summaryrefslogtreecommitdiff
path: root/arm/Asmgenproof1.v
blob: 32fedf315b478af765b70d5c9ef9736311d14e61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness proof for ARM code generation: auxiliary results. *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Mem.
Require Import Globalenvs.
Require Import Op.
Require Import Locations.
Require Import Mach.
Require Import Machconcr.
Require Import Machtyping.
Require Import Asm.
Require Import Asmgen.
Require Conventions.

(** * Correspondence between Mach registers and PPC registers *)

Hint Extern 2 (_ <> _) => discriminate: ppcgen.

(** Mapping from Mach registers to PPC registers. *)

Lemma preg_of_injective:
  forall r1 r2, preg_of r1 = preg_of r2 -> r1 = r2.
Proof.
  destruct r1; destruct r2; simpl; intros; reflexivity || discriminate.
Qed.

(** Characterization of PPC registers that correspond to Mach registers. *)

Definition is_data_reg (r: preg) : Prop :=
  match r with
  | IR IR14 => False
  | CR _ => False
  | PC => False
  | _ => True
  end.

Lemma ireg_of_is_data_reg:
  forall (r: mreg), is_data_reg (ireg_of r).
Proof.
  destruct r; exact I.
Qed.

Lemma freg_of_is_data_reg:
  forall (r: mreg), is_data_reg (ireg_of r).
Proof.
  destruct r; exact I.
Qed.

Lemma preg_of_is_data_reg:
  forall (r: mreg), is_data_reg (preg_of r).
Proof.
  destruct r; exact I.
Qed.

Lemma ireg_of_not_IR13:
  forall r, ireg_of r <> IR13.
Proof.
  intro. case r; discriminate.
Qed.
Lemma ireg_of_not_IR14:
  forall r, ireg_of r <> IR14.
Proof.
  intro. case r; discriminate.
Qed.

Hint Resolve ireg_of_not_IR13 ireg_of_not_IR14: ppcgen.

Lemma preg_of_not:
  forall r1 r2, ~(is_data_reg r2) -> preg_of r1 <> r2.
Proof.
  intros; red; intro. subst r2. elim H. apply preg_of_is_data_reg.
Qed.
Hint Resolve preg_of_not: ppcgen.

Lemma preg_of_not_IR13:
  forall r, preg_of r <> IR13.
Proof.
  intro. case r; discriminate.
Qed.
Hint Resolve preg_of_not_IR13: ppcgen.

(** Agreement between Mach register sets and PPC register sets. *)

Definition agree (ms: Mach.regset) (sp: val) (rs: Asm.regset) :=
  rs#IR13 = sp /\ forall r: mreg, ms r = rs#(preg_of r).

Lemma preg_val:
  forall ms sp rs r,
  agree ms sp rs -> ms r = rs#(preg_of r).
Proof.
  intros. elim H. auto.
Qed.
  
Lemma ireg_val:
  forall ms sp rs r,
  agree ms sp rs ->
  mreg_type r = Tint ->
  ms r = rs#(ireg_of r).
Proof.
  intros. elim H; intros.
  generalize (H2 r). unfold preg_of. rewrite H0. auto.
Qed.

Lemma freg_val:
  forall ms sp rs r,
  agree ms sp rs ->
  mreg_type r = Tfloat ->
  ms r = rs#(freg_of r).
Proof.
  intros. elim H; intros.
  generalize (H2 r). unfold preg_of. rewrite H0. auto.
Qed.

Lemma sp_val:
  forall ms sp rs,
  agree ms sp rs ->
  sp = rs#IR13.
Proof.
  intros. elim H; auto.
Qed.

Lemma agree_exten_1:
  forall ms sp rs rs',
  agree ms sp rs ->
  (forall r, is_data_reg r -> rs'#r = rs#r) ->
  agree ms sp rs'.
Proof.
  unfold agree; intros. elim H; intros.
  split. rewrite H0. auto. exact I. 
  intros. rewrite H0. auto. apply preg_of_is_data_reg.
Qed.

Lemma agree_exten_2:
  forall ms sp rs rs',
  agree ms sp rs ->
  (forall r, r <> PC -> r <> IR14 -> rs'#r = rs#r) ->
  agree ms sp rs'.
Proof.
  intros. eapply agree_exten_1; eauto. 
  intros. apply H0; red; intro; subst r; elim H1.
Qed.

(** Preservation of register agreement under various assignments. *)

Lemma agree_set_mreg:
  forall ms sp rs r v,
  agree ms sp rs ->
  agree (Regmap.set r v ms) sp (rs#(preg_of r) <- v).
Proof.
  unfold agree; intros. elim H; intros; clear H.
  split. rewrite Pregmap.gso. auto. apply sym_not_eq. apply preg_of_not_IR13.
  intros. unfold Regmap.set. case (RegEq.eq r0 r); intro.
  subst r0. rewrite Pregmap.gss. auto.
  rewrite Pregmap.gso. auto. red; intro. 
  elim n. apply preg_of_injective; auto.
Qed.
Hint Resolve agree_set_mreg: ppcgen.

Lemma agree_set_mireg:
  forall ms sp rs r v,
  agree ms sp (rs#(preg_of r) <- v) ->
  mreg_type r = Tint ->
  agree ms sp (rs#(ireg_of r) <- v).
Proof.
  intros. unfold preg_of in H. rewrite H0 in H. auto.
Qed.
Hint Resolve agree_set_mireg: ppcgen.

Lemma agree_set_mfreg:
  forall ms sp rs r v,
  agree ms sp (rs#(preg_of r) <- v) ->
  mreg_type r = Tfloat ->
  agree ms sp (rs#(freg_of r) <- v).
Proof.
  intros. unfold preg_of in H. rewrite H0 in H. auto.
Qed.
Hint Resolve agree_set_mfreg: ppcgen.

Lemma agree_set_other:
  forall ms sp rs r v,
  agree ms sp rs ->
  ~(is_data_reg r) ->
  agree ms sp (rs#r <- v).
Proof.
  intros. apply agree_exten_1 with rs.
  auto. intros. apply Pregmap.gso. red; intro; subst r0; contradiction.
Qed.
Hint Resolve agree_set_other: ppcgen.

Lemma agree_nextinstr:
  forall ms sp rs,
  agree ms sp rs -> agree ms sp (nextinstr rs).
Proof.
  intros. unfold nextinstr. apply agree_set_other. auto. auto.
Qed.
Hint Resolve agree_nextinstr: ppcgen.

Lemma agree_set_mireg_twice:
  forall ms sp rs r v v',
  agree ms sp rs ->
  mreg_type r = Tint ->
  agree (Regmap.set r v ms) sp (rs #(ireg_of r) <- v' #(ireg_of r) <- v).
Proof.
  intros. replace (IR (ireg_of r)) with (preg_of r). elim H; intros.
  split. repeat (rewrite Pregmap.gso; auto with ppcgen).
  intros. case (mreg_eq r r0); intro.
  subst r0. rewrite Regmap.gss. rewrite Pregmap.gss. auto.
  assert (preg_of r <> preg_of r0). 
    red; intro. elim n. apply preg_of_injective. auto.
  rewrite Regmap.gso; auto.
  repeat (rewrite Pregmap.gso; auto).
  unfold preg_of. rewrite H0. auto.
Qed.
Hint Resolve agree_set_mireg_twice: ppcgen.

Lemma agree_set_twice_mireg:
  forall ms sp rs r v v',
  agree (Regmap.set r v' ms) sp rs ->
  mreg_type r = Tint ->
  agree (Regmap.set r v ms) sp (rs#(ireg_of r) <- v).
Proof.
  intros. elim H; intros.
  split. rewrite Pregmap.gso. auto. 
  generalize (ireg_of_not_IR13 r); congruence.
  intros. generalize (H2 r0). 
  case (mreg_eq r0 r); intro.
  subst r0. repeat rewrite Regmap.gss. unfold preg_of; rewrite H0.
  rewrite Pregmap.gss. auto.
  repeat rewrite Regmap.gso; auto.
  rewrite Pregmap.gso. auto. 
  replace (IR (ireg_of r)) with (preg_of r).
  red; intros. elim n. apply preg_of_injective; auto.
  unfold preg_of. rewrite H0. auto.
Qed.
Hint Resolve agree_set_twice_mireg: ppcgen.

