(ef_sig)
  end.

(** * Operational semantics *)

(** The operational semantics for Cminor is given in big-step operational
  style.  Expressions evaluate to values, and statements evaluate to
  ``outcomes'' indicating how execution should proceed afterwards. *)

Inductive outcome: Set :=
  | Out_normal: outcome                (**r continue in sequence *)
  | Out_exit: nat -> outcome           (**r terminate [n+1] enclosing blocks *)
  | Out_return: option val -> outcome  (**r return immediately to caller *)
  | Out_tailcall_return: val -> outcome. (**r already returned to caller via a tailcall *)

Definition outcome_block (out: outcome) : outcome :=
  match out with
  | Out_exit O => Out_normal
  | Out_exit (S n) => Out_exit n
  | out => out
  end.

Definition outcome_result_value
    (out: outcome) (retsig: option typ) (vres: val) : Prop :=
  match out, retsig with
  | Out_normal, None => vres = Vundef
  | Out_return None, None => vres = Vundef
  | Out_return (Some v), Some ty => vres = v
  | Out_tailcall_return v, _ => vres = v
  | _, _ => False
  end.

Definition outcome_free_mem
    (out: outcome) (m: mem) (sp: block) : mem :=
  match out with
  | Out_tailcall_return _ => m
  | _ => Mem.free m sp
  end.

(** Three kinds of evaluation environments are involved:
- [genv]: global environments, define symbols and functions;
- [env]: local environments, map local variables to values;
- [lenv]: let environments, map de Bruijn indices to values.
*)

Definition genv := Genv.t fundef.
Definition env := PTree.t val.
Definition letenv := list val.

(** The following functions build the initial local environment at
  function entry, binding parameters to the provided arguments and
  initializing local variables to [Vundef]. *)

Fixpoint set_params (vl: list val) (il: list ident) {struct il} : env :=
  match il, vl with
  | i1 :: is, v1 :: vs => PTree.set i1 v1 (set_params vs is)
  | i1 :: is, nil => PTree.set i1 Vundef (set_params nil is)
  | _, _ => PTree.empty val
  end.

Fixpoint set_locals (il: list ident) (e: env) {struct il} : env :=
  match il with
  | nil => e
  | i1 :: is => PTree.set i1 Vundef (set_locals is e)
  end.

Section RELSEM.

Variable ge: genv.

(** Evaluation of constants and operator applications.
    [None] is returned when the computation is undefined, e.g.
    if arguments are of the wrong types, or in case of an integer division
    by zero. *)

Definition eval_constant (sp: val) (cst: constant) : option val :=
  match cst with
  | Ointconst n => Some (Vint n)
  | Ofloatconst n => Some (Vfloat n)
  | Oaddrsymbol s ofs =>
      match Genv.find_symbol ge s with
      | None => None
      | Some b => Some (Vptr b ofs)
      end
  | Oaddrstack ofs =>
      match sp with
      | Vptr b n => Some (Vptr b (Int.add n ofs))
      | _ => None
      end
  end.

Definition eval_unop (op: unary_operation) (arg: val) : option val :=
  match op, arg with
  | Ocast8unsigned, _ => Some (Val.cast8unsigned arg)
  | Ocast8signed, _ => Some (Val.cast8signed arg)
  | Ocast16unsigned, _ => Some (Val.cast16unsigned arg)
  | Ocast16signed, _ => Some (Val.cast16signed arg)
  | Onegint, Vint n1 => Some (Vint (Int.neg n1))
  | Onotbool, Vint n1 => Some (Val.of_bool (Int.eq n1 Int.zero))
  | Onotbool, Vptr b1 n1 => Some Vfalse
  | Onotint, Vint n1 => Some (Vint (Int.not n1))
  | Onegf, Vfloat f1 => Some (Vfloat (Float.neg f1))
  | Oabsf, Vfloat f1 => Some (Vfloat (Float.abs f1))
  | Osingleoffloat, _ => Some (Val.singleoffloat arg)
  | Ointoffloat, Vfloat f1 => Some (Vint (Float.intoffloat f1))
  | Ofloatofint, Vint n1 => Some (Vfloat (Float.floatofint n1))
  | Ofloatofintu, Vint n1 => Some (Vfloat (Float.floatofintu n1))
  | _, _ => None
  end.

