summaryrefslogtreecommitdiff
path: root/backend/CSEproof.v
blob: af138f83a1b2734fe6e92bbd6e52e4cd0dc58cdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness proof for common subexpression elimination. *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Errors.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import Kildall.
Require Import ValueDomain.
Require Import ValueAOp.
Require Import ValueAnalysis.
Require Import CSEdomain.
Require Import CombineOp.
Require Import CombineOpproof.
Require Import CSE.

(** * Soundness of operations over value numberings *)

Remark wf_equation_incr:
  forall next1 next2 e,
  wf_equation next1 e -> Ple next1 next2 -> wf_equation next2 e.
Proof.
  unfold wf_equation; intros; destruct e. destruct H. split.
  apply Plt_le_trans with next1; auto.
  red; intros. apply Plt_le_trans with next1; auto. apply H1; auto.
Qed.

(** Extensionality with respect to valuations. *)

Definition valu_agree (valu1 valu2: valuation) (upto: valnum) :=
  forall v, Plt v upto -> valu2 v = valu1 v.

Section EXTEN.

Variable valu1: valuation.
Variable upto: valnum.
Variable valu2: valuation.
Hypothesis AGREE: valu_agree valu1 valu2 upto.
Variable ge: genv.
Variable sp: val.
Variable rs: regset.
Variable m: mem.

Lemma valnums_val_exten:
  forall vl,
  (forall v, In v vl -> Plt v upto) ->
  map valu2 vl = map valu1 vl.
Proof.
  intros. apply list_map_exten. intros. symmetry. auto.
Qed.

Lemma rhs_eval_to_exten:
  forall r v,
  rhs_eval_to valu1 ge sp m r v ->
  (forall v, In v (valnums_rhs r) -> Plt v upto) ->
  rhs_eval_to valu2 ge sp m r v.
Proof.
  intros. inv H; simpl in *.
- constructor. rewrite valnums_val_exten by assumption. auto.
- econstructor; eauto. rewrite valnums_val_exten by assumption. auto.
Qed.

Lemma equation_holds_exten:
  forall e,
  equation_holds valu1 ge sp m e ->
  wf_equation upto e ->
  equation_holds valu2 ge sp m e.
Proof.
  intros. destruct e. destruct H0. inv H.
- constructor. rewrite AGREE by auto. apply rhs_eval_to_exten; auto.
- econstructor. apply rhs_eval_to_exten; eauto. rewrite AGREE by auto. auto.
Qed.

Lemma numbering_holds_exten:
  forall n,
  numbering_holds valu1 ge sp rs m n ->
  Ple n.(num_next) upto ->
  numbering_holds valu2 ge sp rs m n.
Proof.
  intros. destruct H. constructor; intros.
- auto.
- apply equation_holds_exten. auto. 
  eapply wf_equation_incr; eauto with cse. 
- rewrite AGREE. eauto. eapply Plt_le_trans; eauto. eapply wf_num_reg; eauto. 
Qed.

End EXTEN.

Ltac splitall := repeat (match goal with |- _ /\ _ => split end).

Lemma valnum_reg_holds:
  forall valu1 ge sp rs m n r n' v,
  numbering_holds valu1 ge sp rs m n ->
  valnum_reg n r = (n', v) ->
  exists valu2,
     numbering_holds valu2 ge sp rs m n'
  /\ rs#r = valu2 v
  /\ valu_agree valu1 valu2 n.(num_next)
  /\ Plt v n'.(num_next)
  /\ Ple n.(num_next) n'.(num_next).
Proof.
  unfold valnum_reg; intros.
  destruct (num_reg n)!r as [v'|] eqn:NR.
- inv H0. exists valu1; splitall.
  + auto.
  + eauto with cse.
  + red; auto.
  + eauto with cse.
  + apply Ple_refl.
- inv H0; simpl.
  set (valu2 := fun vn => if peq vn n.(num_next) then rs#r else valu1 vn).
  assert (AG: valu_agree valu1 valu2 n.(num_next)).
  { red; intros. unfold valu2. apply peq_false. apply Plt_ne; auto. }
  exists valu2; splitall.
+ constructor; simpl; intros.
* constructor; simpl; intros.
  apply wf_equation_incr with (num_next n). eauto with cse. xomega.
  rewrite PTree.gsspec in H0. destruct (peq r0 r). 
  inv H0; xomega.
  apply Plt_trans_succ; eauto with cse.
  rewrite PMap.gsspec in H0. destruct (peq v (num_next n)).
  replace r0 with r by (simpl in H0; intuition). rewrite PTree.gss. subst; auto.
  exploit wf_num_val; eauto with cse. intro. 
  rewrite PTree.gso by congruence. auto.
* eapply equation_holds_exten; eauto with cse.
* unfold valu2. rewrite PTree.gsspec in H0. destruct (peq r0 r).
  inv H0. rewrite peq_true; auto. 
  rewrite peq_false. eauto with cse. apply Plt_ne; eauto with cse.
+ unfold valu2. rewrite peq_true; auto.
+ auto.
+ xomega.
+ xomega.
Qed.

Lemma valnum_regs_holds:
  forall rl valu1 ge sp rs m n n' vl,
  numbering_holds valu1 ge sp rs m n ->
  valnum_regs n rl = (n', vl) ->
  exists valu2,
     numbering_holds valu2 ge sp rs m n'
  /\ rs##rl = map valu2 vl
  /\ valu_agree valu1 valu2 n.(num_next)
  /\ (forall v, In v vl -> Plt v n'.(num_next))
  /\ Ple n.(num_next) n'.(num_next).
Proof.
  induction rl; simpl; intros.
- inv H0. exists valu1; splitall; auto. red; auto. simpl; tauto. xomega.
- destruct (valnum_reg n a) as [n1 v1] eqn:V1.
  destruct (valnum_regs n1 rl) as [n2 vs] eqn:V2.
  inv H0.
  exploit valnum_reg_holds; eauto. 
  intros (valu2 & A & B & C & D & E).
  exploit (IHrl valu2); eauto. 
  intros (valu3 & P & Q & R & S & T).
  exists valu3; splitall.
  + auto.
  + simpl; f_equal; auto. rewrite R; auto.
  + red; intros. transitivity (valu2 v); auto. apply R. xomega.
  + simpl; intros. destruct H0; auto. subst v1; xomega.
  + xomega.
Qed.

Lemma find_valnum_rhs_charact:
  forall rh v eqs,
  find_valnum_rhs rh eqs = Some v -> In (Eq v true rh) eqs.
Proof.
  induction eqs; simpl; intros.
- inv H.
- destruct a. destruct (strict && eq_rhs rh r) eqn:T. 
  + InvBooleans. inv H. left; auto.
  + right; eauto.
Qed.

Lemma find_valnum_rhs'_charact:
  forall rh v eqs,
  find_valnum_rhs' rh eqs = Some v -> exists strict, In (Eq v strict rh) eqs.
Proof.
  induction eqs; simpl; intros.
- inv H.
- destruct a. destruct (eq_rhs rh r) eqn:T. 
  + inv H. exists strict; auto.
  + exploit IHeqs; eauto. intros [s IN]. exists s; auto. 
Qed.

