summaryrefslogtreecommitdiff
path: root/backend/Allocation.v
blob: 919843b5c34c3b3bda2f436b22fbe4a8fc3442d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Register allocation by external oracle and a posteriori validation. *)

Require Import FSets.
Require FSetAVLplus.
Require Archi.
Require Import Coqlib.
Require Import Ordered.
Require Import Errors.
Require Import Maps.
Require Import Lattice.
Require Import AST.
Require Import Integers.
Require Import Memdata.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import Kildall.
Require Import Locations.
Require Import Conventions.
Require Import RTLtyping.
Require Import LTL.

(** The validation algorithm used here is described in
  "Validating register allocation and spilling", 
  by Silvain Rideau and Xavier Leroy,
  in Compiler Construction (CC 2010), LNCS 6011, Springer, 2010. *)

(** * Structural checks *)

(** As a first pass, we check the LTL code returned by the external oracle
  against the original RTL code for structural conformance.
  Each RTL instruction was transformed into a LTL basic block whose
  shape must agree with the RTL instruction.  For example, if the RTL
  instruction is [Istore(Mint32, addr, args, src, s)], the LTL basic block
  must be of the following shape:
- zero, one or several "move" instructions
- a store instruction [Lstore(Mint32, addr, args', src')]
- a [Lbranch s] instruction.

  The [block_shape] type below describes all possible cases of structural
  maching between an RTL instruction and an LTL basic block.
*)

Definition moves := list (loc * loc)%type.

Inductive block_shape: Type :=
  | BSnop (mv: moves) (s: node)
  | BSmove (src: reg) (dst: reg) (mv: moves) (s: node)
  | BSmakelong (src1 src2: reg) (dst: reg) (mv: moves) (s: node)
  | BSlowlong (src: reg) (dst: reg) (mv: moves) (s: node)
  | BShighlong (src: reg) (dst: reg) (mv: moves) (s: node)
  | BSop (op: operation) (args: list reg) (res: reg)
         (mv1: moves) (args': list mreg) (res': mreg)
         (mv2: moves) (s: node)
  | BSopdead (op: operation) (args: list reg) (res: reg)
         (mv: moves) (s: node)
  | BSload (chunk: memory_chunk) (addr: addressing) (args: list reg) (dst: reg)
         (mv1: moves) (args': list mreg) (dst': mreg)
         (mv2: moves) (s: node)
  | BSloaddead (chunk: memory_chunk) (addr: addressing) (args: list reg) (dst: reg)
         (mv: moves) (s: node)
  | BSload2 (addr1 addr2: addressing) (args: list reg) (dst: reg)
         (mv1: moves) (args1': list mreg) (dst1': mreg)
         (mv2: moves) (args2': list mreg) (dst2': mreg)
         (mv3: moves) (s: node)
  | BSload2_1 (addr: addressing) (args: list reg) (dst: reg)
         (mv1: moves) (args': list mreg) (dst': mreg)
         (mv2: moves) (s: node)
  | BSload2_2 (addr addr': addressing) (args: list reg) (dst: reg)
         (mv1: moves) (args': list mreg) (dst': mreg)
         (mv2: moves) (s: node)
  | BSstore (chunk: memory_chunk) (addr: addressing) (args: list reg) (src: reg)
         (mv1: moves) (args': list mreg) (src': mreg)
         (s: node)
  | BSstore2 (addr1 addr2: addressing) (args: list reg) (src: reg)
         (mv1: moves) (args1': list mreg) (src1': mreg)
         (mv2: moves) (args2': list mreg) (src2': mreg)
         (s: node)
  | BScall (sg: signature) (ros: reg + ident) (args: list reg) (res: reg)
         (mv1: moves) (ros': mreg + ident) (mv2: moves) (s: node)
  | BStailcall (sg: signature) (ros: reg + ident) (args: list reg)
         (mv1: moves) (ros': mreg + ident)
  | BSbuiltin (ef: external_function) (args: list reg) (res: reg)
         (mv1: moves) (args': list mreg) (res': list mreg)
         (mv2: moves) (s: node)
  | BSannot (text: ident) (targs: list annot_arg) (args: list reg) (res: reg)
         (mv: moves) (args': list loc) (s: node)
  | BScond (cond: condition) (args: list reg)
         (mv: moves) (args': list mreg) (s1 s2: node)
  | BSjumptable (arg: reg)
         (mv: moves) (arg': mreg) (tbl: list node)
  | BSreturn (arg: option reg)
         (mv: moves).

(** Extract the move instructions at the beginning of block [b].
  Return the list of moves and the suffix of [b] after the moves. *)

Fixpoint extract_moves (accu: moves) (b: bblock) {struct b} : moves * bblock :=
  match b with
  | Lgetstack sl ofs ty dst :: b' =>
      extract_moves ((S sl ofs ty, R dst) :: accu) b'
  | Lsetstack src sl ofs ty :: b' =>
      extract_moves ((R src, S sl ofs ty) :: accu) b'
  | Lop op args res :: b' =>
      match is_move_operation op args with
      | Some arg => extract_moves ((R arg, R res) :: accu) b'
      | None => (List.rev accu, b)
      end
  | _ =>
      (List.rev accu, b)
  end.

Definition check_succ (s: node) (b: LTL.bblock) : bool :=
  match b with
  | Lbranch s' :: _ => peq s s'
  | _ => false
  end.

Notation "'do' X <- A ; B" := (match A with Some X => B | None => None end)
         (at level 200, X ident, A at level 100, B at level 200)
         : option_monad_scope.

Notation "'assertion' A ; B" := (if A then B else None)
         (at level 200, A at level 100, B at level 200)
         : option_monad_scope.

Local Open Scope option_monad_scope.

(** Classify operations into moves, 64-bit integer operations, and other
  arithmetic/logical operations. *)

Inductive operation_kind: operation -> list reg -> Type :=
  | operation_Omove: forall arg, operation_kind Omove (arg :: nil)
  | operation_Omakelong: forall arg1 arg2, operation_kind Omakelong (arg1 :: arg2 :: nil)
  | operation_Olowlong: forall arg, operation_kind Olowlong (arg :: nil)
  | operation_Ohighlong: forall arg, operation_kind Ohighlong (arg :: nil)
  | operation_other: forall op args, operation_kind op args.