Definition eval_compare_null (c: comparison) (n: int) : option val :=
  if Int.eq n Int.zero 
  then match c with Ceq => Some Vfalse | Cne => Some Vtrue | _ => None end
  else None.

Definition eval_binop
            (op: binary_operation) (arg1 arg2: val) (m: mem): option val :=
  match op, arg1, arg2 with
  | Oadd, Vint n1, Vint n2 => Some (Vint (Int.add n1 n2))
  | Oadd, Vint n1, Vptr b2 n2 => Some (Vptr b2 (Int.add n2 n1))
  | Oadd, Vptr b1 n1, Vint n2 => Some (Vptr b1 (Int.add n1 n2))
  | Osub, Vint n1, Vint n2 => Some (Vint (Int.sub n1 n2))
  | Osub, Vptr b1 n1, Vint n2 => Some (Vptr b1 (Int.sub n1 n2))
  | Osub, Vptr b1 n1, Vptr b2 n2 =>
      if eq_block b1 b2 then Some (Vint (Int.sub n1 n2)) else None
  | Omul, Vint n1, Vint n2 => Some (Vint (Int.mul n1 n2))
  | Odiv, Vint n1, Vint n2 =>
      if Int.eq n2 Int.zero then None else Some (Vint (Int.divs n1 n2))
  | Odivu, Vint n1, Vint n2 =>
      if Int.eq n2 Int.zero then None else Some (Vint (Int.divu n1 n2))
  | Omod, Vint n1, Vint n2 =>
      if Int.eq n2 Int.zero then None else Some (Vint (Int.mods n1 n2))
  | Omodu, Vint n1, Vint n2 =>
      if Int.eq n2 Int.zero then None else Some (Vint (Int.modu n1 n2))
  | Oand, Vint n1, Vint n2 => Some (Vint (Int.and n1 n2))
  | Oor, Vint n1, Vint n2 => Some (Vint (Int.or n1 n2))
  | Oxor, Vint n1, Vint n2 => Some (Vint (Int.xor n1 n2))
  | Oshl, Vint n1, Vint n2 =>
      if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shl n1 n2)) else None
  | Oshr, Vint n1, Vint n2 =>
      if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shr n1 n2)) else None
  | Oshru, Vint n1, Vint n2 =>
      if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shru n1 n2)) else None
   | Oaddf, Vfloat f1, Vfloat f2 => Some (Vfloat (Float.add f1 f2))
  | Osubf, Vfloat f1, Vfloat f2 => Some (Vfloat (Float.sub f1 f2))
  | Omulf, Vfloat f1, Vfloat f2 => Some (Vfloat (Float.mul f1 f2))
  | Odivf, Vfloat f1, Vfloat f2 => Some (Vfloat (Float.div f1 f2))
  | Ocmp c, Vint n1, Vint n2 =>
      Some (Val.of_bool(Int.cmp c n1 n2))
  | Ocmp c, Vptr b1 n1, Vptr b2 n2 =>
      if valid_pointer m b1 (Int.signed n1)
      && valid_pointer m b2 (Int.signed n2) then
        if eq_block b1 b2 then Some(Val.of_bool(Int.cmp c n1 n2)) else None
      else
        None
  | Ocmp c, Vptr b1 n1, Vint n2 => eval_compare_null c n2
  | Ocmp c, Vint n1, Vptr b2 n2 => eval_compare_null c n1
  | Ocmpu c, Vint n1, Vint n2 =>
      Some (Val.of_bool(Int.cmpu c n1 n2))
  | Ocmpf c, Vfloat f1, Vfloat f2 =>
      Some (Val.of_bool (Float.cmp c f1 f2))
  | _, _, _ => None
  end.