Lemma find_valnum_num_charact:
  forall v r eqs, find_valnum_num v eqs = Some r -> In (Eq v true r) eqs.
Proof.
  induction eqs; simpl; intros.
- inv H.
- destruct a. destruct (strict && peq v v0) eqn:T. 
  + InvBooleans. inv H. auto. 
  + eauto.
Qed.

Lemma reg_valnum_sound:
  forall n v r valu ge sp rs m,
  reg_valnum n v = Some r ->
  numbering_holds valu ge sp rs m n ->
  rs#r = valu v.
Proof.
  unfold reg_valnum; intros. destruct (num_val n)#v as [ | r1 rl] eqn:E; inv H.
  eapply num_holds_reg; eauto. eapply wf_num_val; eauto with cse. 
  rewrite E; auto with coqlib.
Qed.

Lemma regs_valnums_sound:
  forall n valu ge sp rs m,
  numbering_holds valu ge sp rs m n ->
  forall vl rl,
  regs_valnums n vl = Some rl ->
  rs##rl = map valu vl.
Proof.
  induction vl; simpl; intros.
- inv H0; auto.
- destruct (reg_valnum n a) as [r1|] eqn:RV1; try discriminate.
  destruct (regs_valnums n vl) as [rl1|] eqn:RVL; inv H0.
  simpl; f_equal. eapply reg_valnum_sound; eauto. eauto. 
Qed.

Lemma find_rhs_sound:
  forall n rh r valu ge sp rs m,
  find_rhs n rh = Some r ->
  numbering_holds valu ge sp rs m n ->
  exists v, rhs_eval_to valu ge sp m rh v /\ Val.lessdef v rs#r.
Proof.
  unfold find_rhs; intros. destruct (find_valnum_rhs' rh (num_eqs n)) as [vres|] eqn:E; try discriminate.
  exploit find_valnum_rhs'_charact; eauto. intros [strict IN].
  erewrite reg_valnum_sound by eauto.
  exploit num_holds_eq; eauto. intros EH. inv EH.
- exists (valu vres); auto.
- exists v; auto.
Qed.

Remark in_remove:
  forall (A: Type) (eq: forall (x y: A), {x=y}+{x<>y}) x y l,
  In y (List.remove eq x l) <-> x <> y /\ In y l.
Proof.
  induction l; simpl. 
  tauto.
  destruct (eq x a). 
  subst a. rewrite IHl. tauto. 
  simpl. rewrite IHl. intuition congruence.
Qed.

Lemma forget_reg_charact:
  forall n rd r v,
  wf_numbering n ->
  In r (PMap.get v (forget_reg n rd)) -> r <> rd /\ In r (PMap.get v n.(num_val)).
Proof.
  unfold forget_reg; intros.
  destruct (PTree.get rd n.(num_reg)) as [vd|] eqn:GET.
- rewrite PMap.gsspec in H0. destruct (peq v vd).
  + subst v. rewrite in_remove in H0. intuition.
  + split; auto. exploit wf_num_val; eauto. congruence.
- split; auto. exploit wf_num_val; eauto. congruence.
Qed.  

Lemma update_reg_charact:
  forall n rd vd r v,
  wf_numbering n ->
  In r (PMap.get v (update_reg n rd vd)) ->
  PTree.get r (PTree.set rd vd n.(num_reg)) = Some v.
Proof.
  unfold update_reg; intros.
  rewrite PMap.gsspec in H0.
  destruct (peq v vd).
- subst v. destruct H0. 
+ subst r. apply PTree.gss.
+ exploit forget_reg_charact; eauto. intros [A B].
  rewrite PTree.gso by auto. eapply wf_num_val; eauto.
- exploit forget_reg_charact; eauto. intros [A B].
  rewrite PTree.gso by auto. eapply wf_num_val; eauto.
Qed.

Lemma rhs_eval_to_inj:
  forall valu ge sp m rh v1 v2,
  rhs_eval_to valu ge sp m rh v1 -> rhs_eval_to valu ge sp m rh v2 -> v1 = v2.
Proof.
  intros. inv H; inv H0; congruence.
Qed.

Lemma add_rhs_holds:
  forall valu1 ge sp rs m n rd rh rs',
  numbering_holds valu1 ge sp rs m n ->
  rhs_eval_to valu1 ge sp m rh (rs'#rd) ->
  wf_rhs n.(num_next) rh ->
  (forall r, r <> rd -> rs'#r = rs#r) ->
  exists valu2, numbering_holds valu2 ge sp rs' m (add_rhs n rd rh).
Proof.
  unfold add_rhs; intros.
  destruct (find_valnum_rhs rh n.(num_eqs)) as [vres|] eqn:FIND.

- (* A value number exists already *)
  exploit find_valnum_rhs_charact; eauto. intros IN.
  exploit wf_num_eqs; eauto with cse. intros [A B].
  exploit num_holds_eq; eauto. intros EH. inv EH.
  assert (rs'#rd = valu1 vres) by (eapply rhs_eval_to_inj; eauto).
  exists valu1; constructor; simpl; intros.
+ constructor; simpl; intros.
  * eauto with cse.
  * rewrite PTree.gsspec in H5. destruct (peq r rd).
    inv H5. auto.
    eauto with cse.
  * eapply update_reg_charact; eauto with cse.
+ eauto with cse.
+ rewrite PTree.gsspec in H5. destruct (peq r rd). 
  congruence.
  rewrite H2 by auto. eauto with cse.

- (* Assigning a new value number *)
  set (valu2 := fun v => if peq v n.(num_next) then rs'#rd else valu1 v).
  assert (AG: valu_agree valu1 valu2 n.(num_next)).
  { red; intros. unfold valu2. apply peq_false. apply Plt_ne; auto. }
  exists valu2; constructor; simpl; intros.
+ constructor; simpl; intros.
  * destruct H3. inv H3. simpl; split. xomega. 
    red; intros. apply Plt_trans_succ; eauto. 
    apply wf_equation_incr with (num_next n). eauto with cse. xomega. 
  * rewrite PTree.gsspec in H3. destruct (peq r rd).
    inv H3. xomega.
    apply Plt_trans_succ; eauto with cse.
  * apply update_reg_charact; eauto with cse.
+ destruct H3. inv H3.
  constructor. unfold valu2 at 2; rewrite peq_true. 
  eapply rhs_eval_to_exten; eauto. 
  eapply equation_holds_exten; eauto with cse. 
+ rewrite PTree.gsspec in H3. unfold valu2. destruct (peq r rd).
  inv H3. rewrite peq_true; auto.
  rewrite peq_false. rewrite H2 by auto. eauto with cse.
  apply Plt_ne; eauto with cse.
Qed.