Definition classify_operation (op: operation) (args: list reg) : operation_kind op args :=
  match op, args with
  | Omove, arg::nil => operation_Omove arg
  | Omakelong, arg1::arg2::nil => operation_Omakelong arg1 arg2
  | Olowlong, arg::nil => operation_Olowlong arg
  | Ohighlong, arg::nil => operation_Ohighlong arg
  | op, args => operation_other op args
  end.

(** Check RTL instruction [i] against LTL basic block [b].  
  On success, return [Some] with a [block_shape] describing the correspondence.
  On error, return [None]. *)

Definition pair_instr_block
               (i: RTL.instruction) (b: LTL.bblock) : option block_shape :=
  match i with
  | Inop s =>
      let (mv, b1) := extract_moves nil b in
      assertion (check_succ s b1); Some(BSnop mv s)
  | Iop op args res s =>
      match classify_operation op args with
      | operation_Omove arg =>
          let (mv, b1) := extract_moves nil b in
          assertion (check_succ s b1); Some(BSmove arg res mv s)
      | operation_Omakelong arg1 arg2 =>
          let (mv, b1) := extract_moves nil b in
          assertion (check_succ s b1); Some(BSmakelong arg1 arg2 res mv s)
      | operation_Olowlong arg =>
          let (mv, b1) := extract_moves nil b in
          assertion (check_succ s b1); Some(BSlowlong arg res mv s)
      | operation_Ohighlong arg =>
          let (mv, b1) := extract_moves nil b in
          assertion (check_succ s b1); Some(BShighlong arg res mv s)
      | operation_other _ _ =>
          let (mv1, b1) := extract_moves nil b in
          match b1 with
          | Lop op' args' res' :: b2 =>
              let (mv2, b3) := extract_moves nil b2 in
              assertion (eq_operation op op');
              assertion (check_succ s b3);
              Some(BSop op args res mv1 args' res' mv2 s)
          | _ =>
              assertion (check_succ s b1);
              Some(BSopdead op args res mv1 s)
          end
      end
  | Iload chunk addr args dst s =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lload chunk' addr' args' dst' :: b2 =>
          if chunk_eq chunk Mint64 then
            assertion (chunk_eq chunk' Mint32);
            let (mv2, b3) := extract_moves nil b2 in
            match b3 with
            | Lload chunk'' addr'' args'' dst'' :: b4 =>
                let (mv3, b5) := extract_moves nil b4 in
                assertion (chunk_eq chunk'' Mint32);
                assertion (eq_addressing addr addr');
                assertion (option_eq eq_addressing (offset_addressing addr (Int.repr 4)) (Some addr''));
                assertion (check_succ s b5);
                Some(BSload2 addr addr'' args dst mv1 args' dst' mv2 args'' dst'' mv3 s)
            | _ =>
                assertion (check_succ s b3);
                if (eq_addressing addr addr') then
                  Some(BSload2_1 addr args dst mv1 args' dst' mv2 s)
                else
                 (assertion (option_eq eq_addressing (offset_addressing addr (Int.repr 4)) (Some addr'));
                  Some(BSload2_2 addr addr' args dst mv1 args' dst' mv2 s))
            end
          else (
            let (mv2, b3) := extract_moves nil b2 in
            assertion (chunk_eq chunk chunk');
            assertion (eq_addressing addr addr');
            assertion (check_succ s b3);
            Some(BSload chunk addr args dst mv1 args' dst' mv2 s))
      | _ =>
          assertion (check_succ s b1);
          Some(BSloaddead chunk addr args dst mv1 s)
      end
  | Istore chunk addr args src s =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lstore chunk' addr' args' src' :: b2 =>
          if chunk_eq chunk Mint64 then
            let (mv2, b3) := extract_moves nil b2 in
            match b3 with
            | Lstore chunk'' addr'' args'' src'' :: b4 =>
                assertion (chunk_eq chunk' Mint32);
                assertion (chunk_eq chunk'' Mint32);
                assertion (eq_addressing addr addr');
                assertion (option_eq eq_addressing (offset_addressing addr (Int.repr 4)) (Some addr''));
                assertion (check_succ s b4);
                Some(BSstore2 addr addr'' args src mv1 args' src' mv2 args'' src'' s)
            | _ => None
            end
          else (
            assertion (chunk_eq chunk chunk');
            assertion (eq_addressing addr addr');
            assertion (check_succ s b2);
            Some(BSstore chunk addr args src mv1 args' src' s))
      | _ => None
      end
  | Icall sg ros args res s =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lcall sg' ros' :: b2 =>
          let (mv2, b3) := extract_moves nil b2 in
          assertion (signature_eq sg sg');
          assertion (check_succ s b3);
          Some(BScall sg ros args res mv1 ros' mv2 s)
      | _ => None
      end
  | Itailcall sg ros args =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Ltailcall sg' ros' :: b2 =>
          assertion (signature_eq sg sg');
          Some(BStailcall sg ros args mv1 ros')
      | _ => None
      end
  | Ibuiltin ef args res s =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lbuiltin ef' args' res' :: b2 =>
          let (mv2, b3) := extract_moves nil b2 in
          assertion (external_function_eq ef ef');
          assertion (check_succ s b3);
          Some(BSbuiltin ef args res mv1 args' res' mv2 s)
      | Lannot ef' args' :: b2 =>
          assertion (external_function_eq ef ef');
          assertion (check_succ s b2);
          match ef with
          | EF_annot txt typ => Some(BSannot txt typ args res mv1 args' s)
          | _ => None
          end
      | _ => None
      end
  | Icond cond args s1 s2 =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lcond cond' args' s1' s2' :: b2 =>
          assertion (eq_condition cond cond');
          assertion (peq s1 s1');
          assertion (peq s2 s2');
          Some(BScond cond args mv1 args' s1 s2)
      | _ => None
      end
  | Ijumptable arg tbl =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Ljumptable arg' tbl' :: b2 =>
          assertion (list_eq_dec peq tbl tbl');
          Some(BSjumptable arg mv1 arg' tbl)
      | _ => None
      end
  | Ireturn arg =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lreturn :: b2 => Some(BSreturn arg mv1)
      | _ => None
      end
  end.