(** Evaluation of an expression: [eval_expr ge sp le e m a t m' v]
  states that expression [a], in initial local environment [e] and
  memory state [m], evaluates to value [v].  [m'] is the final
  memory state, reflecting memory stores possibly performed by [a].
  [t] is the trace of I/O events generated during the evaluation.
  Expressions do not assign variables, therefore the local environment
  [e] is unchanged.  [ge] and [le] are the global environment and let
  environment respectively, and are unchanged during evaluation.  [sp]
  is the pointer to the memory block allocated for this function
  (stack frame).
*)

Inductive eval_expr:
         val -> letenv -> env ->
         mem -> expr -> trace -> mem -> val -> Prop :=
  | eval_Evar:
      forall sp le e m id v,
      PTree.get id e = Some v ->
      eval_expr sp le e m (Evar id) E0 m v
  | eval_Econst:
      forall sp le e m cst v,
      eval_constant sp cst = Some v ->
      eval_expr sp le e m (Econst cst) E0 m v
  | eval_Eunop:
      forall sp le e m op a t m1 v1 v,
      eval_expr sp le e m a t m1 v1 ->
      eval_unop op v1 = Some v ->
      eval_expr sp le e m (Eunop op a) t m1 v
  | eval_Ebinop:
      forall sp le e m op a1 a2 t1 m1 v1 t2 m2 v2 t v,
      eval_expr sp le e m a1 t1 m1 v1 ->
      eval_expr sp le e m1 a2 t2 m2 v2 ->
      eval_binop op v1 v2 m2 = Some v ->
      t = t1 ** t2 ->
      eval_expr sp le e m (Ebinop op a1 a2) t m2 v
  | eval_Eload:
      forall sp le e m chunk a t m1 v1 v,
      eval_expr sp le e m a t m1 v1 ->
      Mem.loadv chunk m1 v1 = Some v ->
      eval_expr sp le e m (Eload chunk a) t m1 v
  | eval_Estore:
      forall sp le e m chunk a1 a2 t t1 m1 v1 t2 m2 v2 m3,
      eval_expr sp le e m a1 t1 m1 v1 ->
      eval_expr sp le e m1 a2 t2 m2 v2 ->
      Mem.storev chunk m2 v1 v2 = Some m3 ->
      t = t1 ** t2 ->
      eval_expr sp le e m (Estore chunk a1 a2) t m3 v2
  | eval_Ecall:
      forall sp le e m sig a bl t t1 m1 t2 m2 t3 m3 vf vargs vres f,
      eval_expr sp le e m a t1 m1 vf ->
      eval_exprlist sp le e m1 bl t2 m2 vargs ->
      Genv.find_funct ge vf = Some f ->
      funsig f = sig ->
      eval_funcall m2 f vargs t3 m3 vres ->
      t = t1 ** t2 ** t3 ->
      eval_expr sp le e m (Ecall sig a bl) t m3 vres
  | eval_Econdition:
      forall sp le e m a1 a2 a3 t t1 m1 v1 b1 t2 m2 v2,
      eval_expr sp le e m a1 t1 m1 v1 ->
      Val.bool_of_val v1 b1 ->
      eval_expr sp le e m1 (if b1 then a2 else a3) t2 m2 v2 ->
      t = t1 ** t2 ->
      eval_expr sp le e m (Econdition a1 a2 a3) t m2 v2
  | eval_Elet:
      forall sp le e m a b t t1 m1 v1 t2 m2 v2,
      eval_expr sp le e m a t1 m1 v1 ->
      eval_expr sp (v1::le) e m1 b t2 m2 v2 ->
      t = t1 ** t2 ->
      eval_expr sp le e m (Elet a b) t m2 v2
  | eval_Eletvar:
      forall sp le e m n v,
      nth_error le n = Some v ->
      eval_expr sp le e m (Eletvar n) E0 m v
  | eval_Ealloc:
      forall sp le e m a t m1 n m2 b,
      eval_expr sp le e m a t m1 (Vint n) ->
      Mem.alloc m1 0 (Int.signed n) = (m2, b) ->
      eval_expr sp le e m (Ealloc a) t m2 (Vptr b Int.zero)