Lemma add_op_holds:
  forall valu1 ge sp rs m n op (args: list reg) v dst,
  numbering_holds valu1 ge sp rs m n ->
  eval_operation ge sp op rs##args m = Some v ->
  exists valu2, numbering_holds valu2 ge sp (rs#dst <- v) m (add_op n dst op args).
Proof.
  unfold add_op; intros.
  destruct (is_move_operation op args) as [src|] eqn:ISMOVE.
- (* special case for moves *)
  exploit is_move_operation_correct; eauto. intros [A B]; subst op args.
  simpl in H0. inv H0.
  destruct (valnum_reg n src) as [n1 vsrc] eqn:VN.
  exploit valnum_reg_holds; eauto. 
  intros (valu2 & A & B & C & D & E).
  exists valu2; constructor; simpl; intros.
+ constructor; simpl; intros; eauto with cse.
  * rewrite PTree.gsspec in H0. destruct (peq r dst).
    inv H0. auto.
    eauto with cse.
  * eapply update_reg_charact; eauto with cse.
+ eauto with cse.
+ rewrite PTree.gsspec in H0. rewrite Regmap.gsspec. 
  destruct (peq r dst). congruence. eauto with cse.

- (* general case *)
  destruct (valnum_regs n args) as [n1 vl] eqn:VN.
  exploit valnum_regs_holds; eauto. 
  intros (valu2 & A & B & C & D & E).
  eapply add_rhs_holds; eauto. 
+ constructor. rewrite Regmap.gss. congruence. 
+ intros. apply Regmap.gso; auto.
Qed.

Lemma add_load_holds:
  forall valu1 ge sp rs m n addr (args: list reg) a chunk v dst,
  numbering_holds valu1 ge sp rs m n ->
  eval_addressing ge sp addr rs##args = Some a ->
  Mem.loadv chunk m a = Some v ->
  exists valu2, numbering_holds valu2 ge sp (rs#dst <- v) m (add_load n dst chunk addr args).
Proof.
  unfold add_load; intros.
  destruct (valnum_regs n args) as [n1 vl] eqn:VN.
  exploit valnum_regs_holds; eauto. 
  intros (valu2 & A & B & C & D & E).
  eapply add_rhs_holds; eauto. 
+ econstructor. rewrite <- B; eauto. rewrite Regmap.gss; auto.  
+ intros. apply Regmap.gso; auto.
Qed.

Lemma set_unknown_holds:
  forall valu ge sp rs m n r v,
  numbering_holds valu ge sp rs m n ->
  numbering_holds valu ge sp (rs#r <- v) m (set_unknown n r).
Proof.
  intros; constructor; simpl; intros.
- constructor; simpl; intros.
  + eauto with cse.
  + rewrite PTree.grspec in H0. destruct (PTree.elt_eq r0 r). 
    discriminate. 
    eauto with cse.
  + exploit forget_reg_charact; eauto with cse. intros [A B]. 
    rewrite PTree.gro; eauto with cse.
- eauto with cse.
- rewrite PTree.grspec in H0. destruct (PTree.elt_eq r0 r). 
  discriminate.
  rewrite Regmap.gso; eauto with cse.
Qed.

Lemma kill_eqs_charact:
  forall pred l strict r eqs,
  In (Eq l strict r) (kill_eqs pred eqs) -> 
  pred r = false /\ In (Eq l strict r) eqs.
Proof.
  induction eqs; simpl; intros.
- tauto.
- destruct a. destruct (pred r0) eqn:PRED.
  tauto.
  inv H. inv H0. auto. tauto.
Qed.

Lemma kill_equations_hold:
  forall valu ge sp rs m n pred m',
  numbering_holds valu ge sp rs m n ->
  (forall r v,
      pred r = false ->
      rhs_eval_to valu ge sp m r v ->
      rhs_eval_to valu ge sp m' r v) ->
  numbering_holds valu ge sp rs m' (kill_equations pred n).
Proof.
  intros; constructor; simpl; intros.
- constructor; simpl; intros; eauto with cse.
  destruct e. exploit kill_eqs_charact; eauto. intros [A B]. eauto with cse.
- destruct eq. exploit kill_eqs_charact; eauto. intros [A B]. 
  exploit num_holds_eq; eauto. intro EH; inv EH; econstructor; eauto.
- eauto with cse.
Qed.

Lemma kill_all_loads_hold:
  forall valu ge sp rs m n m',
  numbering_holds valu ge sp rs m n ->
  numbering_holds valu ge sp rs m' (kill_all_loads n).
Proof.
  intros. eapply kill_equations_hold; eauto. 
  unfold filter_loads; intros. inv H1.
  constructor. rewrite <- H2. apply op_depends_on_memory_correct; auto.
  discriminate.
Qed.

Lemma kill_loads_after_store_holds:
  forall valu ge sp rs m n addr args a chunk v m' bc approx ae am,
  numbering_holds valu ge (Vptr sp Int.zero) rs m n ->
  eval_addressing ge (Vptr sp Int.zero) addr rs##args = Some a ->
  Mem.storev chunk m a v = Some m' ->
  genv_match bc ge ->
  bc sp = BCstack ->
  ematch bc rs ae ->
  approx = VA.State ae am ->
  numbering_holds valu ge (Vptr sp Int.zero) rs m'
                           (kill_loads_after_store approx n chunk addr args).
Proof.
  intros. apply kill_equations_hold with m; auto.
  intros. unfold filter_after_store in H6; inv H7.
- constructor. rewrite <- H8. apply op_depends_on_memory_correct; auto.
- destruct (regs_valnums n vl) as [rl|] eqn:RV; try discriminate.
  econstructor; eauto. rewrite <- H9.
  destruct a; simpl in H1; try discriminate.
  destruct a0; simpl in H9; try discriminate.
  simpl. 
  rewrite negb_false_iff in H6. unfold aaddressing in H6.
  eapply Mem.load_store_other. eauto.
  eapply pdisjoint_sound. eauto. 
  apply match_aptr_of_aval. eapply eval_static_addressing_sound; eauto. 
  erewrite <- regs_valnums_sound by eauto. eauto with va.
  apply match_aptr_of_aval. eapply eval_static_addressing_sound; eauto with va.
Qed.

Lemma store_normalized_range_sound:
  forall bc chunk v,
  vmatch bc v (store_normalized_range chunk) ->
  Val.lessdef (Val.load_result chunk v) v.
Proof.
  intros. destruct chunk; simpl in *; destruct v; auto.
- inv H. rewrite is_sgn_sign_ext in H3 by omega. rewrite H3; auto.
- inv H. rewrite is_uns_zero_ext in H3 by omega. rewrite H3; auto.
- inv H. rewrite is_sgn_sign_ext in H3 by omega. rewrite H3; auto.
- inv H. rewrite is_uns_zero_ext in H3 by omega. rewrite H3; auto.
Qed.