(** Check all instructions of the RTL function [f1] against the corresponding
  basic blocks of LTL function [f2].  Return a map from CFG nodes to
  [block_shape] info. *)

Definition pair_codes (f1: RTL.function) (f2: LTL.function) : PTree.t block_shape :=
  PTree.combine
    (fun opti optb => do i <- opti; do b <- optb; pair_instr_block i b)
    (RTL.fn_code f1) (LTL.fn_code f2).

(** Check the entry point code of the LTL function [f2].  It must be
  a sequence of moves that branches to the same node as the entry point
  of RTL function [f1]. *)

Definition pair_entrypoints (f1: RTL.function) (f2: LTL.function) : option moves :=
  do b <- (LTL.fn_code f2)!(LTL.fn_entrypoint f2);
  let (mv, b1) := extract_moves nil b in
  assertion (check_succ (RTL.fn_entrypoint f1) b1);
  Some mv.

(** * Representing sets of equations between RTL registers and LTL locations. *)

(** The Rideau-Leroy validation algorithm manipulates sets of equations of
  the form [pseudoreg = location [kind]], meaning:
- if [kind = Full], the value of [location] in the generated LTL code is
  the same as (or more defined than) the value of [pseudoreg] in the original
  RTL code;
- if [kind = Low], the value of [location] in the generated LTL code is
  the same as (or more defined than) the low 32 bits of the 64-bit
  integer value of [pseudoreg] in the original RTL code;
- if [kind = High], the value of [location] in the generated LTL code is
  the same as (or more defined than) the high 32 bits of the 64-bit
  integer value of [pseudoreg] in the original RTL code.
*)

Inductive equation_kind : Type := Full | Low | High.

Record equation := Eq {
  ekind: equation_kind;
  ereg: reg;
  eloc: loc
}.

(** We use AVL finite sets to represent sets of equations.  Therefore, we need
  total orders over equations and their components. *)

Module IndexedEqKind <: INDEXED_TYPE.
  Definition t := equation_kind.
  Definition index (x: t) :=
    match x with Full => 1%positive | Low => 2%positive | High => 3%positive end.
  Lemma index_inj: forall x y, index x = index y -> x = y.
  Proof. destruct x; destruct y; simpl; congruence. Qed.
  Definition eq (x y: t) : {x=y} + {x<>y}.
  Proof. decide equality. Defined.
End IndexedEqKind.

Module OrderedEqKind := OrderedIndexed(IndexedEqKind).

(** This is an order over equations that is lexicographic on [ereg], then
  [eloc], then [ekind]. *)

Module OrderedEquation <: OrderedType.
  Definition t := equation.
  Definition eq (x y: t) := x = y.
  Definition lt (x y: t) :=
    Plt (ereg x) (ereg y) \/ (ereg x = ereg y /\
    (OrderedLoc.lt (eloc x) (eloc y) \/ (eloc x = eloc y /\
    OrderedEqKind.lt (ekind x) (ekind y)))).
  Lemma eq_refl : forall x : t, eq x x.
  Proof (@refl_equal t). 
  Lemma eq_sym : forall x y : t, eq x y -> eq y x.
  Proof (@sym_equal t).
  Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
  Proof (@trans_equal t).
  Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
  Proof.
    unfold lt; intros.
    destruct H. 
    destruct H0. left; eapply Plt_trans; eauto.
    destruct H0. rewrite <- H0. auto.
    destruct H. rewrite H. 
    destruct H0. auto. 
    destruct H0. right; split; auto.
    intuition. 
    left; eapply OrderedLoc.lt_trans; eauto.
    left; congruence.
    left; congruence.
    right; split. congruence. eapply OrderedEqKind.lt_trans; eauto.
  Qed.
  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof.
    unfold lt, eq; intros; red; intros. subst y. intuition.
    eelim Plt_strict; eauto.
    eelim OrderedLoc.lt_not_eq; eauto. red; auto.
    eelim OrderedEqKind.lt_not_eq; eauto. red; auto.
  Qed.
  Definition compare : forall x y : t, Compare lt eq x y.
  Proof.
    intros.
    destruct (OrderedPositive.compare (ereg x) (ereg y)).
  - apply LT. red; auto.
  - destruct (OrderedLoc.compare (eloc x) (eloc y)).
    + apply LT. red; auto. 
    + destruct (OrderedEqKind.compare (ekind x) (ekind y)).
      * apply LT. red; auto.
      * apply EQ. red in e; red in e0; red in e1; red. 
        destruct x; destruct y; simpl in *; congruence.
      * apply GT. red; auto.
   + apply GT. red; auto.
  - apply GT. red; auto.
  Defined.
  Definition eq_dec (x y: t) : {x = y} + {x <> y}.
  Proof.
    intros. decide equality. 
    apply Loc.eq.
    apply peq.
    apply IndexedEqKind.eq.
  Defined.
End OrderedEquation.

(** This is an alternate order over equations that is lexicgraphic on
  [eloc], then [ereg], then [ekind]. *)

Module OrderedEquation' <: OrderedType.
  Definition t := equation.
  Definition eq (x y: t) := x = y.
  Definition lt (x y: t) :=
    OrderedLoc.lt (eloc x) (eloc y) \/ (eloc x = eloc y /\
    (Plt (ereg x) (ereg y) \/ (ereg x = ereg y /\
    OrderedEqKind.lt (ekind x) (ekind y)))).
  Lemma eq_refl : forall x : t, eq x x.
  Proof (@refl_equal t). 
  Lemma eq_sym : forall x y : t, eq x y -> eq y x.
  Proof (@sym_equal t).
  Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
  Proof (@trans_equal t).
  Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
  Proof.
    unfold lt; intros.
    destruct H. 
    destruct H0. left; eapply OrderedLoc.lt_trans; eauto. 
    destruct H0. rewrite <- H0. auto.
    destruct H. rewrite H. 
    destruct H0. auto. 
    destruct H0. right; split; auto.
    intuition. 
    left; eapply Plt_trans; eauto. 
    left; congruence.
    left; congruence.
    right; split. congruence. eapply OrderedEqKind.lt_trans; eauto.
  Qed.
  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof.
    unfold lt, eq; intros; red; intros. subst y. intuition.
    eelim OrderedLoc.lt_not_eq; eauto. red; auto.
    eelim Plt_strict; eauto.
    eelim OrderedEqKind.lt_not_eq; eauto. red; auto.
  Qed.
  Definition compare : forall x y : t, Compare lt eq x y.
  Proof.
    intros.
    destruct (OrderedLoc.compare (eloc x) (eloc y)).
  - apply LT. red; auto.
  - destruct (OrderedPositive.compare (ereg x) (ereg y)).
    + apply LT. red; auto. 
    + destruct (OrderedEqKind.compare (ekind x) (ekind y)).
      * apply LT. red; auto.
      * apply EQ. red in e; red in e0; red in e1; red. 
        destruct x; destruct y; simpl in *; congruence.
      * apply GT. red; auto.
   + apply GT. red; auto.
  - apply GT. red; auto.
  Defined.
  Definition eq_dec: forall (x y: t), {x = y} + {x <> y} := OrderedEquation.eq_dec.
End OrderedEquation'.