Lemma agree_set_commut:
  forall ms sp rs r1 r2 v1 v2,
  r1 <> r2 ->
  agree ms sp ((rs#r2 <- v2)#r1 <- v1) ->
  agree ms sp ((rs#r1 <- v1)#r2 <- v2).
Proof.
  intros. apply agree_exten_1 with ((rs#r2 <- v2)#r1 <- v1). auto.
  intros. 
  case (preg_eq r r1); intro.
  subst r1. rewrite Pregmap.gss. rewrite Pregmap.gso. rewrite Pregmap.gss.
  auto. auto.
  case (preg_eq r r2); intro.
  subst r2. rewrite Pregmap.gss. rewrite Pregmap.gso. rewrite Pregmap.gss.
  auto. auto.
  repeat (rewrite Pregmap.gso; auto). 
Qed. 
Hint Resolve agree_set_commut: ppcgen.

Lemma agree_nextinstr_commut:
  forall ms sp rs r v,
  agree ms sp (rs#r <- v) ->
  r <> PC ->
  agree ms sp ((nextinstr rs)#r <- v).
Proof.
  intros. unfold nextinstr. apply agree_set_commut. auto. 
  apply agree_set_other. auto. auto. 
Qed.
Hint Resolve agree_nextinstr_commut: ppcgen.

Lemma agree_set_mireg_exten:
  forall ms sp rs r v (rs': regset),
  agree ms sp rs ->
  mreg_type r = Tint ->
  rs'#(ireg_of r) = v ->
  (forall r', r' <> PC -> r' <> ireg_of r -> r' <> IR14 -> rs'#r' = rs#r') ->
  agree (Regmap.set r v ms) sp rs'.
Proof.
  intros. apply agree_exten_2 with (rs#(ireg_of r) <- v).
  auto with ppcgen.
  intros. unfold Pregmap.set. case (PregEq.eq r0 (ireg_of r)); intro.
  subst r0. auto. apply H2; auto.
Qed.

(** Useful properties of the PC and GPR0 registers. *)

Lemma nextinstr_inv:
  forall r rs, r <> PC -> (nextinstr rs)#r = rs#r.
Proof.
  intros. unfold nextinstr. apply Pregmap.gso. auto.
Qed.
Hint Resolve nextinstr_inv: ppcgen.

Lemma nextinstr_set_preg:
  forall rs m v,
  (nextinstr (rs#(preg_of m) <- v))#PC = Val.add rs#PC Vone.
Proof.
  intros. unfold nextinstr. rewrite Pregmap.gss. 
  rewrite Pregmap.gso. auto. apply sym_not_eq. auto with ppcgen.
Qed.
Hint Resolve nextinstr_set_preg: ppcgen.

(** Connection between Mach and Asm calling conventions for external
    functions. *)

Lemma extcall_arg_match:
  forall ms sp rs m l v,
  agree ms sp rs ->
  Machconcr.extcall_arg ms m sp l v ->
  Asm.extcall_arg rs m l v.
Proof.
  intros. inv H0. 
  rewrite (preg_val _ _ _ r H). constructor.
  rewrite (sp_val _ _ _ H) in H1.
  destruct ty; unfold load_stack in H1.
  econstructor. reflexivity. assumption.
  econstructor. reflexivity. assumption.
Qed.

Lemma extcall_args_match:
  forall ms sp rs m, agree ms sp rs ->
  forall ll vl,
  Machconcr.extcall_args ms m sp ll vl ->
  Asm.extcall_args rs m ll vl.
Proof.
  induction 2; constructor; auto. eapply extcall_arg_match; eauto.
Qed.

Lemma extcall_arguments_match:
  forall ms m sp rs sg args,
  agree ms sp rs ->
  Machconcr.extcall_arguments ms m sp sg args ->
  Asm.extcall_arguments rs m sg args.
Proof.
  unfold Machconcr.extcall_arguments, Asm.extcall_arguments; intros.
  eapply extcall_args_match; eauto.
Qed.

(** * Execution of straight-line code *)

Section STRAIGHTLINE.

Variable ge: genv.
Variable fn: code.

(** Straight-line code is composed of PPC instructions that execute
  in sequence (no branches, no function calls and returns).
  The following inductive predicate relates the machine states
  before and after executing a straight-line sequence of instructions.
  Instructions are taken from the first list instead of being fetched
  from memory. *)

Inductive exec_straight: code -> regset -> mem -> 
                         code -> regset -> mem -> Prop :=
  | exec_straight_one:
      forall i1 c rs1 m1 rs2 m2,
      exec_instr ge fn i1 rs1 m1 = OK rs2 m2 ->
      rs2#PC = Val.add rs1#PC Vone ->
      exec_straight (i1 :: c) rs1 m1 c rs2 m2
  | exec_straight_step:
      forall i c rs1 m1 rs2 m2 c' rs3 m3,
      exec_instr ge fn i rs1 m1 = OK rs2 m2 ->
      rs2#PC = Val.add rs1#PC Vone ->
      exec_straight c rs2 m2 c' rs3 m3 ->
      exec_straight (i :: c) rs1 m1 c' rs3 m3.

Lemma exec_straight_trans:
  forall c1 rs1 m1 c2 rs2 m2 c3 rs3 m3,
  exec_straight c1 rs1 m1 c2 rs2 m2 ->
  exec_straight c2 rs2 m2 c3 rs3 m3 ->
  exec_straight c1 rs1 m1 c3 rs3 m3.
Proof.
  induction 1; intros.
  apply exec_straight_step with rs2 m2; auto.
  apply exec_straight_step with rs2 m2; auto.
Qed.

Lemma exec_straight_two:
  forall i1 i2 c rs1 m1 rs2 m2 rs3 m3,
  exec_instr ge fn i1 rs1 m1 = OK rs2 m2 ->
  exec_instr ge fn i2 rs2 m2 = OK rs3 m3 ->
  rs2#PC = Val.add rs1#PC Vone ->
  rs3#PC = Val.add rs2#PC Vone ->
  exec_straight (i1 :: i2 :: c) rs1 m1 c rs3 m3.
Proof.
  intros. apply exec_straight_step with rs2 m2; auto.
  apply exec_straight_one; auto.
Qed.

Lemma exec_straight_three:
  forall i1 i2 i3 c rs1 m1 rs2 m2 rs3 m3 rs4 m4,
  exec_instr ge fn i1 rs1 m1 = OK rs2 m2 ->
  exec_instr ge fn i2 rs2 m2 = OK rs3 m3 ->
  exec_instr ge fn i3 rs3 m3 = OK rs4 m4 ->
  rs2#PC = Val.add rs1#PC Vone ->
  rs3#PC = Val.add rs2#PC Vone ->
  rs4#PC = Val.add rs3#PC Vone ->
  exec_straight (i1 :: i2 :: i3 :: c) rs1 m1 c rs4 m4.
Proof.
  intros. apply exec_straight_step with rs2 m2; auto.
  eapply exec_straight_two; eauto.
Qed.

Lemma exec_straight_four:
  forall i1 i2 i3 i4 c rs1 m1 rs2 m2 rs3 m3 rs4 m4 rs5 m5,
  exec_instr ge fn i1 rs1 m1 = OK rs2 m2 ->
  exec_instr ge fn i2 rs2 m2 = OK rs3 m3 ->
  exec_instr ge fn i3 rs3 m3 = OK rs4 m4 ->
  exec_instr ge fn i4 rs4 m4 = OK rs5 m5 ->
  rs2#PC = Val.add rs1#PC Vone ->
  rs3#PC = Val.add rs2#PC Vone ->
  rs4#PC = Val.add rs3#PC Vone ->
  rs5#PC = Val.add rs4#PC Vone ->
  exec_straight (i1 :: i2 :: i3 :: i4 :: c) rs1 m1 c rs5 m5.
Proof.
  intros. apply exec_straight_step with rs2 m2; auto.
  eapply exec_straight_three; eauto.
Qed.