(** Evaluation of a list of expressions:
  [eval_exprlist ge sp le al m a m' vl]
  states that the list [al] of expressions evaluate 
  to the list [vl] of values.
  The other parameters are as in [eval_expr].
*)

with eval_exprlist:
         val -> letenv -> env ->
         mem -> exprlist -> trace -> mem -> list val -> Prop :=
  | eval_Enil:
      forall sp le e m,
      eval_exprlist sp le e m Enil E0 m nil
  | eval_Econs:
      forall sp le e m a bl t t1 m1 v t2 m2 vl,
      eval_expr sp le e m a t1 m1 v ->
      eval_exprlist sp le e m1 bl t2 m2 vl ->
      t = t1 ** t2 ->
      eval_exprlist sp le e m (Econs a bl) t m2 (v :: vl)

(** Evaluation of a function invocation: [eval_funcall ge m f args m' res]
  means that the function [f], applied to the arguments [args] in
  memory state [m], returns the value [res] in modified memory state [m'].
  [t] is the trace of observable events generated during the invocation.
*)

with eval_funcall:
        mem -> fundef -> list val -> trace ->
        mem -> val -> Prop :=
  | eval_funcall_internal:
      forall m f vargs m1 sp e t e2 m2 out vres,
      Mem.alloc m 0 f.(fn_stackspace) = (m1, sp) ->
      set_locals f.(fn_vars) (set_params vargs f.(fn_params)) = e ->
      exec_stmt (Vptr sp Int.zero) e m1 f.(fn_body) t e2 m2 out ->
      outcome_result_value out f.(fn_sig).(sig_res) vres ->
      eval_funcall m (Internal f) vargs t (outcome_free_mem out m2 sp) vres
  | eval_funcall_external:
      forall ef m args t res,
      event_match ef args t res ->
      eval_funcall m (External ef) args t m res

(** Execution of a statement: [exec_stmt ge sp e m s e' m' out]
  means that statement [s] executes with outcome [out].
  [e] is the initial environment and [m] is the initial memory state.
  [e'] is the final environment, reflecting variable assignments performed
  by [s].  [m'] is the final memory state, reflecting memory stores
  performed by [s].  The other parameters are as in [eval_expr]. *)