Module EqSet := FSetAVLplus.Make(OrderedEquation).
Module EqSet2 := FSetAVLplus.Make(OrderedEquation').

(** We use a redundant representation for sets of equations, comprising
  two AVL finite sets, containing the same elements, but ordered along
  the two orders defined above.  Playing on properties of lexicographic
  orders, this redundant representation enables us to quickly find
  all equations involving a given RTL pseudoregister, or all equations
  involving a given LTL location or overlapping location. *)

Record eqs := mkeqs {
  eqs1 :> EqSet.t;
  eqs2 : EqSet2.t;
  eqs_same: forall q, EqSet2.In q eqs2 <-> EqSet.In q eqs1
}.

(** * Operations on sets of equations *)

(** The empty set of equations. *)

Program Definition empty_eqs := mkeqs EqSet.empty EqSet2.empty _.
Next Obligation.
  split; intros. eelim EqSet2.empty_1; eauto. eelim EqSet.empty_1; eauto.
Qed.

(** Adding or removing an equation from a set. *)

Program Definition add_equation (q: equation) (e: eqs) :=
  mkeqs (EqSet.add q (eqs1 e)) (EqSet2.add q (eqs2 e)) _.
Next Obligation.
  split; intros.
  destruct (OrderedEquation'.eq_dec q q0). 
  apply EqSet.add_1; auto.
  apply EqSet.add_2. apply (eqs_same e). apply EqSet2.add_3 with q; auto.
  destruct (OrderedEquation.eq_dec q q0). 
  apply EqSet2.add_1; auto.
  apply EqSet2.add_2. apply (eqs_same e). apply EqSet.add_3 with q; auto.
Qed.

Program Definition remove_equation (q: equation) (e: eqs) :=
  mkeqs (EqSet.remove q (eqs1 e)) (EqSet2.remove q (eqs2 e)) _.
Next Obligation.
  split; intros.
  destruct (OrderedEquation'.eq_dec q q0). 
  eelim EqSet2.remove_1; eauto.
  apply EqSet.remove_2; auto. apply (eqs_same e). apply EqSet2.remove_3 with q; auto.
  destruct (OrderedEquation.eq_dec q q0). 
  eelim EqSet.remove_1; eauto.
  apply EqSet2.remove_2; auto. apply (eqs_same e). apply EqSet.remove_3 with q; auto.
Qed.

(** [reg_unconstrained r e] is true if [e] contains no equations involving
  the RTL pseudoregister [r].  In other words, all equations [r' = l [kind]]
  in [e] are such that [r' <> r]. *)

Definition select_reg_l (r: reg) (q: equation) := Pos.leb r (ereg q).
Definition select_reg_h (r: reg) (q: equation) := Pos.leb (ereg q) r.

Definition reg_unconstrained (r: reg) (e: eqs) : bool :=
  negb (EqSet.mem_between (select_reg_l r) (select_reg_h r) (eqs1 e)).

(** [loc_unconstrained l e] is true if [e] contains no equations involving
  the LTL location [l] or a location that partially overlaps with [l].
  In other words, all equations [r = l' [kind]] in [e] are such that
  [Loc.diff l' l]. *)

Definition select_loc_l (l: loc) :=
  let lb := OrderedLoc.diff_low_bound l in
  fun (q: equation) => match OrderedLoc.compare (eloc q) lb with LT _ => false | _ => true end.
Definition select_loc_h (l: loc) :=
  let lh := OrderedLoc.diff_high_bound l in
  fun (q: equation) => match OrderedLoc.compare (eloc q) lh with GT _ => false | _ => true end.

Definition loc_unconstrained (l: loc) (e: eqs) : bool :=
  negb (EqSet2.mem_between (select_loc_l l) (select_loc_h l) (eqs2 e)).

Definition reg_loc_unconstrained (r: reg) (l: loc) (e: eqs) : bool :=
  reg_unconstrained r e && loc_unconstrained l e.

(** [subst_reg r1 r2 e] simulates the effect of assigning [r2] to [r1] on [e].
  All equations of the form [r1 = l [kind]] are replaced by [r2 = l [kind]].
*)

Definition subst_reg (r1 r2: reg) (e: eqs) : eqs :=
  EqSet.fold
    (fun q e => add_equation (Eq (ekind q) r2 (eloc q)) (remove_equation q e))
    (EqSet.elements_between (select_reg_l r1) (select_reg_h r1) (eqs1 e))
    e.

(** [subst_reg_kind r1 k1 r2 k2 e] simulates the effect of assigning
  the [k2] part of [r2] to the [k1] part of [r1] on [e].
  All equations of the form [r1 = l [k1]] are replaced by [r2 = l [k2]].
*)

Definition subst_reg_kind (r1: reg) (k1: equation_kind) (r2: reg) (k2: equation_kind) (e: eqs) : eqs :=
  EqSet.fold
    (fun q e =>
      if IndexedEqKind.eq (ekind q) k1
      then add_equation (Eq k2 r2 (eloc q)) (remove_equation q e)
      else e)
    (EqSet.elements_between (select_reg_l r1) (select_reg_h r1) (eqs1 e))
    e.

(** [subst_loc l1 l2 e] simulates the effect of assigning [l2] to [l1] on [e].
  All equations of the form [r = l1 [kind]] are replaced by [r = l2 [kind]].
  Return [None] if [e] contains an equation of the form [r = l] with [l]
  partially overlapping [l1]. 
*)

Definition subst_loc (l1 l2: loc) (e: eqs) : option eqs :=
  EqSet2.fold
    (fun q opte =>
      match opte with
      | None => None
      | Some e =>
          if Loc.eq l1 (eloc q) then
            Some (add_equation (Eq (ekind q) (ereg q) l2) (remove_equation q e))
          else
            None
      end)
     (EqSet2.elements_between (select_loc_l l1) (select_loc_h l1) (eqs2 e))
     (Some e).