(** * Correctness of ARM constructor functions *)

(** Properties of comparisons. *)
(*
Lemma compare_float_spec:
  forall rs v1 v2,
  let rs1 := nextinstr (compare_float rs v1 v2) in
     rs1#CR0_0 = Val.cmpf Clt v1 v2
  /\ rs1#CR0_1 = Val.cmpf Cgt v1 v2
  /\ rs1#CR0_2 = Val.cmpf Ceq v1 v2
  /\ forall r', r' <> PC -> r' <> CR0_0 -> r' <> CR0_1 ->
       r' <> CR0_2 -> r' <> CR0_3 -> rs1#r' = rs#r'.
Proof.
  intros. unfold rs1.
  split. reflexivity.
  split. reflexivity.
  split. reflexivity.
  intros. rewrite nextinstr_inv; auto.
  unfold compare_float. repeat (rewrite Pregmap.gso; auto).
Qed.

Lemma compare_sint_spec:
  forall rs v1 v2,
  let rs1 := nextinstr (compare_sint rs v1 v2) in
     rs1#CR0_0 = Val.cmp Clt v1 v2
  /\ rs1#CR0_1 = Val.cmp Cgt v1 v2
  /\ rs1#CR0_2 = Val.cmp Ceq v1 v2
  /\ forall r', r' <> PC -> r' <> CR0_0 -> r' <> CR0_1 ->
       r' <> CR0_2 -> r' <> CR0_3 -> rs1#r' = rs#r'.
Proof.
  intros. unfold rs1.
  split. reflexivity.
  split. reflexivity.
  split. reflexivity.
  intros. rewrite nextinstr_inv; auto.
  unfold compare_sint. repeat (rewrite Pregmap.gso; auto).
Qed.

Lemma compare_uint_spec:
  forall rs v1 v2,
  let rs1 := nextinstr (compare_uint rs v1 v2) in
     rs1#CR0_0 = Val.cmpu Clt v1 v2
  /\ rs1#CR0_1 = Val.cmpu Cgt v1 v2
  /\ rs1#CR0_2 = Val.cmpu Ceq v1 v2
  /\ forall r', r' <> PC -> r' <> CR0_0 -> r' <> CR0_1 ->
       r' <> CR0_2 -> r' <> CR0_3 -> rs1#r' = rs#r'.
Proof.
  intros. unfold rs1.
  split. reflexivity.
  split. reflexivity.
  split. reflexivity.
  intros. rewrite nextinstr_inv; auto.
  unfold compare_uint. repeat (rewrite Pregmap.gso; auto).
Qed.
*)

(** Loading a constant. *)

Lemma loadimm_correct:
  forall r n k rs m,
  exists rs',
     exec_straight (loadimm r n k) rs m  k rs' m
  /\ rs'#r = Vint n
  /\ forall r': preg, r' <> r -> r' <> PC -> rs'#r' = rs#r'.
Proof.
  intros. unfold loadimm.
  case (is_immed_arith n).
  (* single move *)
  exists (nextinstr (rs#r <- (Vint n))).
  split. apply exec_straight_one. reflexivity. reflexivity.  
  split. rewrite nextinstr_inv; auto with ppcgen.
   apply Pregmap.gss. 
  intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
  case (is_immed_arith (Int.not n)).
  (* single move-complement *)
  exists (nextinstr (rs#r <- (Vint n))).
  split. apply exec_straight_one.
  simpl. change (Int.xor (Int.not n) Int.mone) with (Int.not (Int.not n)).
  rewrite Int.not_involutive. auto.
  reflexivity.
  split. rewrite nextinstr_inv; auto with ppcgen.
   apply Pregmap.gss. 
  intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
  (* mov - or - or - or *)
  set (n1 := Int.and n (Int.repr 255)).
  set (n2 := Int.and n (Int.repr 65280)).
  set (n3 := Int.and n (Int.repr 16711680)).
  set (n4 := Int.and n (Int.repr 4278190080)).
  set (rs1 := nextinstr (rs#r <- (Vint n1))).
  set (rs2 := nextinstr (rs1#r <- (Val.or rs1#r (Vint n2)))).
  set (rs3 := nextinstr (rs2#r <- (Val.or rs2#r (Vint n3)))).
  set (rs4 := nextinstr (rs3#r <- (Val.or rs3#r (Vint n4)))).
  exists rs4.
  split. apply exec_straight_four with rs1 m rs2 m rs3 m; auto. 
  split. unfold rs4. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss. 
  unfold rs3. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss. 
  unfold rs2. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
  unfold rs1. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
  repeat rewrite Val.or_assoc. simpl. decEq. 
  unfold n4, n3, n2, n1. repeat rewrite <- Int.and_or_distrib. 
  change (Int.and n Int.mone = n). apply Int.and_mone.
  intros. 
  unfold rs4. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
  unfold rs3. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
  unfold rs2. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
  unfold rs1. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
Qed.

(** Add integer immediate. *)

Lemma addimm_correct:
  forall r1 r2 n k rs m,
  exists rs',
     exec_straight (addimm r1 r2 n k) rs m  k rs' m
  /\ rs'#r1 = Val.add rs#r2 (Vint n)
  /\ forall r': preg, r' <> r1 -> r' <> PC -> rs'#r' = rs#r'.
Proof.
  intros. unfold addimm.
  (* addi *)
  case (is_immed_arith n).
  exists (nextinstr (rs#r1 <- (Val.add rs#r2 (Vint n)))).
  split. apply exec_straight_one; auto.
  split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss. 
  intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
  (* subi *)
  case (is_immed_arith (Int.neg n)).
  exists (nextinstr (rs#r1 <- (Val.sub rs#r2 (Vint (Int.neg n))))).
  split. apply exec_straight_one; auto.
  split. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
    apply Val.sub_opp_add.
  intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
  (* general *)
  set (n1 := Int.and n (Int.repr 255)).
  set (n2 := Int.and n (Int.repr 65280)).
  set (n3 := Int.and n (Int.repr 16711680)).
  set (n4 := Int.and n (Int.repr 4278190080)).
  set (rs1 := nextinstr (rs#r1 <- (Val.add rs#r2 (Vint n1)))).
  set (rs2 := nextinstr (rs1#r1 <- (Val.add rs1#r1 (Vint n2)))).
  set (rs3 := nextinstr (rs2#r1 <- (Val.add rs2#r1 (Vint n3)))).
  set (rs4 := nextinstr (rs3#r1 <- (Val.add rs3#r1 (Vint n4)))).
  exists rs4.
  split. apply exec_straight_four with rs1 m rs2 m rs3 m; auto. 
  simpl. 
  split. unfold rs4. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss. 
  unfold rs3. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss. 
  unfold rs2. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
  unfold rs1. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
  repeat rewrite Val.add_assoc. simpl. decEq. decEq. 
  unfold n4, n3, n2, n1. repeat rewrite Int.add_and.
  change (Int.and n Int.mone = n). apply Int.and_mone.
  vm_compute; auto.
  vm_compute; auto.
  vm_compute; auto.
  intros.
  unfold rs4. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
  unfold rs3. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
  unfold rs2. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
  unfold rs1. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
Qed.

(* And integer immediate *)

Lemma andimm_correct:
  forall r1 r2 n k rs m,
  r2 <> IR14 ->
  exists rs',
     exec_straight (andimm r1 r2 n k) rs m  k rs' m
  /\ rs'#r1 = Val.and rs#r2 (Vint n)
  /\ forall r': preg, r' <> r1 -> r' <> IR14 -> r' <> PC -> rs'#r' = rs#r'.
Proof.
  intros. unfold andimm.
  (* andi *)
  case (is_immed_arith n).
  exists (nextinstr (rs#r1 <- (Val.and rs#r2 (Vint n)))).
  split. apply exec_straight_one; auto.
  split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss. 
  intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
  (* bici *)
  case (is_immed_arith (Int.not n)).
  exists (nextinstr (rs#r1 <- (Val.and rs#r2 (Vint n)))).
  split. apply exec_straight_one; auto. simpl.
    change (Int.xor (Int.not n) Int.mone) with (Int.not (Int.not n)).
    rewrite Int.not_involutive. auto.
  split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
  intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
  (* general *)
  exploit loadimm_correct. intros [rs' [A [B C]]].
  exists (nextinstr (rs'#r1 <- (Val.and rs#r2 (Vint n)))).
  split. eapply exec_straight_trans. eauto. apply exec_straight_one.
  simpl. rewrite B. rewrite C; auto with ppcgen. congruence.
  auto.
  split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
  intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
Qed.