Lemma add_store_result_hold:
  forall valu1 ge sp rs m' n addr args a chunk m src bc ae approx am,
  numbering_holds valu1 ge sp rs m' n ->
  eval_addressing ge sp addr rs##args = Some a ->
  Mem.storev chunk m a rs#src = Some m' ->
  ematch bc rs ae ->
  approx = VA.State ae am ->
  exists valu2, numbering_holds valu2 ge sp rs m' (add_store_result approx n chunk addr args src).
Proof.
  unfold add_store_result; intros. 
  unfold avalue; rewrite H3. 
  destruct (vincl (AE.get src ae) (store_normalized_range chunk)) eqn:INCL.
- destruct (valnum_reg n src) as [n1 vsrc] eqn:VR1.
  destruct (valnum_regs n1 args) as [n2 vargs] eqn:VR2.
  exploit valnum_reg_holds; eauto. intros (valu2 & A & B & C & D & E). 
  exploit valnum_regs_holds; eauto. intros (valu3 & P & Q & R & S & T).
  exists valu3. constructor; simpl; intros.
+ constructor; simpl; intros; eauto with cse.
  destruct H4; eauto with cse. subst e. split. 
  eapply Plt_le_trans; eauto. 
  red; simpl; intros. auto.
+ destruct H4; eauto with cse. subst eq. apply eq_holds_lessdef with (Val.load_result chunk rs#src).
  apply load_eval_to with a. rewrite <- Q; auto.
  destruct a; try discriminate. simpl. eapply Mem.load_store_same; eauto.
  rewrite B. rewrite R by auto. apply store_normalized_range_sound with bc. 
  rewrite <- B. eapply vmatch_ge. apply vincl_ge; eauto. apply H2.
+ eauto with cse.

- exists valu1; auto.
Qed.

Lemma kill_loads_after_storebytes_holds:
  forall valu ge sp rs m n dst b ofs bytes m' bc approx ae am sz,
  numbering_holds valu ge (Vptr sp Int.zero) rs m n ->
  rs#dst = Vptr b ofs ->
  Mem.storebytes m b (Int.unsigned ofs) bytes = Some m' ->
  genv_match bc ge ->
  bc sp = BCstack ->
  ematch bc rs ae ->
  approx = VA.State ae am ->
  length bytes = nat_of_Z sz -> sz >= 0 ->
  numbering_holds valu ge (Vptr sp Int.zero) rs m'
                           (kill_loads_after_storebytes approx n dst sz).
Proof.
  intros. apply kill_equations_hold with m; auto.
  intros. unfold filter_after_store in H8; inv H9.
- constructor. rewrite <- H10. apply op_depends_on_memory_correct; auto.
- destruct (regs_valnums n vl) as [rl|] eqn:RV; try discriminate.
  econstructor; eauto. rewrite <- H11.
  destruct a; simpl in H10; try discriminate.
  simpl. 
  rewrite negb_false_iff in H8.
  eapply Mem.load_storebytes_other. eauto.
  rewrite H6. rewrite nat_of_Z_eq by auto. 
  eapply pdisjoint_sound. eauto. 
  unfold aaddressing. apply match_aptr_of_aval. eapply eval_static_addressing_sound; eauto. 
  erewrite <- regs_valnums_sound by eauto. eauto with va.
  unfold aaddr. apply match_aptr_of_aval. rewrite <- H0. apply H4. 
Qed.

Lemma load_memcpy:
  forall m b1 ofs1 sz bytes b2 ofs2 m' chunk i v,
  Mem.loadbytes m b1 ofs1 sz = Some bytes ->
  Mem.storebytes m b2 ofs2 bytes = Some m' ->
  Mem.load chunk m b1 i = Some v ->
  ofs1 <= i -> i + size_chunk chunk <= ofs1 + sz ->
  (align_chunk chunk | ofs2 - ofs1) ->
  Mem.load chunk m' b2 (i + (ofs2 - ofs1)) = Some v.
Proof.
  intros. 
  generalize (size_chunk_pos chunk); intros SPOS.
  set (n1 := i - ofs1).
  set (n2 := size_chunk chunk).
  set (n3 := sz - (n1 + n2)).
  replace sz with (n1 + (n2 + n3)) in H by (unfold n3, n2, n1; omega).
  exploit Mem.loadbytes_split; eauto. 
  unfold n1; omega. 
  unfold n3, n2, n1; omega.
  intros (bytes1 & bytes23 & LB1 & LB23 & EQ).
  clear H.
  exploit Mem.loadbytes_split; eauto.
  unfold n2; omega.
  unfold n3, n2, n1; omega.
  intros (bytes2 & bytes3 & LB2 & LB3 & EQ').
  subst bytes23; subst bytes. 
  exploit Mem.load_loadbytes; eauto. intros (bytes2' & A & B).
  assert (bytes2' = bytes2).
  { replace (ofs1 + n1) with i in LB2 by (unfold n1; omega). unfold n2 in LB2. congruence.  }
  subst bytes2'.
  exploit Mem.storebytes_split; eauto. intros (m1 & SB1 & SB23).
  clear H0.
  exploit Mem.storebytes_split; eauto. intros (m2 & SB2 & SB3).
  clear SB23.
  assert (L1: Z.of_nat (length bytes1) = n1).
  { erewrite Mem.loadbytes_length by eauto. apply nat_of_Z_eq. unfold n1; omega. }
  assert (L2: Z.of_nat (length bytes2) = n2).
  { erewrite Mem.loadbytes_length by eauto. apply nat_of_Z_eq. unfold n2; omega. }
  rewrite L1 in *. rewrite L2 in *. 
  assert (LB': Mem.loadbytes m2 b2 (ofs2 + n1) n2 = Some bytes2).
  { rewrite <- L2. eapply Mem.loadbytes_storebytes_same; eauto. }
  assert (LB'': Mem.loadbytes m' b2 (ofs2 + n1) n2 = Some bytes2).
  { rewrite <- LB'. eapply Mem.loadbytes_storebytes_other; eauto. 
    unfold n2; omega. 
    right; left; omega. }
  exploit Mem.load_valid_access; eauto. intros [P Q]. 
  rewrite B. apply Mem.loadbytes_load.
  replace (i + (ofs2 - ofs1)) with (ofs2 + n1) by (unfold n1; omega). 
  exact LB''. 
  apply Z.divide_add_r; auto.
Qed.

Lemma shift_memcpy_eq_wf:
  forall src sz delta e e' next,
  shift_memcpy_eq src sz delta e = Some e' ->
  wf_equation next e ->
  wf_equation next e'.
Proof with (try discriminate).
  unfold shift_memcpy_eq; intros.
  destruct e. destruct r... destruct a... 
  destruct (zle src (Int.unsigned i) &&
        zle (Int.unsigned i + size_chunk m) (src + sz) &&
        zeq (delta mod align_chunk m) 0 && zle 0 (Int.unsigned i + delta) &&
        zle (Int.unsigned i + delta) Int.max_unsigned)...
  inv H. destruct H0. split. auto. red; simpl; tauto.
Qed.

