1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Common subexpression elimination over RTL. This optimization
proceeds by value numbering over extended basic blocks. *)
Require Import Coqlib.
Require Import Maps.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import RTLtyping.
Require Import Kildall.
Require Import CombineOp.
(** * Value numbering *)
(** The idea behind value numbering algorithms is to associate
abstract identifiers (``value numbers'') to the contents of registers
at various program points, and record equations between these
identifiers. For instance, consider the instruction
[r1 = add(r2, r3)] and assume that [r2] and [r3] are mapped
to abstract identifiers [x] and [y] respectively at the program
point just before this instruction. At the program point just after,
we can add the equation [z = add(x, y)] and associate [r1] with [z],
where [z] is a fresh abstract identifier. However, if we already
knew an equation [u = add(x, y)], we can preferably add no equation
and just associate [r1] with [u]. If there exists a register [r4]
mapped with [u] at this point, we can then replace the instruction
[r1 = add(r2, r3)] by a move instruction [r1 = r4], therefore eliminating
a common subexpression and reusing the result of an earlier addition.
Abstract identifiers / value numbers are represented by positive integers.
Equations are of the form [valnum = rhs], where the right-hand sides
[rhs] are either arithmetic operations or memory loads. *)
(*
Definition valnum := positive.
Inductive rhs : Type :=
| Op: operation -> list valnum -> rhs
| Load: memory_chunk -> addressing -> list valnum -> rhs.
*)
Definition eq_valnum: forall (x y: valnum), {x=y}+{x<>y} := peq.
Definition eq_list_valnum (x y: list valnum) : {x=y}+{x<>y}.
Proof. decide equality. apply eq_valnum. Defined.
Definition eq_rhs (x y: rhs) : {x=y}+{x<>y}.
Proof.
generalize Int.eq_dec; intro.
generalize Float.eq_dec; intro.
generalize eq_operation; intro.
generalize eq_addressing; intro.
assert (forall (x y: memory_chunk), {x=y}+{x<>y}). decide equality.
generalize eq_valnum; intro.
generalize eq_list_valnum; intro.
decide equality.
Defined.
(** A value numbering is a collection of equations between value numbers
plus a partial map from registers to value numbers. Additionally,
we maintain the next unused value number, so as to easily generate
fresh value numbers. *)
Record numbering : Type := mknumbering {
num_next: valnum; (**r first unused value number *)
num_eqs: list (valnum * rhs); (**r valid equations *)
num_reg: PTree.t valnum; (**r mapping register to valnum *)
num_val: PMap.t (list reg) (**r reverse mapping valnum to regs containing it *)
}.
Definition empty_numbering :=
mknumbering 1%positive nil (PTree.empty valnum) (PMap.init nil).
(** [valnum_reg n r] returns the value number for the contents of
register [r]. If none exists, a fresh value number is returned
and associated with register [r]. The possibly updated numbering
is also returned. [valnum_regs] is similar, but for a list of
registers. *)
Definition valnum_reg (n: numbering) (r: reg) : numbering * valnum :=
match PTree.get r n.(num_reg) with
| Some v => (n, v)
| None =>
let v := n.(num_next) in
(mknumbering (Psucc v)
n.(num_eqs)
(PTree.set r v n.(num_reg))
(PMap.set v (r :: nil) n.(num_val)),
v)
end.
Fixpoint valnum_regs (n: numbering) (rl: list reg)
{struct rl} : numbering * list valnum :=
match rl with
| nil =>
(n, nil)
| r1 :: rs =>
let (n1, v1) := valnum_reg n r1 in
let (ns, vs) := valnum_regs n1 rs in
(ns, v1 :: vs)
end.
(** [find_valnum_rhs rhs eqs] searches the list of equations [eqs]
for an equation of the form [vn = rhs] for some value number [vn].