(** Other integer immediate *)

Lemma makeimm_correct:
  forall (instr: ireg -> ireg -> shift_op -> instruction)
         (sem: val -> val -> val)
         r1 (r2: ireg) n k (rs : regset) m,
  (forall c r1 r2 so rs m,
   exec_instr ge c (instr r1 r2 so) rs m 
   = OK (nextinstr rs#r1 <- (sem rs#r2 (eval_shift_op so rs))) m) ->
   r2 <> IR14 ->
  exists rs',
     exec_straight (makeimm instr r1 r2 n k) rs m  k rs' m
  /\ rs'#r1 = sem rs#r2 (Vint n)
  /\ forall r': preg, r' <> r1 -> r' <> PC -> r' <> IR14 -> rs'#r' = rs#r'.
Proof.
  intros. unfold makeimm.
  case (is_immed_arith n).
  (* one immed instr *)
  exists (nextinstr (rs#r1 <- (sem rs#r2 (Vint n)))).
  split. apply exec_straight_one. 
    change (Vint n) with (eval_shift_op (SOimm n) rs). auto.
    auto.
  split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss. 
  intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
  (* general case *)
  exploit loadimm_correct. intros [rs' [A [B C]]].
  exists (nextinstr (rs'#r1 <- (sem rs#r2 (Vint n)))).
  split. eapply exec_straight_trans. eauto. apply exec_straight_one. 
    rewrite <- B. rewrite <- (C r2). 
    change (rs' IR14) with (eval_shift_op (SOreg IR14) rs'). auto.
    congruence. auto with ppcgen. auto.
  split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
  intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto with ppcgen.
Qed.

(** Indexed memory loads. *)

Lemma loadind_int_correct:
  forall (base: ireg) ofs dst (rs: regset) m v k,
  Mem.loadv Mint32 m (Val.add rs#base (Vint ofs)) = Some v ->
  exists rs',
     exec_straight (loadind_int base ofs dst k) rs m k rs' m
  /\ rs'#dst = v
  /\ forall r, r <> PC -> r <> IR14 -> r <> dst -> rs'#r = rs#r.
Proof.
  intros; unfold loadind_int. destruct (is_immed_mem_word ofs).
  exists (nextinstr (rs#dst <- v)).
  split. apply exec_straight_one. simpl. 
    unfold exec_load. rewrite H. auto. auto.
  split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
  intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
  exploit addimm_correct. intros [rs' [A [B C]]].
  exists (nextinstr (rs'#dst <- v)).
  split. eapply exec_straight_trans. eauto. apply exec_straight_one.
    simpl. unfold exec_load. rewrite B.
    rewrite Val.add_assoc. simpl. rewrite Int.add_zero.
    rewrite H. auto.
    auto.
  split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
  intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
Qed.

Lemma loadind_float_correct:
  forall (base: ireg) ofs dst (rs: regset) m v k,
  Mem.loadv Mfloat64 m (Val.add rs#base (Vint ofs)) = Some v ->
  exists rs',
     exec_straight (loadind_float base ofs dst k) rs m k rs' m
  /\ rs'#dst = v
  /\ forall r, r <> PC -> r <> IR14 -> r <> dst -> rs'#r = rs#r.
Proof.
  intros; unfold loadind_float. destruct (is_immed_mem_float ofs).
  exists (nextinstr (rs#dst <- v)).
  split. apply exec_straight_one. simpl. 
    unfold exec_load. rewrite H. auto. auto.
  split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
  intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
  exploit addimm_correct. eauto. intros [rs' [A [B C]]].
  exists (nextinstr (rs'#dst <- v)).
  split. eapply exec_straight_trans. eauto. apply exec_straight_one.
    simpl. unfold exec_load. rewrite B. rewrite Val.add_assoc. simpl. 
    rewrite Int.add_zero. rewrite H. auto. auto.
  split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
  intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
Qed.

Lemma loadind_correct:
  forall (base: ireg) ofs ty dst k (rs: regset) m v,
  Mem.loadv (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) = Some v ->
  mreg_type dst = ty ->
  exists rs',
     exec_straight (loadind base ofs ty dst k) rs m k rs' m
  /\ rs'#(preg_of dst) = v
  /\ forall r, r <> PC -> r <> IR14 -> r <> preg_of dst -> rs'#r = rs#r.
Proof.
  intros. unfold loadind. 
  assert (preg_of dst <> PC).
    unfold preg_of. case (mreg_type dst); discriminate.
  unfold preg_of. rewrite H0. destruct ty.
  apply loadind_int_correct; auto.
  apply loadind_float_correct; auto.
Qed.

(** Indexed memory stores. *)

Lemma storeind_int_correct:
  forall (base: ireg) ofs (src: ireg) (rs: regset) m m' k,
  Mem.storev Mint32 m (Val.add rs#base (Vint ofs)) (rs#src) = Some m' ->
  src <> IR14 ->
  exists rs',
     exec_straight (storeind_int src base ofs k) rs m k rs' m'
  /\ forall r, r <> PC -> r <> IR14 -> rs'#r = rs#r.
Proof.
  intros; unfold storeind_int. destruct (is_immed_mem_word ofs).
  exists (nextinstr rs).
  split. apply exec_straight_one. simpl. 
    unfold exec_store. rewrite H. auto. auto.
  intros. rewrite nextinstr_inv; auto.
  exploit addimm_correct. eauto. intros [rs' [A [B C]]].
  exists (nextinstr rs').
  split. eapply exec_straight_trans. eauto. apply exec_straight_one.
    simpl. unfold exec_store. rewrite B. rewrite C.
    rewrite Val.add_assoc. simpl. rewrite Int.add_zero. 
    rewrite H. auto. 
    congruence. auto with ppcgen. auto.
  intros. rewrite nextinstr_inv; auto.
Qed.

Lemma storeind_float_correct:
  forall (base: ireg) ofs (src: freg) (rs: regset) m m' k,
  Mem.storev Mfloat64 m (Val.add rs#base (Vint ofs)) (rs#src) = Some m' ->
  base <> IR14 ->
  exists rs',
     exec_straight (storeind_float src base ofs k) rs m k rs' m'
  /\ forall r, r <> PC -> r <> IR14 -> rs'#r = rs#r.
Proof.
  intros; unfold storeind_float. destruct (is_immed_mem_float ofs).
  exists (nextinstr rs).
  split. apply exec_straight_one. simpl. 
    unfold exec_store. rewrite H. auto. auto.
  intros. rewrite nextinstr_inv; auto.
  exploit addimm_correct. eauto. intros [rs' [A [B C]]].
  exists (nextinstr rs').
  split. eapply exec_straight_trans. eauto. apply exec_straight_one.
    simpl. unfold exec_store. rewrite B. rewrite C.
    rewrite Val.add_assoc. simpl. rewrite Int.add_zero. 
    rewrite H. auto.
    congruence. congruence. auto with ppcgen. auto.
  intros. rewrite nextinstr_inv; auto.
Qed.

Lemma storeind_correct:
  forall (base: ireg) ofs ty src k (rs: regset) m m',
  Mem.storev (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) (rs#(preg_of src)) = Some m' ->
  mreg_type src = ty ->
  base <> IR14 ->
  exists rs',
     exec_straight (storeind src base ofs ty k) rs m k rs' m'
  /\ forall r, r <> PC -> r <> IR14 -> rs'#r = rs#r.
Proof.
  intros. unfold storeind. unfold preg_of in H. rewrite H0 in H. destruct ty.
  apply storeind_int_correct. auto. auto. auto with ppcgen.
  apply storeind_float_correct. auto. auto.
Qed.