(** [loc_type_compat env l e] checks that for all equations [r = l] in [e],
  the type [env r] of [r] is compatible with the type of [l]. *)

Definition sel_type (k: equation_kind) (ty: typ) : typ :=
  match k with
  | Full => ty
  | Low | High => Tint
  end.

Definition loc_type_compat (env: regenv) (l: loc) (e: eqs) : bool :=
  EqSet2.for_all_between
    (fun q => subtype (sel_type (ekind q) (env (ereg q))) (Loc.type l))
    (select_loc_l l) (select_loc_h l) (eqs2 e).

(** [add_equations [r1...rN] [m1...mN] e] adds to [e] the [N] equations
    [ri = R mi [Full]].  Return [None] if the two lists have different lengths.
*)

Fixpoint add_equations (rl: list reg) (ml: list mreg) (e: eqs) : option eqs :=
  match rl, ml with
  | nil, nil => Some e
  | r1 :: rl, m1 :: ml => add_equations rl ml (add_equation (Eq Full r1 (R m1)) e)
  | _, _ => None
  end.

(** [add_equations_args] is similar but additionally handles the splitting
  of pseudoregisters of type [Tlong] in two locations containing the
  two 32-bit halves of the 64-bit integer. *)

Function add_equations_args (rl: list reg) (tyl: list typ) (ll: list loc) (e: eqs) : option eqs :=
  match rl, tyl, ll with
  | nil, nil, nil => Some e
  | r1 :: rl, Tlong :: tyl, l1 :: l2 :: ll =>
      add_equations_args rl tyl ll (add_equation (Eq Low r1 l2) (add_equation (Eq High r1 l1) e))
  | r1 :: rl, (Tint|Tfloat|Tsingle) :: tyl, l1 :: ll =>
      add_equations_args rl tyl ll (add_equation (Eq Full r1 l1) e)
  | _, _, _ => None
  end.

(** [add_equations_res] is similar but is specialized to the case where
  there is only one pseudo-register. *)

Function add_equations_res (r: reg) (oty: option typ) (ll: list loc) (e: eqs) : option eqs :=
  match oty with
  | Some Tlong =>
      match ll with
      | l1 :: l2 :: nil => Some (add_equation (Eq Low r l2) (add_equation (Eq High r l1) e))
      | _ => None
      end
  | _ =>
      match ll with
      | l1 :: nil => Some (add_equation (Eq Full r l1) e)
      | _ => None
      end
  end.

(** [remove_equations_res] is similar to [add_equations_res] but removes
  equations instead of adding them. *)

Function remove_equations_res (r: reg) (oty: option typ) (ll: list loc) (e: eqs) : option eqs :=
  match oty with
  | Some Tlong =>
      match ll with
      | l1 :: l2 :: nil =>
          if Loc.diff_dec l2 l1
          then Some (remove_equation (Eq Low r l2) (remove_equation (Eq High r l1) e))
          else None
      | _ => None
      end
  | _ =>
      match ll with
      | l1 :: nil => Some (remove_equation (Eq Full r l1) e)
      | _ => None
      end
  end.

(** [add_equations_ros] adds an equation, if needed, between an optional
  pseudoregister and an optional machine register.  It is used for the
  function argument of the [Icall] and [Itailcall] instructions. *)

Definition add_equation_ros (ros: reg + ident) (ros': mreg + ident) (e: eqs) : option eqs :=
  match ros, ros' with
  | inl r, inl mr => Some(add_equation (Eq Full r (R mr)) e)
  | inr id, inr id' => assertion (ident_eq id id'); Some e
  | _, _ => None
  end.

(** [can_undef ml] returns true if all machine registers in [ml] are
  unconstrained and can harmlessly be undefined. *)

Fixpoint can_undef (ml: list mreg) (e: eqs) : bool :=
  match ml with
  | nil => true
  | m1 :: ml => loc_unconstrained (R m1) e && can_undef ml e
  end.

Fixpoint can_undef_except (l: loc) (ml: list mreg) (e: eqs) : bool :=
  match ml with
  | nil => true
  | m1 :: ml => 
      (Loc.eq l (R m1) || loc_unconstrained (R m1) e) && can_undef_except l ml e
  end.

(** [no_caller_saves e] returns [e] if all caller-save locations are
  unconstrained in [e].  In other words, [e] contains no equations
  involving a caller-save register or [Outgoing] stack slot. *)

Definition no_caller_saves (e: eqs) : bool :=
  EqSet.for_all
   (fun eq =>
     match eloc eq with
       | R r =>
           zle 0 (index_int_callee_save r) || zle 0 (index_float_callee_save r)
       | S Outgoing _ _ => false
       | S _ _ _ => true
       end)
    e.

(** [compat_left r l e] returns true if all equations in [e] that involve
    [r] are of the form [r = l [Full]]. *)

Definition compat_left (r: reg) (l: loc) (e: eqs) : bool :=
  EqSet.for_all_between
    (fun q =>
        match ekind q with
        | Full => Loc.eq l (eloc q)
        | _ => false
        end)
    (select_reg_l r) (select_reg_h r)
    (eqs1 e).

(** [compat_left2 r l1 l2 e] returns true if all equations in [e] that involve
    [r] are of the form [r = l1 [High]] or [r = l2 [Low]]. *)

Definition compat_left2 (r: reg) (l1 l2: loc) (e: eqs) : bool :=
  EqSet.for_all_between
    (fun q =>
        match ekind q with
        | High => Loc.eq l1 (eloc q)
        | Low => Loc.eq l2 (eloc q)
        | _ => false
        end)
    (select_reg_l r) (select_reg_h r)
    (eqs1 e).

(** [ros_compatible_tailcall ros] returns true if [ros] is a function
  name or a caller-save register.  This is used to check [Itailcall]
  instructions. *)

Definition ros_compatible_tailcall (ros: mreg + ident) : bool :=
  match ros with
  | inl r => In_dec mreg_eq r destroyed_at_call
  | inr id => true
  end.