Lemma shift_memcpy_eq_holds:
  forall src dst sz e e' m sp bytes m' valu ge,
  shift_memcpy_eq src sz (dst - src) e = Some e' ->
  Mem.loadbytes m sp src sz = Some bytes ->
  Mem.storebytes m sp dst bytes = Some m' ->
  equation_holds valu ge (Vptr sp Int.zero) m e ->
  equation_holds valu ge (Vptr sp Int.zero) m' e'.
Proof with (try discriminate).
  intros. set (delta := dst - src) in *. unfold shift_memcpy_eq in H.
  destruct e as [l strict rhs] eqn:E. 
  destruct rhs as [op vl | chunk addr vl]...
  destruct addr...
  set (i1 := Int.unsigned i) in *. set (j := i1 + delta) in *.
  destruct (zle src i1)...
  destruct (zle (i1 + size_chunk chunk) (src + sz))...
  destruct (zeq (delta mod align_chunk chunk) 0)...
  destruct (zle 0 j)...
  destruct (zle j Int.max_unsigned)...
  simpl in H; inv H.
  assert (LD: forall v,
    Mem.loadv chunk m (Vptr sp i) = Some v ->
    Mem.loadv chunk m' (Vptr sp (Int.repr j)) = Some v).
  {
    simpl; intros. rewrite Int.unsigned_repr by omega. 
    unfold j, delta. eapply load_memcpy; eauto. 
    apply Zmod_divide; auto. generalize (align_chunk_pos chunk); omega.
  }
  inv H2.
+ inv H3. destruct vl... simpl in H6. rewrite Int.add_zero_l in H6. inv H6.
  apply eq_holds_strict. econstructor. simpl. rewrite Int.add_zero_l. eauto. 
  apply LD; auto.
+ inv H4. destruct vl... simpl in H7. rewrite Int.add_zero_l in H7. inv H7.
  apply eq_holds_lessdef with v; auto. 
  econstructor. simpl. rewrite Int.add_zero_l. eauto. apply LD; auto.
Qed.

Lemma add_memcpy_eqs_charact:
  forall e' src sz delta eqs2 eqs1,
  In e' (add_memcpy_eqs src sz delta eqs1 eqs2) ->
  In e' eqs2 \/ exists e, In e eqs1 /\ shift_memcpy_eq src sz delta e = Some e'.
Proof.
  induction eqs1; simpl; intros.
- auto.
- destruct (shift_memcpy_eq src sz delta a) as [e''|] eqn:SHIFT.
  + destruct H. subst e''. right; exists a; auto. 
    destruct IHeqs1 as [A | [e [A B]]]; auto. right; exists e; auto.
  + destruct IHeqs1 as [A | [e [A B]]]; auto. right; exists e; auto.
Qed.

Lemma add_memcpy_holds:
  forall m bsrc osrc sz bytes bdst odst m' valu ge sp rs n1 n2 bc approx ae am rsrc rdst,
  Mem.loadbytes m bsrc (Int.unsigned osrc) sz = Some bytes ->
  Mem.storebytes m bdst (Int.unsigned odst) bytes = Some m' ->
  numbering_holds valu ge (Vptr sp Int.zero) rs m n1 ->
  numbering_holds valu ge (Vptr sp Int.zero) rs m' n2 ->
  genv_match bc ge ->
  bc sp = BCstack ->
  ematch bc rs ae ->
  approx = VA.State ae am ->
  rs#rsrc = Vptr bsrc osrc ->
  rs#rdst = Vptr bdst odst ->
  Ple (num_next n1) (num_next n2) ->
  numbering_holds valu ge (Vptr sp Int.zero) rs m' (add_memcpy approx n1 n2 rsrc rdst sz).
Proof.
  intros. unfold add_memcpy.
  destruct (aaddr approx rsrc) eqn:ASRC; auto.
  destruct (aaddr approx rdst) eqn:ADST; auto.
  assert (A: forall r b o i,
          rs#r = Vptr b o -> aaddr approx r = Stk i -> b = sp /\ i = o).
  {
    intros until i. unfold aaddr; subst approx. intros. 
    specialize (H5 r). rewrite H6 in H5. rewrite match_aptr_of_aval in H5. 
    rewrite H10 in H5. inv H5. split; auto. eapply bc_stack; eauto. 
  }
  exploit (A rsrc); eauto. intros [P Q].
  exploit (A rdst); eauto. intros [U V].
  subst bsrc ofs bdst ofs0. 
  constructor; simpl; intros; eauto with cse.
- constructor; simpl; eauto with cse. 
  intros. exploit add_memcpy_eqs_charact; eauto. intros [X | (e0 & X & Y)].
  eauto with cse.
  apply wf_equation_incr with (num_next n1); auto. 
  eapply shift_memcpy_eq_wf; eauto with cse. 
- exploit add_memcpy_eqs_charact; eauto. intros [X | (e0 & X & Y)].
  eauto with cse.
  eapply shift_memcpy_eq_holds; eauto with cse.
Qed.

(** Correctness of operator reduction *)

Section REDUCE.

Variable A: Type.
Variable f: (valnum -> option rhs) -> A -> list valnum -> option (A * list valnum).
Variable V: Type.
Variable ge: genv.
Variable sp: val.
Variable rs: regset.
Variable m: mem.
Variable sem: A -> list val -> option V.
Hypothesis f_sound:
  forall eqs valu op args op' args',
  (forall v rhs, eqs v = Some rhs -> rhs_eval_to valu ge sp m rhs (valu v)) ->
  f eqs op args = Some(op', args') ->
  sem op' (map valu args') = sem op (map valu args).
Variable n: numbering.
Variable valu: valnum -> val.
Hypothesis n_holds: numbering_holds valu ge sp rs m n.

Lemma reduce_rec_sound:
  forall niter op args op' rl' res,
  reduce_rec A f n niter op args = Some(op', rl') ->
  sem op (map valu args) = Some res ->
  sem op' (rs##rl') = Some res.
Proof.
  induction niter; simpl; intros.
  discriminate.
  destruct (f (fun v : valnum => find_valnum_num v (num_eqs n)) op args)
           as [[op1 args1] | ] eqn:?.
  assert (sem op1 (map valu args1) = Some res).
    rewrite <- H0. eapply f_sound; eauto.
    simpl; intros.
    exploit num_holds_eq; eauto. 
    eapply find_valnum_num_charact; eauto with cse.
    intros EH; inv EH; auto.
  destruct (reduce_rec A f n niter op1 args1) as [[op2 rl2] | ] eqn:?.
  inv H. eapply IHniter; eauto.
  destruct (regs_valnums n args1) as [rl|] eqn:?.
  inv H. erewrite regs_valnums_sound; eauto.
  discriminate.
  discriminate.
Qed.

Lemma reduce_sound:
  forall op rl vl op' rl' res,
  reduce A f n op rl vl = (op', rl') ->
  map valu vl = rs##rl ->
  sem op rs##rl = Some res ->
  sem op' rs##rl' = Some res.
Proof.
  unfold reduce; intros. 
  destruct (reduce_rec A f n 4%nat op vl) as [[op1 rl1] | ] eqn:?; inv H.
  eapply reduce_rec_sound; eauto. congruence.
  auto.
Qed.