(** Translation of shift immediates *)

Lemma transl_shift_correct:
  forall s (r: ireg) (rs: regset),
  eval_shift_op (transl_shift s r) rs = eval_shift_total s (rs#r).
Proof.
  intros. destruct s; simpl;
  unfold eval_shift_total, eval_shift, Val.shl, Val.shr, Val.shru, Val.ror;
  rewrite (s_amount_ltu s); auto.
Qed.

Lemma transl_shift_addr_correct:
  forall s (r: ireg) (rs: regset),
  eval_shift_addr (transl_shift_addr s r) rs = eval_shift_total s (rs#r).
Proof.
  intros. destruct s; simpl;
  unfold eval_shift_total, eval_shift, Val.shl, Val.shr, Val.shru, Val.ror;
  rewrite (s_amount_ltu s); auto.
Qed.

(** Translation of conditions *)

Ltac TypeInv :=
  match goal with
  | H: (List.map ?f ?x = nil) |- _ =>
      destruct x; [clear H | simpl in H; discriminate]
  | H: (List.map ?f ?x = ?hd :: ?tl) |- _ =>
      destruct x; simpl in H;
      [ discriminate |
        injection H; clear H; let T := fresh "T" in (
          intros H T; TypeInv) ]
  | _ => idtac
  end.

(** Translation of conditions. *)

Lemma compare_int_spec:
  forall rs v1 v2,
  let rs1 := nextinstr (compare_int rs v1 v2) in
     rs1#CReq = (Val.cmp Ceq v1 v2)
  /\ rs1#CRne = (Val.cmp Cne v1 v2)
  /\ rs1#CRhs = (Val.cmpu Cge v1 v2)
  /\ rs1#CRlo = (Val.cmpu Clt v1 v2)
  /\ rs1#CRhi = (Val.cmpu Cgt v1 v2)
  /\ rs1#CRls = (Val.cmpu Cle v1 v2)
  /\ rs1#CRge = (Val.cmp Cge v1 v2)
  /\ rs1#CRlt = (Val.cmp Clt v1 v2)
  /\ rs1#CRgt = (Val.cmp Cgt v1 v2)
  /\ rs1#CRle = (Val.cmp Cle v1 v2)
  /\ forall r', is_data_reg r' -> rs1#r' = rs#r'.
Proof.
  intros. unfold rs1. intuition; try reflexivity. 
  rewrite nextinstr_inv; [unfold compare_int; repeat rewrite Pregmap.gso; auto | idtac];
  red; intro; subst r'; elim H.
Qed.

Lemma compare_float_spec:
  forall rs v1 v2,
  let rs' := nextinstr (compare_float rs v1 v2) in
     rs'#CReq = (Val.cmpf Ceq v1 v2)
  /\ rs'#CRne = (Val.cmpf Cne v1 v2)
  /\ rs'#CRmi = (Val.cmpf Clt v1 v2)              
  /\ rs'#CRpl = (Val.notbool (Val.cmpf Clt v1 v2))
  /\ rs'#CRhi = (Val.notbool (Val.cmpf Cle v1 v2))
  /\ rs'#CRls = (Val.cmpf Cle v1 v2)              
  /\ rs'#CRge = (Val.cmpf Cge v1 v2)              
  /\ rs'#CRlt = (Val.notbool (Val.cmpf Cge v1 v2))
  /\ rs'#CRgt = (Val.cmpf Cgt v1 v2)               
  /\ rs'#CRle = (Val.notbool (Val.cmpf Cgt v1 v2))
  /\ forall r', is_data_reg r' -> rs'#r' = rs#r'.
Proof.
  intros. unfold rs'. intuition; try reflexivity. 
  rewrite nextinstr_inv; [unfold compare_float; repeat rewrite Pregmap.gso; auto | idtac];
  red; intro; subst r'; elim H.
Qed.

Lemma transl_cond_correct:
  forall cond args k ms sp rs m b,
  map mreg_type args = type_of_condition cond ->
  agree ms sp rs ->
  eval_condition cond (map ms args) m = Some b ->
  exists rs',
     exec_straight (transl_cond cond args k) rs m k rs' m
  /\ rs'#(CR (crbit_for_cond cond)) = Val.of_bool b
  /\ agree ms sp rs'.
Proof.
  intros.
  rewrite <- (eval_condition_weaken _ _ _ H1). clear H1. 
  destruct cond; simpl in H; TypeInv; simpl.
  (* Ccomp *)
  generalize (compare_int_spec rs ms#m0 ms#m1).
  intros [A [B [C [D [E [F [G [H [I [J K]]]]]]]]]].
  exists (nextinstr (compare_int rs ms#m0 ms#m1)).
  split. apply exec_straight_one. simpl. 
  repeat rewrite <- (ireg_val ms sp rs); trivial. 
  reflexivity.
  split. 
  case c; simpl; auto.
  apply agree_exten_1 with rs; auto.
  (* Ccompu *)
  generalize (compare_int_spec rs ms#m0 ms#m1).
  intros [A [B [C [D [E [F [G [H [I [J K]]]]]]]]]].
  exists (nextinstr (compare_int rs ms#m0 ms#m1)).
  split. apply exec_straight_one. simpl. 
  repeat rewrite <- (ireg_val ms sp rs); trivial. 
  reflexivity.
  split. 
  case c; simpl; auto.
  apply agree_exten_1 with rs; auto.
  (* Ccompshift *)
  generalize (compare_int_spec rs ms#m0 (eval_shift_total s ms#m1)).
  intros [A [B [C [D [E [F [G [H [I [J K]]]]]]]]]].
  exists (nextinstr (compare_int rs ms#m0 (eval_shift_total s ms#m1))).
  split. apply exec_straight_one. simpl.
  rewrite transl_shift_correct. 
  repeat rewrite <- (ireg_val ms sp rs); trivial.
  reflexivity.
  split. 
  case c; simpl; auto.
  apply agree_exten_1 with rs; auto.
  (* Ccompushift *)
  generalize (compare_int_spec rs ms#m0 (eval_shift_total s ms#m1)).
  intros [A [B [C [D [E [F [G [H [I [J K]]]]]]]]]].
  exists (nextinstr (compare_int rs ms#m0 (eval_shift_total s ms#m1))).
  split. apply exec_straight_one. simpl.
  rewrite transl_shift_correct. 
  repeat rewrite <- (ireg_val ms sp rs); trivial.
  reflexivity.
  split. 
  case c; simpl; auto.
  apply agree_exten_1 with rs; auto.
  (* Ccompimm *)
  destruct (is_immed_arith i).
  generalize (compare_int_spec rs ms#m0 (Vint i)).
  intros [A [B [C [D [E [F [G [H [I [J K]]]]]]]]]].
  exists (nextinstr (compare_int rs ms#m0 (Vint i))).
  split. apply exec_straight_one. simpl. 
  rewrite <- (ireg_val ms sp rs); trivial. auto.
  split. 
  case c; simpl; auto.
  apply agree_exten_1 with rs; auto.
  exploit (loadimm_correct IR14). intros [rs' [P [Q R]]].
  assert (AG: agree ms sp rs'). apply agree_exten_2 with rs; auto. 
  generalize (compare_int_spec rs' ms#m0 (Vint i)).
  intros [A [B [C [D [E [F [G [H [I [J K]]]]]]]]]].
  exists (nextinstr (compare_int rs' ms#m0 (Vint i))).
  split. eapply exec_straight_trans. eexact P. apply exec_straight_one. simpl.
  rewrite Q. rewrite <- (ireg_val ms sp rs'); trivial. auto.
  split. 
  case c; simpl; auto.
  apply agree_exten_1 with rs'; auto.
  (* Ccompuimm *)
  destruct (is_immed_arith i).
  generalize (compare_int_spec rs ms#m0 (Vint i)).
  intros [A [B [C [D [E [F [G [H [I [J K]]]]]]]]]].
  exists (nextinstr (compare_int rs ms#m0 (Vint i))).
  split. apply exec_straight_one. simpl. 
  rewrite <- (ireg_val ms sp rs); trivial. auto.
  split. 
  case c; simpl; auto.
  apply agree_exten_1 with rs; auto.
  exploit (loadimm_correct IR14). intros [rs' [P [Q R]]].
  assert (AG: agree ms sp rs'). apply agree_exten_2 with rs; auto. 
  generalize (compare_int_spec rs' ms#m0 (Vint i)).
  intros [A [B [C [D [E [F [G [H [I [J K]]]]]]]]]].
  exists (nextinstr (compare_int rs' ms#m0 (Vint i))).
  split. eapply exec_straight_trans. eexact P. apply exec_straight_one. simpl.
  rewrite Q. rewrite <- (ireg_val ms sp rs'); trivial. auto.
  split. 
  case c; simpl; auto.
  apply agree_exten_1 with rs'; auto.
  (* Ccompf *)
  generalize (compare_float_spec rs ms#m0 ms#m1).
  intros [A [B [C [D [E [F [G [H [I [J K]]]]]]]]]].
  exists (nextinstr (compare_float rs ms#m0 ms#m1)).
  split. apply exec_straight_one. simpl. 
  repeat rewrite <- (freg_val ms sp rs); trivial. auto.
  split. 
  case c; simpl; auto.
  apply agree_exten_1 with rs; auto.
  (* Cnotcompf *)
  generalize (compare_float_spec rs ms#m0 ms#m1).
  intros [A [B [C [D [E [F [G [H [I [J K]]]]]]]]]].
  exists (nextinstr (compare_float rs ms#m0 ms#m1)).
  split. apply exec_straight_one. simpl. 
  repeat rewrite <- (freg_val ms sp rs); trivial. auto.
  split. 
  case c; simpl; auto.
    rewrite Val.negate_cmpf_ne. auto.
    rewrite Val.negate_cmpf_eq. auto.
  apply agree_exten_1 with rs; auto.
Qed.