(** * The validator *)

Definition destroyed_by_move (src dst: loc) :=
  match src, dst with
  | S sl ofs ty, _ => destroyed_by_getstack sl
  | _, S sl ofs ty => destroyed_by_setstack ty
  | _, _ => destroyed_by_op Omove
  end.

Definition well_typed_move (env: regenv) (dst: loc) (e: eqs) : bool :=
  match dst with
  | R r => true
  | S sl ofs ty => loc_type_compat env dst e
  end.

(** Simulate the effect of a sequence of moves [mv] on a set of
  equations [e].  The set [e] is the equations that must hold
  after the sequence of moves.  Return the set of equations that
  must hold before the sequence of moves.  Return [None] if the
  set of equations [e] cannot hold after the sequence of moves. *)

Fixpoint track_moves (env: regenv) (mv: moves) (e: eqs) : option eqs :=
  match mv with
  | nil => Some e
  | (src, dst) :: mv =>
      do e1 <- track_moves env mv e;
      assertion (can_undef_except dst (destroyed_by_move src dst)) e1;
      assertion (well_typed_move env dst e1);
      subst_loc dst src e1
  end.

(** [transfer_use_def args res args' res' undefs e] returns the set
  of equations that must hold "before" in order for the equations [e]
  to hold "after" the execution of RTL and LTL code of the following form:
<<
                RTL                            LTL
         use pseudoregs args            use machine registers args'
         define pseudoreg res           undefine machine registers undef
                                        define machine register res'
>>
  As usual, [None] is returned if the equations [e] cannot hold after
  this execution.
*)

Definition transfer_use_def (args: list reg) (res: reg) (args': list mreg) (res': mreg)
                            (undefs: list mreg) (e: eqs) : option eqs :=
  let e1 := remove_equation (Eq Full res (R res')) e in
  assertion (reg_loc_unconstrained res (R res') e1);
  assertion (can_undef undefs e1);
  add_equations args args' e1.

Definition kind_first_word := if Archi.big_endian then High else Low.
Definition kind_second_word := if Archi.big_endian then Low else High.

(** The core transfer function.  It takes a set [e] of equations that must
  hold "after" and a block shape [shape] representing a matching pair
  of an RTL instruction and an LTL basic block.  It returns the set of
  equations that must hold "before" these instructions, or [None] if
  impossible. *)

Definition transfer_aux (f: RTL.function) (env: regenv)
                        (shape: block_shape) (e: eqs) : option eqs :=
  match shape with
  | BSnop mv s =>
      track_moves env mv e
  | BSmove src dst mv s =>
      track_moves env mv (subst_reg dst src e)
  | BSmakelong src1 src2 dst mv s =>
      let e1 := subst_reg_kind dst High src1 Full e in
      let e2 := subst_reg_kind dst Low src2 Full e1 in
      assertion (reg_unconstrained dst e2);
      track_moves env mv e2
  | BSlowlong src dst mv s =>
      let e1 := subst_reg_kind dst Full src Low e in
      assertion (reg_unconstrained dst e1);
      track_moves env mv e1
  | BShighlong src dst mv s =>
      let e1 := subst_reg_kind dst Full src High e in
      assertion (reg_unconstrained dst e1);
      track_moves env mv e1
  | BSop op args res mv1 args' res' mv2 s =>
      do e1 <- track_moves env mv2 e;
      do e2 <- transfer_use_def args res args' res' (destroyed_by_op op) e1;
      track_moves env mv1 e2
  | BSopdead op args res mv s =>
      assertion (reg_unconstrained res e);
      track_moves env mv e
  | BSload chunk addr args dst mv1 args' dst' mv2 s =>
      do e1 <- track_moves env mv2 e;
      do e2 <- transfer_use_def args dst args' dst' (destroyed_by_load chunk addr) e1;
      track_moves env mv1 e2
  | BSload2 addr addr' args dst mv1 args1' dst1' mv2 args2' dst2' mv3 s =>
      do e1 <- track_moves env mv3 e;
      let e2 := remove_equation (Eq kind_second_word dst (R dst2')) e1 in
      assertion (loc_unconstrained (R dst2') e2);
      assertion (can_undef (destroyed_by_load Mint32 addr') e2);
      do e3 <- add_equations args args2' e2;
      do e4 <- track_moves env mv2 e3;
      let e5 := remove_equation (Eq kind_first_word dst (R dst1')) e4 in
      assertion (loc_unconstrained (R dst1') e5);
      assertion (can_undef (destroyed_by_load Mint32 addr) e5);
      assertion (reg_unconstrained dst e5);
      do e6 <- add_equations args args1' e5;
      track_moves env mv1 e6
  | BSload2_1 addr args dst mv1 args' dst' mv2 s =>
      do e1 <- track_moves env mv2 e;
      let e2 := remove_equation (Eq kind_first_word dst (R dst')) e1 in
      assertion (reg_loc_unconstrained dst (R dst') e2);
      assertion (can_undef (destroyed_by_load Mint32 addr) e2);
      do e3 <- add_equations args args' e2;
      track_moves env mv1 e3
  | BSload2_2 addr addr' args dst mv1 args' dst' mv2 s =>
      do e1 <- track_moves env mv2 e;
      let e2 := remove_equation (Eq kind_second_word dst (R dst')) e1 in
      assertion (reg_loc_unconstrained dst (R dst') e2);
      assertion (can_undef (destroyed_by_load Mint32 addr') e2);
      do e3 <- add_equations args args' e2;
      track_moves env mv1 e3
  | BSloaddead chunk addr args dst mv s =>
      assertion (reg_unconstrained dst e);
      track_moves env mv e
  | BSstore chunk addr args src mv args' src' s =>
      assertion (can_undef (destroyed_by_store chunk addr) e);
      do e1 <- add_equations (src :: args) (src' :: args') e;
      track_moves env mv e1
  | BSstore2 addr addr' args src mv1 args1' src1' mv2 args2' src2' s =>
      assertion (can_undef (destroyed_by_store Mint32 addr') e);
      do e1 <- add_equations args args2' 
                  (add_equation (Eq kind_second_word src (R src2')) e);
      do e2 <- track_moves env mv2 e1;
      assertion (can_undef (destroyed_by_store Mint32 addr) e2);
      do e3 <- add_equations args args1' 
                  (add_equation (Eq kind_first_word src (R src1')) e2);
      track_moves env mv1 e3
  | BScall sg ros args res mv1 ros' mv2 s =>
      let args' := loc_arguments sg in
      let res' := map R (loc_result sg) in
      do e1 <- track_moves env mv2 e;
      do e2 <- remove_equations_res res (sig_res sg) res' e1;
      assertion (forallb (fun l => reg_loc_unconstrained res l e2) res');
      assertion (no_caller_saves e2);
      do e3 <- add_equation_ros ros ros' e2;
      do e4 <- add_equations_args args (sig_args sg) args' e3;
      track_moves env mv1 e4
  | BStailcall sg ros args mv1 ros' =>
      let args' := loc_arguments sg in
      assertion (tailcall_is_possible sg);
      assertion (opt_typ_eq sg.(sig_res) f.(RTL.fn_sig).(sig_res));
      assertion (ros_compatible_tailcall ros');
      do e1 <- add_equation_ros ros ros' empty_eqs;
      do e2 <- add_equations_args args (sig_args sg) args' e1;
      track_moves env mv1 e2
  | BSbuiltin ef args res mv1 args' res' mv2 s =>
      do e1 <- track_moves env mv2 e;
      let args' := map R args' in
      let res' := map R res' in
      do e2 <- remove_equations_res res (sig_res (ef_sig ef)) res' e1;
      assertion (reg_unconstrained res e2);
      assertion (forallb (fun l => loc_unconstrained l e2) res');
      assertion (can_undef (destroyed_by_builtin ef) e2);
      do e3 <- add_equations_args args (sig_args (ef_sig ef)) args' e2;
      track_moves env mv1 e3
  | BSannot txt typ args res mv1 args' s =>
      do e1 <- add_equations_args args (annot_args_typ typ) args' e;
      track_moves env mv1 e1
  | BScond cond args mv args' s1 s2 =>
      assertion (can_undef (destroyed_by_cond cond) e);
      do e1 <- add_equations args args' e;
      track_moves env mv e1
  | BSjumptable arg mv arg' tbl =>
      assertion (can_undef destroyed_by_jumptable e);
      track_moves env mv (add_equation (Eq Full arg (R arg')) e)
  | BSreturn None mv =>
      track_moves env mv empty_eqs
  | BSreturn (Some arg) mv =>
      let arg' := map R (loc_result (RTL.fn_sig f)) in
      do e1 <- add_equations_res arg (sig_res (RTL.fn_sig f)) arg' empty_eqs;
      track_moves env mv e1
  end.