End REDUCE.

(** The numberings associated to each instruction by the static analysis
  are inductively satisfiable, in the following sense: the numbering
  at the function entry point is satisfiable, and for any RTL execution 
  from [pc] to [pc'], satisfiability at [pc] implies 
  satisfiability at [pc']. *)

Theorem analysis_correct_1:
  forall ge sp rs m f vapprox approx pc pc' i,
  analyze f vapprox = Some approx ->
  f.(fn_code)!pc = Some i -> In pc' (successors_instr i) ->
  (exists valu, numbering_holds valu ge sp rs m (transfer f vapprox pc approx!!pc)) ->
  (exists valu, numbering_holds valu ge sp rs m approx!!pc').
Proof.
  intros.
  assert (Numbering.ge approx!!pc' (transfer f vapprox pc approx!!pc)).
    eapply Solver.fixpoint_solution; eauto.
  destruct H2 as [valu NH]. exists valu; apply H3. auto.
Qed.

Theorem analysis_correct_entry:
  forall ge sp rs m f vapprox approx,
  analyze f vapprox = Some approx ->
  exists valu, numbering_holds valu ge sp rs m approx!!(f.(fn_entrypoint)).
Proof.
  intros. 
  replace (approx!!(f.(fn_entrypoint))) with Solver.L.top.
  exists (fun v => Vundef). apply empty_numbering_holds.
  symmetry. eapply Solver.fixpoint_entry; eauto.
Qed.

(** * Semantic preservation *)

Section PRESERVATION.

Variable prog: program.
Variable tprog : program.
Hypothesis TRANSF: transf_program prog = OK tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Let rm := romem_for_program prog.

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof (Genv.find_symbol_transf_partial (transf_fundef rm) prog TRANSF).

Lemma varinfo_preserved:
  forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof (Genv.find_var_info_transf_partial (transf_fundef rm) prog TRANSF).

Lemma functions_translated:
  forall (v: val) (f: RTL.fundef),
  Genv.find_funct ge v = Some f ->
  exists tf, Genv.find_funct tge v = Some tf /\ transf_fundef rm f = OK tf.
Proof (Genv.find_funct_transf_partial (transf_fundef rm) prog TRANSF).

Lemma funct_ptr_translated:
  forall (b: block) (f: RTL.fundef),
  Genv.find_funct_ptr ge b = Some f ->
  exists tf, Genv.find_funct_ptr tge b = Some tf /\ transf_fundef rm f = OK tf.
Proof (Genv.find_funct_ptr_transf_partial (transf_fundef rm) prog TRANSF).

Lemma sig_preserved:
  forall f tf, transf_fundef rm f = OK tf -> funsig tf = funsig f.
Proof.
  unfold transf_fundef; intros. destruct f; monadInv H; auto.
  unfold transf_function in EQ.
  destruct (analyze f (vanalyze rm f)); try discriminate. inv EQ; auto. 
Qed.

Definition transf_function' (f: function) (approxs: PMap.t numbering) : function :=
  mkfunction
    f.(fn_sig)
    f.(fn_params)
    f.(fn_stacksize)
    (transf_code approxs f.(fn_code))
    f.(fn_entrypoint).

Definition regs_lessdef (rs1 rs2: regset) : Prop :=
  forall r, Val.lessdef (rs1#r) (rs2#r).

Lemma regs_lessdef_regs:
  forall rs1 rs2, regs_lessdef rs1 rs2 ->
  forall rl, Val.lessdef_list rs1##rl rs2##rl.
Proof.
  induction rl; constructor; auto.
Qed.

Lemma set_reg_lessdef:
  forall r v1 v2 rs1 rs2,
  Val.lessdef v1 v2 -> regs_lessdef rs1 rs2 -> regs_lessdef (rs1#r <- v1) (rs2#r <- v2).
Proof.
  intros; red; intros. repeat rewrite Regmap.gsspec. 
  destruct (peq r0 r); auto.
Qed.

Lemma init_regs_lessdef:
  forall rl vl1 vl2,
  Val.lessdef_list vl1 vl2 ->
  regs_lessdef (init_regs vl1 rl) (init_regs vl2 rl).
Proof.
  induction rl; simpl; intros.
  red; intros. rewrite Regmap.gi. auto.
  inv H. red; intros. rewrite Regmap.gi. auto.
  apply set_reg_lessdef; auto.
Qed.

Lemma find_function_translated:
  forall ros rs fd rs',
  find_function ge ros rs = Some fd ->
  regs_lessdef rs rs' ->
  exists tfd, find_function tge ros rs' = Some tfd /\ transf_fundef rm fd = OK tfd.
Proof.
  unfold find_function; intros; destruct ros.
- specialize (H0 r). inv H0.
  apply functions_translated; auto.
  rewrite <- H2 in H; discriminate.
- rewrite symbols_preserved. destruct (Genv.find_symbol ge i).
  apply funct_ptr_translated; auto.
  discriminate.
Qed.

(** The proof of semantic preservation is a simulation argument using
  diagrams of the following form:
<<
           st1 --------------- st2
            |                   |
           t|                   |t
            |                   |
            v                   v
           st1'--------------- st2'
>>
  Left: RTL execution in the original program.  Right: RTL execution in
  the optimized program.  Precondition (top) and postcondition (bottom):
  agreement between the states, including the fact that
  the numbering at [pc] (returned by the static analysis) is satisfiable.
*)

Inductive match_stackframes: list stackframe -> list stackframe -> Prop :=
  | match_stackframes_nil:
      match_stackframes nil nil
  | match_stackframes_cons:
      forall res sp pc rs f approx s rs' s'
           (ANALYZE: analyze f (vanalyze rm f) = Some approx)
           (SAT: forall v m, exists valu, numbering_holds valu ge sp (rs#res <- v) m approx!!pc)
           (RLD: regs_lessdef rs rs')
           (STACKS: match_stackframes s s'),
    match_stackframes
      (Stackframe res f sp pc rs :: s)
      (Stackframe res (transf_function' f approx) sp pc rs' :: s').

Inductive match_states: state -> state -> Prop :=
  | match_states_intro:
      forall s sp pc rs m s' rs' m' f approx
             (ANALYZE: analyze f (vanalyze rm f) = Some approx)
             (SAT: exists valu, numbering_holds valu ge sp rs m approx!!pc)
             (RLD: regs_lessdef rs rs')
             (MEXT: Mem.extends m m')
             (STACKS: match_stackframes s s'),
      match_states (State s f sp pc rs m)
                   (State s' (transf_function' f approx) sp pc rs' m')
  | match_states_call:
      forall s f tf args m s' args' m',
      match_stackframes s s' ->
      transf_fundef rm f = OK tf ->
      Val.lessdef_list args args' ->
      Mem.extends m m' ->
      match_states (Callstate s f args m)
                   (Callstate s' tf args' m')
  | match_states_return:
      forall s s' v v' m m',
      match_stackframes s s' ->
      Val.lessdef v v' ->
      Mem.extends m m' ->
      match_states (Returnstate s v m)
                   (Returnstate s' v' m').