(** Translation of arithmetic operations. *)

Ltac TranslOpSimpl :=
  match goal with
  | |- exists rs' : regset,
         exec_straight ?c ?rs ?m ?k rs' ?m /\
         agree (Regmap.set ?res ?v ?ms) ?sp rs'  =>
    (exists (nextinstr (rs#(ireg_of res) <- v));
     split; 
     [ apply exec_straight_one;
       [ repeat (rewrite (ireg_val ms sp rs); auto);
         simpl; try rewrite transl_shift_correct; reflexivity
       | reflexivity ]
     | auto with ppcgen ])
  ||
    (exists (nextinstr (rs#(freg_of res) <- v));
     split; 
     [ apply exec_straight_one;
       [ repeat (rewrite (freg_val ms sp rs); auto); reflexivity
       | reflexivity ]
     | auto with ppcgen ])
  end.

Lemma transl_op_correct:
  forall op args res k ms sp rs m v,
  wt_instr (Mop op args res) ->
  agree ms sp rs ->
  eval_operation ge sp op (map ms args) m = Some v ->
  exists rs',
     exec_straight (transl_op op args res k) rs m k rs' m
  /\ agree (Regmap.set res v ms) sp rs'.
Proof.
  intros. rewrite <- (eval_operation_weaken _ _ _ _ _ H1). (*clear H1; clear v.*)
  inversion H.
  (* Omove *)
  simpl. exists (nextinstr (rs#(preg_of res) <- (ms r1))).
  split. caseEq (mreg_type r1); intro.
  apply exec_straight_one. simpl. rewrite (ireg_val ms sp rs); auto.
  simpl. unfold preg_of. rewrite <- H3. rewrite H6. reflexivity.
  auto with ppcgen.
  apply exec_straight_one. simpl. rewrite (freg_val ms sp rs); auto.
  simpl. unfold preg_of. rewrite <- H3. rewrite H6. reflexivity.
  auto with ppcgen.
  auto with ppcgen.
  (* Other instructions *)
  clear H2 H3 H5. 
  destruct op; simpl in H6; injection H6; clear H6; intros;
  TypeInv; simpl; try (TranslOpSimpl).
  (* Omove again *)
  congruence.
  (* Ointconst *)
  generalize (loadimm_correct (ireg_of res) i k rs m).
  intros [rs' [A [B C]]]. 
  exists rs'. split. auto. 
  apply agree_set_mireg_exten with rs; auto. 
(*
  (* Ofloatconst *)
  exists (nextinstr (rs#(freg_of res) <- (Vfloat f))).
  split. apply exec_straight_one. reflexivity. reflexivity.
  auto with ppcgen.
  (* Oaddrsymbol *)
  change (find_symbol_offset ge i i0) with (symbol_offset ge i i0).
  set (v := symbol_offset ge i i0).
  pose (rs1 := nextinstr (rs#GPR2 <- (high_half v))).
  exists (nextinstr (rs1#(ireg_of res) <- v)).
  split. apply exec_straight_two with rs1 m.
  unfold exec_instr. rewrite gpr_or_zero_zero.
  unfold const_high. rewrite Val.add_commut. 
  rewrite high_half_zero. reflexivity. 
  simpl. rewrite gpr_or_zero_not_zero. 2: congruence. 
  unfold rs1 at 1. rewrite nextinstr_inv; auto with ppcgen.
  rewrite Pregmap.gss. 
  fold v. rewrite Val.add_commut. unfold v. rewrite low_high_half.
  reflexivity. reflexivity. reflexivity. 
  unfold rs1. apply agree_nextinstr. apply agree_set_mireg; auto.
  apply agree_set_mreg. apply agree_nextinstr.
  apply agree_set_other. auto. simpl. tauto.
*)
  (* Oaddrstack *)
  generalize (addimm_correct (ireg_of res) IR13 i k rs m). 
  intros [rs' [EX [RES OTH]]].
  exists rs'. split. auto. 
  apply agree_set_mireg_exten with rs; auto.
  rewrite (sp_val ms sp rs). auto. auto.
  (* Ocast8signed *)
  set (rs1 := nextinstr (rs#(ireg_of res) <- (Val.shl (ms m0) (Vint (Int.repr 24))))).
  set (rs2 := nextinstr (rs1#(ireg_of res) <- (Val.shr (rs1 (ireg_of res)) (Vint (Int.repr 24))))).
  exists rs2. split.
  apply exec_straight_two with rs1 m; auto.
  simpl. rewrite <- (ireg_val ms sp rs); auto.
  unfold rs2. 
  replace (Val.shr (rs1 (ireg_of res)) (Vint (Int.repr 24))) with (Val.sign_ext 8 (ms m0)).
  apply agree_nextinstr. unfold rs1. apply agree_nextinstr_commut.
  apply agree_set_mireg_twice; auto with ppcgen. auto with ppcgen. 
  unfold rs1. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss. 
  destruct (ms m0); simpl; auto. rewrite Int.sign_ext_shr_shl. reflexivity.
  vm_compute; auto. 
  (* Ocast8unsigned *)
  exists (nextinstr (rs#(ireg_of res) <- (Val.and (ms m0) (Vint (Int.repr 255))))).
  split. apply exec_straight_one. repeat (rewrite (ireg_val ms sp rs)); auto. reflexivity.
  replace (Val.zero_ext 8 (ms m0))
      with (Val.and (ms m0) (Vint (Int.repr 255))).
  auto with ppcgen. 
  destruct (ms m0); simpl; auto. rewrite Int.zero_ext_and. reflexivity. 
  vm_compute; auto.
  (* Ocast16signed *)
  set (rs1 := nextinstr (rs#(ireg_of res) <- (Val.shl (ms m0) (Vint (Int.repr 16))))).
  set (rs2 := nextinstr (rs1#(ireg_of res) <- (Val.shr (rs1 (ireg_of res)) (Vint (Int.repr 16))))).
  exists rs2. split.
  apply exec_straight_two with rs1 m; auto.
  simpl. rewrite <- (ireg_val ms sp rs); auto. 
  unfold rs2. 
  replace (Val.shr (rs1 (ireg_of res)) (Vint (Int.repr 16))) with (Val.sign_ext 16 (ms m0)).
  apply agree_nextinstr. unfold rs1. apply agree_nextinstr_commut.
  apply agree_set_mireg_twice; auto with ppcgen. auto with ppcgen. 
  unfold rs1. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss. 
  destruct (ms m0); simpl; auto. rewrite Int.sign_ext_shr_shl. reflexivity.
  vm_compute; auto. 
  (* Ocast16unsigned *)
  set (rs1 := nextinstr (rs#(ireg_of res) <- (Val.shl (ms m0) (Vint (Int.repr 16))))).
  set (rs2 := nextinstr (rs1#(ireg_of res) <- (Val.shru (rs1 (ireg_of res)) (Vint (Int.repr 16))))).
  exists rs2. split.
  apply exec_straight_two with rs1 m; auto.
  simpl. rewrite <- (ireg_val ms sp rs); auto. 
  unfold rs2. 
  replace (Val.shru (rs1 (ireg_of res)) (Vint (Int.repr 16))) with (Val.zero_ext 16 (ms m0)).
  apply agree_nextinstr. unfold rs1. apply agree_nextinstr_commut.
  apply agree_set_mireg_twice; auto with ppcgen. auto with ppcgen. 
  unfold rs1. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss. 
  destruct (ms m0); simpl; auto. rewrite Int.zero_ext_shru_shl. reflexivity.
  vm_compute; auto. 
  (* Oaddimm *)
  generalize (addimm_correct (ireg_of res) (ireg_of m0) i k rs m).
  intros [rs' [A [B C]]]. 
  exists rs'. split. auto.
  apply agree_set_mireg_exten with rs; auto.
  rewrite (ireg_val ms sp rs); auto. 
  (* Orsbimm *)
  exploit (makeimm_correct Prsb (fun v1 v2 => Val.sub v2 v1) (ireg_of res) (ireg_of m0));
  auto with ppcgen.
  intros [rs' [A [B C]]].
  exists rs'.
  split. eauto.
  apply agree_set_mireg_exten with rs; auto. rewrite B. 
  rewrite <- (ireg_val ms sp rs); auto. 