(** The main transfer function for the dataflow analysis.  Like [transfer_aux],
  it infers the equations that must hold "before" as a function of the
  equations that must hold "after".  It also handles error propagation
  and reporting. *)

Definition transfer (f: RTL.function) (env: regenv) (shapes: PTree.t block_shape)
                    (pc: node) (after: res eqs) : res eqs :=
  match after with
  | Error _ => after
  | OK e =>
      match shapes!pc with
      | None => Error(MSG "At PC " :: POS pc :: MSG ": unmatched block" :: nil)
      | Some shape =>
          match transfer_aux f env shape e with
          | None => Error(MSG "At PC " :: POS pc :: MSG ": invalid register allocation" :: nil)
          | Some e' => OK e'
          end
      end
  end.

(** The semilattice for dataflow analysis.  Operates on analysis results
  of type [res eqs], that is, either a set of equations or an error
  message.  Errors correspond to [Top].  Sets of equations are ordered
  by inclusion. *)

Module LEq <: SEMILATTICE.

  Definition t := res eqs.

  Definition eq (x y: t) :=
    match x, y with
    | OK a, OK b => EqSet.Equal a b
    | Error _, Error _ => True
    | _, _ => False
    end.

  Lemma eq_refl: forall x, eq x x.
  Proof.
    intros; destruct x; simpl; auto. red; tauto. 
  Qed.

  Lemma eq_sym: forall x y, eq x y -> eq y x.
  Proof.
    unfold eq; intros; destruct x; destruct y; auto. 
    red in H; red; intros. rewrite H; tauto.
  Qed. 

  Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
  Proof.
    unfold eq; intros. destruct x; destruct y; try contradiction; destruct z; auto.
    red in H; red in H0; red; intros. rewrite H. auto. 
  Qed.

  Definition beq (x y: t) := 
    match x, y with
    | OK a, OK b => EqSet.equal a b
    | Error _, Error _ => true
    | _, _ => false
    end.

  Lemma beq_correct: forall x y, beq x y = true -> eq x y.
  Proof.
    unfold beq, eq; intros. destruct x; destruct y. 
    apply EqSet.equal_2. auto.
    discriminate.
    discriminate.
    auto.
  Qed.

  Definition ge (x y: t) := 
    match x, y with
    | OK a, OK b => EqSet.Subset b a
    | Error _, _ => True
    | _, Error _ => False
    end.

  Lemma ge_refl: forall x y, eq x y -> ge x y.
  Proof.
    unfold eq, ge, EqSet.Equal, EqSet.Subset; intros. 
    destruct x; destruct y; auto. intros; rewrite H; auto.
  Qed.
  Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
  Proof.
    unfold ge, EqSet.Subset; intros.
    destruct x; auto; destruct y; try contradiction.
    destruct z; eauto. 
  Qed.

  Definition bot: t := OK empty_eqs.
 
  Lemma ge_bot: forall x, ge x bot.
  Proof.
    unfold ge, bot, EqSet.Subset; simpl; intros.
    destruct x; auto. intros. elim (EqSet.empty_1 H).
  Qed.

  Program Definition lub (x y: t) : t :=
    match x, y return _ with
    | OK a, OK b =>
        OK (mkeqs (EqSet.union (eqs1 a) (eqs1 b))
                  (EqSet2.union (eqs2 a) (eqs2 b)) _)
    | OK _, Error _ => y
    | Error _, _ => x
    end.
  Next Obligation.
    split; intros. 
    apply EqSet2.union_1 in H. destruct H; rewrite eqs_same in H. 
    apply EqSet.union_2; auto. apply EqSet.union_3; auto.
    apply EqSet.union_1 in H. destruct H; rewrite <- eqs_same in H. 
    apply EqSet2.union_2; auto. apply EqSet2.union_3; auto.
  Qed.

  Lemma ge_lub_left: forall x y, ge (lub x y) x.
  Proof.
    unfold lub, ge, EqSet.Subset; intros. 
    destruct x; destruct y; auto. 
    intros; apply EqSet.union_2; auto. 
  Qed.