If found, [Some vn] is returned, otherwise [None] is returned. *)
Fixpoint find_valnum_rhs (r: rhs) (eqs: list (valnum * rhs))
{struct eqs} : option valnum :=
match eqs with
| nil => None
| (v, r') :: eqs1 =>
if eq_rhs r r' then Some v else find_valnum_rhs r eqs1
end.
(** [find_valnum_num vn eqs] searches the list of equations [eqs]
for an equation of the form [vn = rhs] for some equation [rhs].
If found, [Some rhs] is returned, otherwise [None] is returned. *)
Fixpoint find_valnum_num (v: valnum) (eqs: list (valnum * rhs))
{struct eqs} : option rhs :=
match eqs with
| nil => None
| (v', r') :: eqs1 =>
if peq v v' then Some r' else find_valnum_num v eqs1
end.
(** Update the [num_val] mapping prior to a redefinition of register [r]. *)
Definition forget_reg (n: numbering) (rd: reg) : PMap.t (list reg) :=
match PTree.get rd n.(num_reg) with
| None => n.(num_val)
| Some v => PMap.set v (List.remove peq rd (PMap.get v n.(num_val))) n.(num_val)
end.
Definition update_reg (n: numbering) (rd: reg) (vn: valnum) : PMap.t (list reg) :=
let nv := forget_reg n rd in PMap.set vn (rd :: PMap.get vn nv) nv.
(** [add_rhs n rd rhs] updates the value numbering [n] to reflect
the computation of the operation or load represented by [rhs]
and the storing of the result in register [rd]. If an equation
[vn = rhs] is known, register [rd] is set to [vn]. Otherwise,
a fresh value number [vn] is generated and associated with [rd],
and the equation [vn = rhs] is added. *)
Definition add_rhs (n: numbering) (rd: reg) (rh: rhs) : numbering :=
match find_valnum_rhs rh n.(num_eqs) with
| Some vres =>
mknumbering n.(num_next) n.(num_eqs)
(PTree.set rd vres n.(num_reg))
(update_reg n rd vres)
| None =>
mknumbering (Psucc n.(num_next))
((n.(num_next), rh) :: n.(num_eqs))
(PTree.set rd n.(num_next) n.(num_reg))
(update_reg n rd n.(num_next))
end.
(** [add_op n rd op rs] specializes [add_rhs] for the case of an
arithmetic operation. The right-hand side corresponding to [op]
and the value numbers for the argument registers [rs] is built
and added to [n] as described in [add_rhs].
If [op] is a move instruction, we simply assign the value number of
the source register to the destination register, since we know that
the source and destination registers have exactly the same value.
This enables more common subexpressions to be recognized. For instance:
<<
z = add(x, y); u = x; v = add(u, y);
>>
Since [u] and [x] have the same value number, the second [add]
is recognized as computing the same result as the first [add],
and therefore [u] and [z] have the same value number. *)
Definition add_op (n: numbering) (rd: reg) (op: operation) (rs: list reg) :=
match is_move_operation op rs with
| Some r =>
let (n1, v) := valnum_reg n r in
mknumbering n1.(num_next) n1.(num_eqs)
(PTree.set rd v n1.(num_reg)) (update_reg n1 rd v)
| None =>
let (n1, vs) := valnum_regs n rs in
add_rhs n1 rd (Op op vs)
end.
(** [add_load n rd chunk addr rs] specializes [add_rhs] for the case of a
memory load. The right-hand side corresponding to [chunk], [addr]
and the value numbers for the argument registers [rs] is built
and added to [n] as described in [add_rhs]. *)
Definition add_load (n: numbering) (rd: reg)
(chunk: memory_chunk) (addr: addressing)
(rs: list reg) :=
let (n1, vs) := valnum_regs n rs in
add_rhs n1 rd (Load chunk addr vs).
(** [add_unknown n rd] returns a numbering where [rd] is mapped to a
fresh value number, and no equations are added. This is useful
to model instructions with unpredictable results such as [Ibuiltin]. *)
Definition add_unknown (n: numbering) (rd: reg) :=
mknumbering (Psucc n.(num_next))
n.(num_eqs)
(PTree.set rd n.(num_next) n.(num_reg))
(forget_reg n rd).