  (* Omul *)
  destruct (ireg_eq (ireg_of res) (ireg_of m0) || ireg_eq (ireg_of res) (ireg_of m1)).
  set (rs1 := nextinstr (rs#IR14 <- (Val.mul (ms m0) (ms m1)))).
  set (rs2 := nextinstr (rs1#(ireg_of res) <- (rs1#IR14))).
  exists rs2; split.
  apply exec_straight_two with rs1 m; auto.
  simpl. repeat rewrite <- (ireg_val ms sp rs); auto.
  unfold rs2. unfold rs1. rewrite nextinstr_inv. rewrite Pregmap.gss. 
  apply agree_nextinstr. apply agree_nextinstr_commut. 
  apply agree_set_mireg; auto.  apply agree_set_mreg. apply agree_set_other. auto.
  simpl; auto. auto with ppcgen. discriminate.
  TranslOpSimpl.
  (* Oandimm *)
  generalize (andimm_correct (ireg_of res) (ireg_of m0) i k rs m
                            (ireg_of_not_IR14 m0)).
  intros [rs' [A [B C]]]. 
  exists rs'. split. auto.
  apply agree_set_mireg_exten with rs; auto.
  rewrite (ireg_val ms sp rs); auto. 
  (* Oorimm *)
  exploit (makeimm_correct Porr Val.or (ireg_of res) (ireg_of m0));
  auto with ppcgen.
  intros [rs' [A [B C]]].
  exists rs'.
  split. eauto.
  apply agree_set_mireg_exten with rs; auto. rewrite B. 
  rewrite <- (ireg_val ms sp rs); auto. 
  (* Oxorimm *)
  exploit (makeimm_correct Peor Val.xor (ireg_of res) (ireg_of m0));
  auto with ppcgen.
  intros [rs' [A [B C]]].
  exists rs'.
  split. eauto.
  apply agree_set_mireg_exten with rs; auto. rewrite B. 
  rewrite <- (ireg_val ms sp rs); auto.
  (* Oshrximm *)
  assert (exists n, ms m0 = Vint n /\ Int.ltu i (Int.repr 31) = true).
    simpl in H1. destruct (ms m0); try discriminate.
    exists i0; split; auto. destruct (Int.ltu i (Int.repr 31)); discriminate || auto.
  destruct H3 as [n [ARG1 LTU]].
  assert (LTU': Int.ltu i (Int.repr 32) = true).
    exploit Int.ltu_inv. eexact LTU. intro.
    unfold Int.ltu. apply zlt_true.
    assert (Int.unsigned (Int.repr 31) < Int.unsigned (Int.repr 32)). vm_compute; auto.
    omega.
  assert (RSm0: rs (ireg_of m0) = Vint n).
    rewrite <- ARG1. symmetry. eapply ireg_val; eauto. 
  set (islt := Int.lt n Int.zero).
  set (rs1 := nextinstr (compare_int rs (Vint n) (Vint Int.zero))).
  assert (OTH1: forall r', is_data_reg r' -> rs1#r' = rs#r').
    generalize (compare_int_spec rs (Vint n) (Vint Int.zero)).
    fold rs1. intros [A B]. intuition.
  exploit (addimm_correct IR14 (ireg_of m0) (Int.sub (Int.shl Int.one i) Int.one)).
  intros [rs2 [EXEC2 [RES2 OTH2]]].
  set (rs3 := nextinstr (if islt then rs2 else rs2#IR14 <- (Vint n))).
  set (rs4 := nextinstr (rs3#(ireg_of res) <- (Val.shr rs3#IR14 (Vint i)))).
  exists rs4; split.
  apply exec_straight_step with rs1 m.
  simpl. rewrite RSm0. auto. auto.
  eapply exec_straight_trans. eexact EXEC2.
  apply exec_straight_two with rs3 m.
  simpl. rewrite OTH2. change (rs1 CRge) with (Val.cmp Cge (Vint n) (Vint Int.zero)).
    unfold Val.cmp. change (Int.cmp Cge n Int.zero) with (negb islt).
    rewrite OTH2. rewrite OTH1. rewrite RSm0. 
    unfold rs3. case islt; reflexivity.
    apply ireg_of_is_data_reg. decEq; auto with ppcgen. auto with ppcgen. congruence. congruence.
  simpl. auto. 
  auto. unfold rs3. case islt; auto. auto.
  (* agreement *)
  assert (RES4: rs4#(ireg_of res) = Vint(Int.shrx n i)).
    unfold rs4. rewrite nextinstr_inv; auto. rewrite Pregmap.gss.
    rewrite Int.shrx_shr. fold islt. unfold rs3.
    repeat rewrite nextinstr_inv; auto. 
    case islt. rewrite RES2. rewrite OTH1. rewrite RSm0. 
    simpl. rewrite LTU'. auto.
    apply ireg_of_is_data_reg. 
    rewrite Pregmap.gss. simpl. rewrite LTU'. auto. congruence.
    exact LTU. auto with ppcgen. 
  assert (OTH4: forall r, is_data_reg r -> r <> ireg_of res -> rs4#r = rs#r).
    intros. 
    assert (r <> PC). red; intro; subst r; elim H3.
    assert (r <> IR14). red; intro; subst r; elim H3.
    unfold rs4. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
    unfold rs3. rewrite nextinstr_inv; auto.
    transitivity (rs2 r).
    case islt. auto. apply Pregmap.gso; auto.
    rewrite OTH2; auto. 
  apply agree_exten_1 with (rs#(ireg_of res) <- (Val.shrx (ms m0) (Vint i))).
  auto with ppcgen.
  intros. unfold Pregmap.set. destruct (PregEq.eq r (ireg_of res)).
  subst r. rewrite ARG1. simpl. rewrite LTU'. auto.
  auto.
  (* Ointoffloat *)
  exists (nextinstr (rs#(ireg_of res) <- (Val.intoffloat (ms m0)))).
  split. apply exec_straight_one. 
  repeat (rewrite (freg_val ms sp rs); auto).
  reflexivity. auto with ppcgen.
  (* Ointuoffloat *)
  exists (nextinstr (rs#(ireg_of res) <- (Val.intuoffloat (ms m0)))).
  split. apply exec_straight_one. 
  repeat (rewrite (freg_val ms sp rs); auto).
  reflexivity. auto with ppcgen.
  (* Ofloatofint *)
  exists (nextinstr (rs#(freg_of res) <- (Val.floatofint (ms m0)))).
  split. apply exec_straight_one. 
  repeat (rewrite (ireg_val ms sp rs); auto).
  reflexivity. auto 10 with ppcgen.
  (* Ofloatofintu *)
  exists (nextinstr (rs#(freg_of res) <- (Val.floatofintu (ms m0)))).
  split. apply exec_straight_one. 
  repeat (rewrite (ireg_val ms sp rs); auto).
  reflexivity. auto 10 with ppcgen.
  (* Ocmp *)
  assert (exists b, eval_condition c ms##args m = Some b /\ v = Val.of_bool b).
    simpl in H1. destruct (eval_condition c ms##args m). 
    destruct b; inv H1. exists true; auto. exists false; auto.
    discriminate.
  destruct H5 as [b [EVC EQ]].
  exploit transl_cond_correct; eauto. intros [rs' [A [B C]]].
  rewrite (eval_condition_weaken _ _ _ EVC).
  set (rs1 := nextinstr (rs'#(ireg_of res) <- (Vint Int.zero))).
  set (rs2 := nextinstr (if b then (rs1#(ireg_of res) <- Vtrue) else rs1)).
  exists rs2; split.
  eapply exec_straight_trans. eauto. 
  apply exec_straight_two with rs1 m; auto.
  simpl. replace (rs1 (crbit_for_cond c)) with (Val.of_bool b).
  unfold rs2. destruct b; auto. 
  unfold rs2. destruct b; auto.
  apply agree_set_mireg_exten with rs'; auto.
  unfold rs2. rewrite nextinstr_inv; auto with ppcgen. 
  destruct b. apply Pregmap.gss.
  unfold rs1. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
  intros. unfold rs2. rewrite nextinstr_inv; auto. 
  transitivity (rs1 r'). destruct b; auto. rewrite Pregmap.gso; auto.
  unfold rs1. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
Qed.