Ltac TransfInstr :=
  match goal with
  | H1: (PTree.get ?pc ?c = Some ?instr), f: function, approx: PMap.t numbering |- _ =>
      cut ((transf_function' f approx).(fn_code)!pc = Some(transf_instr approx!!pc instr));
      [ simpl transf_instr
      | unfold transf_function', transf_code; simpl; rewrite PTree.gmap; 
        unfold option_map; rewrite H1; reflexivity ]
  end.

(** The proof of simulation is a case analysis over the transition
  in the source code. *)

Lemma transf_step_correct:
  forall s1 t s2, step ge s1 t s2 ->
  forall s1' (MS: match_states s1 s1') (SOUND: sound_state prog s1),
  exists s2', step tge s1' t s2' /\ match_states s2 s2'.
Proof.
  induction 1; intros; inv MS; try (TransfInstr; intro C).

  (* Inop *)
- econstructor; split.
  eapply exec_Inop; eauto.
  econstructor; eauto. 
  eapply analysis_correct_1; eauto. simpl; auto. 
  unfold transfer; rewrite H; auto.

  (* Iop *)
- destruct (is_trivial_op op) eqn:TRIV.
+ (* unchanged *)
  exploit eval_operation_lessdef. eapply regs_lessdef_regs; eauto. eauto. eauto.
  intros [v' [A B]].
  econstructor; split.
  eapply exec_Iop with (v := v'); eauto.
  rewrite <- A. apply eval_operation_preserved. exact symbols_preserved.
  econstructor; eauto. 
  eapply analysis_correct_1; eauto. simpl; auto.
  unfold transfer; rewrite H. 
  destruct SAT as [valu NH]. eapply add_op_holds; eauto.
  apply set_reg_lessdef; auto.
+ (* possibly optimized *)
  destruct (valnum_regs approx!!pc args) as [n1 vl] eqn:?.
  destruct SAT as [valu1 NH1].
  exploit valnum_regs_holds; eauto. intros (valu2 & NH2 & EQ & AG & P & Q).
  destruct (find_rhs n1 (Op op vl)) as [r|] eqn:?.
* (* replaced by move *)
  exploit find_rhs_sound; eauto. intros (v' & EV & LD). 
  assert (v' = v) by (inv EV; congruence). subst v'.
  econstructor; split.
  eapply exec_Iop; eauto. simpl; eauto.
  econstructor; eauto. 
  eapply analysis_correct_1; eauto. simpl; auto.
  unfold transfer; rewrite H. 
  eapply add_op_holds; eauto. 
  apply set_reg_lessdef; auto.
  eapply Val.lessdef_trans; eauto.
* (* possibly simplified *)
  destruct (reduce operation combine_op n1 op args vl) as [op' args'] eqn:?.
  assert (RES: eval_operation ge sp op' rs##args' m = Some v).
    eapply reduce_sound with (sem := fun op vl => eval_operation ge sp op vl m); eauto. 
    intros; eapply combine_op_sound; eauto.
  exploit eval_operation_lessdef. eapply regs_lessdef_regs; eauto. eauto. eauto.
  intros [v' [A B]].
  econstructor; split.
  eapply exec_Iop with (v := v'); eauto.   
  rewrite <- A. apply eval_operation_preserved. exact symbols_preserved.
  econstructor; eauto.
  eapply analysis_correct_1; eauto. simpl; auto.
  unfold transfer; rewrite H. 
  eapply add_op_holds; eauto. 
  apply set_reg_lessdef; auto. 

- (* Iload *)
  destruct (valnum_regs approx!!pc args) as [n1 vl] eqn:?.
  destruct SAT as [valu1 NH1].
  exploit valnum_regs_holds; eauto. intros (valu2 & NH2 & EQ & AG & P & Q).
  destruct (find_rhs n1 (Load chunk addr vl)) as [r|] eqn:?.
+ (* replaced by move *)
  exploit find_rhs_sound; eauto. intros (v' & EV & LD). 
  assert (v' = v) by (inv EV; congruence). subst v'.
  econstructor; split.
  eapply exec_Iop; eauto. simpl; eauto.
  econstructor; eauto. 
  eapply analysis_correct_1; eauto. simpl; auto.
  unfold transfer; rewrite H. 
  eapply add_load_holds; eauto. 
  apply set_reg_lessdef; auto. eapply Val.lessdef_trans; eauto.
+ (* load is preserved, but addressing is possibly simplified *)
  destruct (reduce addressing combine_addr n1 addr args vl) as [addr' args'] eqn:?.
  assert (ADDR: eval_addressing ge sp addr' rs##args' = Some a).
  { eapply reduce_sound with (sem := fun addr vl => eval_addressing ge sp addr vl); eauto. 
    intros; eapply combine_addr_sound; eauto. }
  exploit eval_addressing_lessdef. apply regs_lessdef_regs; eauto. eexact ADDR.
  intros [a' [A B]].
  assert (ADDR': eval_addressing tge sp addr' rs'##args' = Some a').
  { rewrite <- A. apply eval_addressing_preserved. exact symbols_preserved. }
  exploit Mem.loadv_extends; eauto. 
  intros [v' [X Y]].
  econstructor; split.
  eapply exec_Iload; eauto.
  econstructor; eauto.
  eapply analysis_correct_1; eauto. simpl; auto. 
  unfold transfer; rewrite H. 
  eapply add_load_holds; eauto.
  apply set_reg_lessdef; auto.

- (* Istore *)
  destruct (valnum_regs approx!!pc args) as [n1 vl] eqn:?.
  destruct SAT as [valu1 NH1].
  exploit valnum_regs_holds; eauto. intros (valu2 & NH2 & EQ & AG & P & Q).
  destruct (reduce addressing combine_addr n1 addr args vl) as [addr' args'] eqn:?.
  assert (ADDR: eval_addressing ge sp addr' rs##args' = Some a).
  { eapply reduce_sound with (sem := fun addr vl => eval_addressing ge sp addr vl); eauto. 
    intros; eapply combine_addr_sound; eauto. }
  exploit eval_addressing_lessdef. apply regs_lessdef_regs; eauto. eexact ADDR.
  intros [a' [A B]].
  assert (ADDR': eval_addressing tge sp addr' rs'##args' = Some a').
  { rewrite <- A. apply eval_addressing_preserved. exact symbols_preserved. }
  exploit Mem.storev_extends; eauto. intros [m'' [X Y]].
  econstructor; split.
  eapply exec_Istore; eauto.
  econstructor; eauto.
  eapply analysis_correct_1; eauto. simpl; auto. 
  unfold transfer; rewrite H.
  inv SOUND.
  eapply add_store_result_hold; eauto. 
  eapply kill_loads_after_store_holds; eauto.