(** [kill_equations pred n] remove all equations satisfying predicate [pred]. *)
Fixpoint kill_eqs (pred: rhs -> bool) (eqs: list (valnum * rhs)) : list (valnum * rhs) :=
match eqs with
| nil => nil
| eq :: rem => if pred (snd eq) then kill_eqs pred rem else eq :: kill_eqs pred rem
end.
Definition kill_equations (pred: rhs -> bool) (n: numbering) : numbering :=
mknumbering n.(num_next)
(kill_eqs pred n.(num_eqs))
n.(num_reg) n.(num_val).
(** [kill_loads n] removes all equations involving memory loads,
as well as those involving memory-dependent operators.
It is used to reflect the effect of a builtin operation, which can
change memory in unpredictable ways and potentially invalidate all such equations. *)
Definition filter_loads (r: rhs) : bool :=
match r with
| Op op _ => op_depends_on_memory op
| Load _ _ _ => true
end.
Definition kill_loads (n: numbering) : numbering :=
kill_equations filter_loads n.
(** [add_store n chunk addr rargs rsrc] updates the numbering [n] to reflect
the effect of a store instruction [Istore chunk addr rargs rsrc].
Equations involving the memory state are removed from [n], unless we
can prove that the store does not invalidate them.
Then, an equations [rsrc = Load chunk addr rargs] is added to reflect
the known content of the stored memory area, but only if [chunk] is
a "full-size" quantity ([Mint32] or [Mfloat64] or [Mint64]). *)
Definition filter_after_store (chunk: memory_chunk) (addr: addressing) (vl: list valnum) (r: rhs) : bool :=
match r with
| Op op vl' => op_depends_on_memory op
| Load chunk' addr' vl' =>
negb(eq_list_valnum vl vl' && addressing_separated chunk addr chunk' addr')
end.
Definition add_store (n: numbering) (chunk: memory_chunk) (addr: addressing)
(rargs: list reg) (rsrc: reg) : numbering :=
let (n1, vargs) := valnum_regs n rargs in
let n2 := kill_equations (filter_after_store chunk addr vargs) n1 in
match chunk with
| Mint32 | Mint64 | Mfloat64 | Mfloat64al32 => add_rhs n2 rsrc (Load chunk addr vargs)
| _ => n2
end.
(** [reg_valnum n vn] returns a register that is mapped to value number
[vn], or [None] if no such register exists. *)
Definition reg_valnum (n: numbering) (vn: valnum) : option reg :=
match PMap.get vn n.(num_val) with
| nil => None
| r :: rs => Some r
end.
Fixpoint regs_valnums (n: numbering) (vl: list valnum) : option (list reg) :=
match vl with
| nil => Some nil
| v1 :: vs =>
match reg_valnum n v1, regs_valnums n vs with
| Some r1, Some rs => Some (r1 :: rs)
| _, _ => None
end
end.
(** [find_rhs] return a register that already holds the result of the given arithmetic
operation or memory load, according to the given numbering.
[None] is returned if no such register exists. *)
Definition find_rhs (n: numbering) (rh: rhs) : option reg :=
match find_valnum_rhs rh n.(num_eqs) with
| None => None
| Some vres => reg_valnum n vres
end.
(** Experimental: take advantage of known equations to select more efficient
forms of operations, addressing modes, and conditions. *)
Section REDUCE.
Variable A: Type.
Variable f: (valnum -> option rhs) -> A -> list valnum -> option (A * list valnum).
Variable n: numbering.
Fixpoint reduce_rec (niter: nat) (op: A) (args: list valnum) : option(A * list reg) :=
match niter with
| O => None
| S niter' =>
match f (fun v => find_valnum_num v n.(num_eqs)) op args with
| None => None
| Some(op', args') =>
match reduce_rec niter' op' args' with
| None =>
match regs_valnums n args' with Some rl => Some(op', rl) | None => None end
| Some _ as res =>
res
end
end
end.