with exec_stmt:
         val ->
         env -> mem -> stmt -> trace ->
         env -> mem -> outcome -> Prop :=
  | exec_Sskip:
      forall sp e m,
      exec_stmt sp e m Sskip E0 e m Out_normal
  | exec_Sexpr:
      forall sp e m a t m1 v,
      eval_expr sp nil e m a t m1 v ->
      exec_stmt sp e m (Sexpr a) t e m1 Out_normal
  | exec_Sassign:
      forall sp e m id a t m1 v,
      eval_expr sp nil e m a t m1 v ->
      exec_stmt sp e m (Sassign id a) t (PTree.set id v e) m1 Out_normal
  | exec_Sifthenelse:
      forall sp e m a s1 s2 t t1 m1 v1 b1 t2 e2 m2 out,
      eval_expr sp nil e m a t1 m1 v1 ->
      Val.bool_of_val v1 b1 ->
      exec_stmt sp e m1 (if b1 then s1 else s2) t2 e2 m2 out ->
      t = t1 ** t2 ->
      exec_stmt sp e m (Sifthenelse a s1 s2) t e2 m2 out
  | exec_Sseq_continue:
      forall sp e m t s1 t1 e1 m1 s2 t2 e2 m2 out,
      exec_stmt sp e m s1 t1 e1 m1 Out_normal ->
      exec_stmt sp e1 m1 s2 t2 e2 m2 out ->
      t = t1 ** t2 ->
      exec_stmt sp e m (Sseq s1 s2) t e2 m2 out
  | exec_Sseq_stop:
      forall sp e m t s1 s2 e1 m1 out,
      exec_stmt sp e m s1 t e1 m1 out ->
      out <> Out_normal ->
      exec_stmt sp e m (Sseq s1 s2) t e1 m1 out
  | exec_Sloop_loop:
      forall sp e m s t t1 e1 m1 t2 e2 m2 out,
      exec_stmt sp e m s t1 e1 m1 Out_normal ->
      exec_stmt sp e1 m1 (Sloop s) t2 e2 m2 out ->
      t = t1 ** t2 ->
      exec_stmt sp e m (Sloop s) t e2 m2 out
  | exec_Sloop_stop:
      forall sp e m t s e1 m1 out,
      exec_stmt sp e m s t e1 m1 out ->
      out <> Out_normal ->
      exec_stmt sp e m (Sloop s) t e1 m1 out
  | exec_Sblock:
      forall sp e m s t e1 m1 out,
      exec_stmt sp e m s t e1 m1 out ->
      exec_stmt sp e m (Sblock s) t e1 m1 (outcome_block out)
  | exec_Sexit:
      forall sp e m n,
      exec_stmt sp e m (Sexit n) E0 e m (Out_exit n)
  | exec_Sswitch:
      forall sp e m a cases default t1 m1 n,
      eval_expr sp nil e m a t1 m1 (Vint n) ->
      exec_stmt sp e m (Sswitch a cases default)
                t1 e m1 (Out_exit (switch_target n default cases))
  | exec_Sreturn_none:
      forall sp e m,
      exec_stmt sp e m (Sreturn None) E0 e m (Out_return None)
  | exec_Sreturn_some:
      forall sp e m a t m1 v,
      eval_expr sp nil e m a t m1 v ->
      exec_stmt sp e m (Sreturn (Some a)) t e m1 (Out_return (Some v))
  | exec_Stailcall:
      forall sp e m sig a bl t t1 m1 t2 m2 t3 m3 vf vargs vres f,
      eval_expr (Vptr sp Int.zero) nil e m a t1 m1 vf ->
      eval_exprlist (Vptr sp Int.zero) nil e m1 bl t2 m2 vargs ->
      Genv.find_funct ge vf = Some f ->
      funsig f = sig ->
      eval_funcall (Mem.free m2 sp) f vargs t3 m3 vres ->
      t = t1 ** t2 ** t3 ->
      exec_stmt (Vptr sp Int.zero) e m (Stailcall sig a bl) t e m3 (Out_tailcall_return vres).

Scheme eval_expr_ind4 := Minimality for eval_expr Sort Prop
  with eval_exprlist_ind4 := Minimality for eval_exprlist Sort Prop
  with eval_funcall_ind4 := Minimality for eval_funcall Sort Prop
  with exec_stmt_ind4 := Minimality for exec_stmt Sort Prop.

End RELSEM.

(** Execution of a whole program: [exec_program p t r]
  holds if the application of [p]'s main function to no arguments
  in the initial memory state for [p] performs the input/output
  operations described in the trace [t], and eventually returns value [r].
*)

Definition exec_program (p: program) (t: trace) (r: val) : Prop :=
  let ge := Genv.globalenv p in
  let m0 := Genv.init_mem p in
  exists b, exists f, exists m,
  Genv.find_symbol ge p.(prog_main) = Some b /\
  Genv.find_funct_ptr ge b = Some f /\
  funsig f = mksignature nil (Some Tint) /\
  eval_funcall ge m0 f nil t m r.