- (* Icall *)
  exploit find_function_translated; eauto. intros [tf [FIND' TRANSF']]. 
  econstructor; split.
  eapply exec_Icall; eauto.
  apply sig_preserved; auto.
  econstructor; eauto. 
  econstructor; eauto. 
  intros. eapply analysis_correct_1; eauto. simpl; auto. 
  unfold transfer; rewrite H. 
  exists (fun _ => Vundef); apply empty_numbering_holds.
  apply regs_lessdef_regs; auto.

- (* Itailcall *)
  exploit find_function_translated; eauto. intros [tf [FIND' TRANSF']]. 
  exploit Mem.free_parallel_extends; eauto. intros [m'' [A B]].
  econstructor; split.
  eapply exec_Itailcall; eauto.
  apply sig_preserved; auto.
  econstructor; eauto. 
  apply regs_lessdef_regs; auto.

- (* Ibuiltin *)
  exploit external_call_mem_extends; eauto.
  instantiate (1 := rs'##args). apply regs_lessdef_regs; auto.
  intros (v' & m1' & P & Q & R & S).
  econstructor; split.
  eapply exec_Ibuiltin; eauto. 
  eapply external_call_symbols_preserved; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  econstructor; eauto.
  eapply analysis_correct_1; eauto. simpl; auto.
* unfold transfer; rewrite H.
  destruct SAT as [valu NH].
  assert (CASE1: exists valu, numbering_holds valu ge sp (rs#res <- v) m' empty_numbering).
  { exists valu; apply empty_numbering_holds. }
  assert (CASE2: m' = m -> exists valu, numbering_holds valu ge sp (rs#res <- v) m' (set_unknown approx#pc res)).
  { intros. rewrite H1. exists valu. apply set_unknown_holds; auto. }
  assert (CASE3: exists valu, numbering_holds valu ge sp (rs#res <- v) m'
                         (set_unknown (kill_all_loads approx#pc) res)).
  { exists valu. apply set_unknown_holds. eapply kill_all_loads_hold; eauto. }
  destruct ef.
  + apply CASE1.
  + apply CASE3. 
  + apply CASE2; inv H0; auto.
  + apply CASE3.
  + apply CASE2; inv H0; auto. 
  + apply CASE3; auto.
  + apply CASE1.
  + apply CASE1.
  + destruct args as [ | rdst args]; auto.
    destruct args as [ | rsrc args]; auto. 
    destruct args; auto.
    simpl in H0. inv H0. 
    exists valu. 
    apply set_unknown_holds. 
    inv SOUND. eapply add_memcpy_holds; eauto. 
    eapply kill_loads_after_storebytes_holds; eauto. 
    eapply Mem.loadbytes_length; eauto. 
    simpl. apply Ple_refl. 
  + apply CASE2; inv H0; auto.
  + apply CASE2; inv H0; auto.
  + apply CASE1.
* apply set_reg_lessdef; auto.

- (* Icond *)
  destruct (valnum_regs approx!!pc args) as [n1 vl] eqn:?.
  elim SAT; intros valu1 NH1.
  exploit valnum_regs_holds; eauto. intros (valu2 & NH2 & EQ & AG & P & Q).
  destruct (reduce condition combine_cond n1 cond args vl) as [cond' args'] eqn:?.
  assert (RES: eval_condition cond' rs##args' m = Some b).
  { eapply reduce_sound with (sem := fun cond vl => eval_condition cond vl m); eauto. 
    intros; eapply combine_cond_sound; eauto. }
  econstructor; split.
  eapply exec_Icond; eauto. 
  eapply eval_condition_lessdef; eauto. apply regs_lessdef_regs; auto.
  econstructor; eauto.
  destruct b; eapply analysis_correct_1; eauto; simpl; auto;
  unfold transfer; rewrite H; auto.

- (* Ijumptable *)
  generalize (RLD arg); rewrite H0; intro LD; inv LD.
  econstructor; split.
  eapply exec_Ijumptable; eauto. 
  econstructor; eauto.
  eapply analysis_correct_1; eauto. simpl. eapply list_nth_z_in; eauto.
  unfold transfer; rewrite H; auto.

- (* Ireturn *)
  exploit Mem.free_parallel_extends; eauto. intros [m'' [A B]].
  econstructor; split.
  eapply exec_Ireturn; eauto.
  econstructor; eauto.
  destruct or; simpl; auto. 

- (* internal function *)
  monadInv H6. unfold transf_function in EQ. 
  destruct (analyze f (vanalyze rm f)) as [approx|] eqn:?; inv EQ. 
  exploit Mem.alloc_extends; eauto. apply Zle_refl. apply Zle_refl. 
  intros (m'' & A & B).
  econstructor; split.
  eapply exec_function_internal; simpl; eauto. 
  simpl. econstructor; eauto.
  eapply analysis_correct_entry; eauto.
  apply init_regs_lessdef; auto.

- (* external function *)
  monadInv H6. 
  exploit external_call_mem_extends; eauto.
  intros (v' & m1' & P & Q & R & S).
  econstructor; split.
  eapply exec_function_external; eauto.
  eapply external_call_symbols_preserved; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  econstructor; eauto.

- (* return *)
  inv H2.
  econstructor; split.
  eapply exec_return; eauto.
  econstructor; eauto.
  apply set_reg_lessdef; auto.
Qed.

Lemma transf_initial_states:
  forall st1, initial_state prog st1 ->
  exists st2, initial_state tprog st2 /\ match_states st1 st2.
Proof.
  intros. inversion H. 
  exploit funct_ptr_translated; eauto. intros [tf [A B]].
  exists (Callstate nil tf nil m0); split.
  econstructor; eauto.
  eapply Genv.init_mem_transf_partial; eauto.
  replace (prog_main tprog) with (prog_main prog).
  rewrite symbols_preserved. eauto.
  symmetry. eapply transform_partial_program_main; eauto.
  rewrite <- H3. apply sig_preserved; auto.
  constructor. constructor. auto. auto. apply Mem.extends_refl.
Qed.

Lemma transf_final_states:
  forall st1 st2 r, 
  match_states st1 st2 -> final_state st1 r -> final_state st2 r.
Proof.
  intros. inv H0. inv H. inv H5. inv H3. constructor. 
Qed.

Theorem transf_program_correct:
  forward_simulation (RTL.semantics prog) (RTL.semantics tprog).
Proof.
  eapply forward_simulation_step with
    (match_states := fun s1 s2 => sound_state prog s1 /\ match_states s1 s2).
- eexact symbols_preserved.
- intros. exploit transf_initial_states; eauto. intros [s2 [A B]]. 
  exists s2. split. auto. split. apply sound_initial; auto. auto.
- intros. destruct H. eapply transf_final_states; eauto.
- intros. destruct H0. exploit transf_step_correct; eauto. 
  intros [s2' [A B]]. exists s2'; split. auto. split. eapply sound_step; eauto. auto.
Qed.

End PRESERVATION.