Definition reduce (op: A) (rl: list reg) (vl: list valnum) : A * list reg :=
match reduce_rec 4%nat op vl with
| None => (op, rl)
| Some res => res
end.
End REDUCE.
(** * The static analysis *)
(** We now define a notion of satisfiability of a numbering. This semantic
notion plays a central role in the correctness proof (see [CSEproof]),
but is defined here because we need it to define the ordering over
numberings used in the static analysis.
A numbering is satisfiable in a given register environment and memory
state if there exists a valuation, mapping value numbers to actual values,
that validates both the equations and the association of registers
to value numbers. *)
Definition equation_holds
(valuation: valnum -> val)
(ge: genv) (sp: val) (m: mem)
(vres: valnum) (rh: rhs) : Prop :=
match rh with
| Op op vl =>
eval_operation ge sp op (List.map valuation vl) m =
Some (valuation vres)
| Load chunk addr vl =>
exists a,
eval_addressing ge sp addr (List.map valuation vl) = Some a /\
Mem.loadv chunk m a = Some (valuation vres)
end.
Definition numbering_holds
(valuation: valnum -> val)
(ge: genv) (sp: val) (rs: regset) (m: mem) (n: numbering) : Prop :=
(forall vn rh,
In (vn, rh) n.(num_eqs) ->
equation_holds valuation ge sp m vn rh)
/\ (forall r vn,
PTree.get r n.(num_reg) = Some vn -> rs#r = valuation vn).
Definition numbering_satisfiable
(ge: genv) (sp: val) (rs: regset) (m: mem) (n: numbering) : Prop :=
exists valuation, numbering_holds valuation ge sp rs m n.
Lemma empty_numbering_satisfiable:
forall ge sp rs m, numbering_satisfiable ge sp rs m empty_numbering.
Proof.
intros; red.
exists (fun (vn: valnum) => Vundef). split; simpl; intros.
elim H.
rewrite PTree.gempty in H. discriminate.
Qed.
(** We now equip the type [numbering] with a partial order and a greatest
element. The partial order is based on entailment: [n1] is greater
than [n2] if [n1] is satisfiable whenever [n2] is. The greatest element
is, of course, the empty numbering (no equations). *)
Module Numbering.
Definition t := numbering.
Definition ge (n1 n2: numbering) : Prop :=
forall ge sp rs m,
numbering_satisfiable ge sp rs m n2 ->
numbering_satisfiable ge sp rs m n1.
Definition top := empty_numbering.
Lemma top_ge: forall x, ge top x.
Proof.
intros; red; intros. unfold top. apply empty_numbering_satisfiable.
Qed.
Lemma refl_ge: forall x, ge x x.
Proof.
intros; red; auto.
Qed.
End Numbering.
(** We reuse the solver for forward dataflow inequations based on
propagation over extended basic blocks defined in library [Kildall]. *)
Module Solver := BBlock_solver(Numbering).
(** The transfer function for the dataflow analysis returns the numbering
``after'' execution of the instruction at [pc], as a function of the
numbering ``before''. For [Iop] and [Iload] instructions, we add
equations or reuse existing value numbers as described for
[add_op] and [add_load]. For [Istore] instructions, we forget
all equations involving memory loads. For [Icall] instructions,
we could simply associate a fresh, unconstrained by equations value number
to the result register. However, it is often undesirable to eliminate
common subexpressions across a function call (there is a risk of
increasing too much the register pressure across the call), so we
just forget all equations and start afresh with an empty numbering.
Finally, for instructions that modify neither registers nor
the memory, we keep the numbering unchanged.
For builtin invocations [Ibuiltin], we have three strategies:
- Forget all equations. This is appropriate for builtins that can be
turned into function calls ([EF_external], [EF_malloc], [EF_free]).
- Forget equations involving loads but keep equations over registers.