  Lemma ge_lub_right: forall x y, ge (lub x y) y.
  Proof.
    unfold lub, ge, EqSet.Subset; intros. 
    destruct x; destruct y; auto. 
    intros; apply EqSet.union_3; auto. 
  Qed.

End LEq.

(** The backward dataflow solver is an instantiation of Kildall's algorithm. *)

Module DS := Backward_Dataflow_Solver(LEq)(NodeSetBackward).

(** The control-flow graph that the solver operates on is the CFG of
  block shapes built by the structural check phase.  Here is its notion
  of successors. *)

Definition successors_block_shape (bsh: block_shape) : list node :=
  match bsh with
  | BSnop mv s => s :: nil
  | BSmove src dst mv s => s :: nil
  | BSmakelong src1 src2 dst mv s => s :: nil
  | BSlowlong src dst mv s => s :: nil
  | BShighlong src dst mv s => s :: nil
  | BSop op args res mv1 args' res' mv2 s => s :: nil
  | BSopdead op args res mv s => s :: nil
  | BSload chunk addr args dst mv1 args' dst' mv2 s => s :: nil
  | BSload2 addr addr' args dst mv1 args1' dst1' mv2 args2' dst2' mv3 s => s :: nil
  | BSload2_1 addr args dst mv1 args' dst' mv2 s => s :: nil
  | BSload2_2 addr addr' args dst mv1 args' dst' mv2 s => s :: nil
  | BSloaddead chunk addr args dst mv s => s :: nil
  | BSstore chunk addr args src mv1 args' src' s => s :: nil
  | BSstore2 addr addr' args src mv1 args1' src1' mv2 args2' src2' s => s :: nil
  | BScall sg ros args res mv1 ros' mv2 s => s :: nil
  | BStailcall sg ros args mv1 ros' => nil
  | BSbuiltin ef args res mv1 args' res' mv2 s => s :: nil
  | BSannot txt typ args res mv1 args' s => s :: nil
  | BScond cond args mv args' s1 s2 => s1 :: s2 :: nil
  | BSjumptable arg mv arg' tbl => tbl
  | BSreturn optarg mv => nil
  end.

Definition analyze (f: RTL.function) (env: regenv) (bsh: PTree.t block_shape) :=
  DS.fixpoint_allnodes bsh successors_block_shape (transfer f env bsh).

(** * Validating and translating functions and programs *)

(** Checking equations at function entry point.  The RTL function receives
  its arguments in the list [rparams] of pseudoregisters.  The LTL function
  receives them in the list [lparams] of locations dictated by the
  calling conventions, with arguments of type [Tlong] being split in
  two 32-bit halves.  We check that the equations [e] that must hold
  at the beginning of the functions are compatible with these calling
  conventions, in the sense that all equations involving a pseudoreg
  [r] from [rparams] is of the form [r = l [Full]] or [r = l [Low]]
  or [r = l [High]], where [l] is the corresponding element of [lparams].

  Note that [e] can contain additional equations [r' = l [kind]]
  involving pseudoregs [r'] not in [rparams]: these equations are
  automatically satisfied since the initial value of [r'] is [Vundef]. *)

Function compat_entry (rparams: list reg) (tys: list typ) (lparams: list loc) (e: eqs)
                      {struct rparams} : bool :=
  match rparams, tys, lparams with
  | nil, nil, nil => true
  | r1 :: rl, Tlong :: tyl, l1 :: l2 :: ll =>
      compat_left2 r1 l1 l2 e && compat_entry rl tyl ll e
  | r1 :: rl, (Tint|Tfloat|Tsingle) :: tyl, l1 :: ll =>
      compat_left r1 l1 e && compat_entry rl tyl ll e
  | _, _, _ => false
  end.

(** Checking the satisfiability of equations inferred at function entry
  point.  We also check that the RTL and LTL functions agree in signature
  and stack size. *)

Definition check_entrypoints_aux (rtl: RTL.function) (ltl: LTL.function)
                                 (env: regenv) (e1: eqs) : option unit :=
  do mv <- pair_entrypoints rtl ltl;
  do e2 <- track_moves env mv e1;
  assertion (compat_entry (RTL.fn_params rtl)
                          (sig_args (RTL.fn_sig rtl))
                          (loc_parameters (RTL.fn_sig rtl)) e2);
  assertion (can_undef destroyed_at_function_entry e2);
  assertion (zeq (RTL.fn_stacksize rtl) (LTL.fn_stacksize ltl));
  assertion (signature_eq (RTL.fn_sig rtl) (LTL.fn_sig ltl));
  Some tt.

Local Close Scope option_monad_scope.
Local Open Scope error_monad_scope.

Definition check_entrypoints (rtl: RTL.function) (ltl: LTL.function)
                             (env: regenv) (bsh: PTree.t block_shape)
                             (a: PMap.t LEq.t): res unit :=
  do e1 <- transfer rtl env bsh (RTL.fn_entrypoint rtl) a!!(RTL.fn_entrypoint rtl);
  match check_entrypoints_aux rtl ltl env e1 with
  | None => Error (msg "invalid register allocation at entry point")
  | Some _ => OK tt
  end.

(** Putting it all together, this is the validation function for
  a source RTL function and an LTL function generated by the external
  register allocator. *)

Definition check_function (rtl: RTL.function) (ltl: LTL.function) (env: regenv): res unit :=
  let bsh := pair_codes rtl ltl in
  match analyze rtl env bsh with
  | None => Error (msg "allocation analysis diverges")
  | Some a => check_entrypoints rtl ltl env bsh a
  end.

(** [regalloc] is the external register allocator.  It is written in OCaml
  in file [backend/Regalloc.ml]. *)

Parameter regalloc: RTL.function -> res LTL.function.

(** Register allocation followed by validation. *)

Definition transf_function (f: RTL.function) : res LTL.function :=
  match type_function f with
  | Error m => Error m
  | OK env =>
      match regalloc f with
      | Error m => Error m
      | OK tf => do x <- check_function f tf env; OK tf
      end
  end.

Definition transf_fundef (fd: RTL.fundef) : res LTL.fundef :=
  AST.transf_partial_fundef transf_function fd.

Definition transf_program (p: RTL.program) : res LTL.program :=
  transform_partial_program transf_fundef p.