This is appropriate for builtins that modify memory, e.g. [EF_memcpy].
- Keep all equations, taking advantage of the fact that neither memory
nor registers are modified. This is appropriate for annotations,
for inlined builtin functions, and for volatile loads.
*)
Definition transfer (f: function) (pc: node) (before: numbering) :=
match f.(fn_code)!pc with
| None => before
| Some i =>
match i with
| Inop s =>
before
| Iop op args res s =>
add_op before res op args
| Iload chunk addr args dst s =>
add_load before dst chunk addr args
| Istore chunk addr args src s =>
add_store before chunk addr args src
| Icall sig ros args res s =>
empty_numbering
| Itailcall sig ros args =>
empty_numbering
| Ibuiltin ef args res s =>
match ef with
| EF_external _ _ | EF_malloc | EF_free | EF_inline_asm _ =>
empty_numbering
| EF_vstore _ | EF_vstore_global _ _ _ | EF_memcpy _ _ =>
add_unknown (kill_loads before) res
| EF_builtin _ _ | EF_vload _ | EF_vload_global _ _ _
| EF_annot _ _ | EF_annot_val _ _ =>
add_unknown before res
end
| Icond cond args ifso ifnot =>
before
| Ijumptable arg tbl =>
before
| Ireturn optarg =>
before
end
end.
(** The static analysis solves the dataflow inequations implied
by the [transfer] function using the ``extended basic block'' solver,
which produces sub-optimal solutions quickly. The result is
a mapping from program points to numberings. *)
Definition analyze (f: RTL.function): option (PMap.t numbering) :=
Solver.fixpoint (successors f) (transfer f) f.(fn_entrypoint).
(** * Code transformation *)
(** The code transformation is performed instruction by instruction.
[Iload] instructions and non-trivial [Iop] instructions are turned
into move instructions if their result is already available in a
register, as indicated by the numbering inferred at that program point.
Some operations are so cheap to compute that it is generally not
worth reusing their results. These operations are detected by the
function [is_trivial_op] in module [Op]. *)
Definition transf_instr (n: numbering) (instr: instruction) :=
match instr with
| Iop op args res s =>
if is_trivial_op op then instr else
let (n1, vl) := valnum_regs n args in
match find_rhs n1 (Op op vl) with
| Some r =>
Iop Omove (r :: nil) res s
| None =>
let (op', args') := reduce _ combine_op n1 op args vl in
Iop op' args' res s
end
| Iload chunk addr args dst s =>
let (n1, vl) := valnum_regs n args in
match find_rhs n1 (Load chunk addr vl) with
| Some r =>
Iop Omove (r :: nil) dst s
| None =>
let (addr', args') := reduce _ combine_addr n1 addr args vl in
Iload chunk addr' args' dst s
end
| Istore chunk addr args src s =>
let (n1, vl) := valnum_regs n args in
let (addr', args') := reduce _ combine_addr n1 addr args vl in
Istore chunk addr' args' src s
| Icond cond args s1 s2 =>
let (n1, vl) := valnum_regs n args in
let (cond', args') := reduce _ combine_cond n1 cond args vl in
Icond cond' args' s1 s2
| _ =>
instr
end.
Definition transf_code (approxs: PMap.t numbering) (instrs: code) : code :=
PTree.map (fun pc instr => transf_instr approxs!!pc instr) instrs.
Definition transf_function (f: function) : res function :=
match type_function f with
| Error msg => Error msg
| OK tyenv =>
match analyze f with
| None => Error (msg "CSE failure")
| Some approxs =>
OK(mkfunction
f.(fn_sig)
f.(fn_params)
f.(fn_stacksize)
(transf_code approxs f.(fn_code))
f.(fn_entrypoint))
end
end.
Definition transf_fundef (f: fundef) : res fundef :=
AST.transf_partial_fundef transf_function f.
Definition transf_program (p: program) : res program :=
transform_partial_program transf_fundef p.
|