Remark val_add_add_zero:
  forall v1 v2, Val.add v1 v2 = Val.add (Val.add v1 v2) (Vint Int.zero).
Proof.
  intros. destruct v1; destruct v2; simpl; auto; rewrite Int.add_zero; auto.
Qed.
 
Lemma transl_load_store_correct:
  forall (mk_instr_imm: ireg -> int -> instruction)
         (mk_instr_gen: option (ireg -> shift_addr -> instruction))
         (is_immed: int -> bool)
         addr args k ms sp rs m ms' m',
  (forall (r1: ireg) (rs1: regset) n k,
    eval_addressing_total sp addr (map ms args) = Val.add rs1#r1 (Vint n) ->
    agree ms sp rs1 ->
    exists rs',
    exec_straight (mk_instr_imm r1 n :: k) rs1 m k rs' m' /\
    agree ms' sp rs') ->
  match mk_instr_gen with
  | None => True
  | Some mk =>
      (forall (r1: ireg) (sa: shift_addr) (rs1: regset) k,
      eval_addressing_total sp addr (map ms args) = Val.add rs1#r1 (eval_shift_addr sa rs1) ->
      agree ms sp rs1 ->
      exists rs',
      exec_straight (mk r1 sa :: k) rs1 m k rs' m' /\
      agree ms' sp rs')
  end ->
  agree ms sp rs ->
  map mreg_type args = type_of_addressing addr ->
  exists rs',
    exec_straight (transl_load_store mk_instr_imm mk_instr_gen is_immed addr args k) rs m
                        k rs' m'
  /\ agree ms' sp rs'.
Proof.
  intros. destruct addr; simpl in H2; TypeInv; simpl.
  (* Aindexed *)
  case (is_immed i).
  (* Aindexed, small displacement *)
  apply H; eauto. simpl. rewrite (ireg_val ms sp rs); auto.
  (* Aindexed, large displacement *)
  exploit (addimm_correct IR14 (ireg_of t)); eauto with ppcgen. 
  intros [rs' [A [B C]]].
  exploit (H IR14 rs' Int.zero); eauto.
  simpl. rewrite (ireg_val ms sp rs); auto. rewrite B.
  rewrite Val.add_assoc. simpl Val.add. rewrite Int.add_zero. reflexivity.
  apply agree_exten_2 with rs; auto. 
  intros [rs'' [D E]].
  exists rs''; split.
  eapply exec_straight_trans. eexact A. eexact D. auto.
  (* Aindexed2 *)
  destruct mk_instr_gen as [mk | ]. 
  (* binary form available *)
  apply H0; auto. simpl. repeat rewrite (ireg_val ms sp rs); auto. 
  (* binary form not available *)
  set (rs' := nextinstr (rs#IR14 <- (Val.add (ms t) (ms t0)))).
  exploit (H IR14 rs' Int.zero); eauto.
  simpl. repeat rewrite (ireg_val ms sp rs); auto.
  unfold rs'. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss. 
  repeat rewrite (ireg_val ms sp rs); auto. apply val_add_add_zero. 
  unfold rs'; auto with ppcgen.
  intros [rs'' [A B]].
  exists rs''; split.
  eapply exec_straight_step with (rs2 := rs'); eauto.
  simpl. repeat rewrite <- (ireg_val ms sp rs); auto.
  auto.
  (* Aindexed2shift *)
  destruct mk_instr_gen as [mk | ]. 
  (* binary form available *)
  apply H0; auto. simpl. repeat rewrite (ireg_val ms sp rs); auto.
  rewrite transl_shift_addr_correct. auto.
  (* binary form not available *)
  set (rs' := nextinstr (rs#IR14 <- (Val.add (ms t) (eval_shift_total s (ms t0))))).
  exploit (H IR14 rs' Int.zero); eauto.
  simpl. repeat rewrite (ireg_val ms sp rs); auto.
  unfold rs'. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss. 
  repeat rewrite (ireg_val ms sp rs); auto. apply val_add_add_zero. 
  unfold rs'; auto with ppcgen.
  intros [rs'' [A B]].
  exists rs''; split.
  eapply exec_straight_step with (rs2 := rs'); eauto.
  simpl. rewrite transl_shift_correct. 
  repeat rewrite <- (ireg_val ms sp rs); auto.
  auto.
  (* Ainstack *)
  destruct (is_immed i).
  (* Ainstack, short displacement *)
  apply H. simpl.  rewrite (sp_val ms sp rs); auto. auto. 
  (* Ainstack, large displacement *)
  exploit (addimm_correct IR14 IR13); eauto with ppcgen. 
  intros [rs' [A [B C]]].
  exploit (H IR14 rs' Int.zero); eauto.
  simpl. rewrite (sp_val ms sp rs); auto. rewrite B.
  rewrite Val.add_assoc. simpl Val.add. rewrite Int.add_zero. reflexivity.
  apply agree_exten_2 with rs; auto. 
  intros [rs'' [D E]].
  exists rs''; split.
  eapply exec_straight_trans. eexact A. eexact D. auto.
Qed.

Lemma transl_load_int_correct:
  forall (mk_instr: ireg -> ireg -> shift_addr -> instruction)
         (is_immed: int -> bool)
         (rd: mreg) addr args k ms sp rs m chunk a v,
  (forall (c: code) (r1 r2: ireg) (sa: shift_addr) (rs1: regset),
    exec_instr ge c (mk_instr r1 r2 sa) rs1 m =
    exec_load chunk (Val.add rs1#r2 (eval_shift_addr sa rs1)) r1 rs1 m) ->
  agree ms sp rs ->
  map mreg_type args = type_of_addressing addr ->
  mreg_type rd = Tint ->
  eval_addressing ge sp addr (map ms args) = Some a ->
  Mem.loadv chunk m a = Some v ->
  exists rs',
    exec_straight (transl_load_store_int mk_instr is_immed rd addr args k) rs m
                        k rs' m
  /\ agree (Regmap.set rd v ms) sp rs'.
Proof.
  intros. unfold transl_load_store_int.
  exploit eval_addressing_weaken. eauto. intros. 
  apply transl_load_store_correct with ms; auto.
  intros. exists (nextinstr (rs1#(ireg_of rd) <- v)); split.
  apply exec_straight_one. rewrite H. simpl. rewrite <- H6. rewrite H5. 
  unfold exec_load. rewrite H4. auto. auto.
  auto with ppcgen.
  intros. exists (nextinstr (rs1#(ireg_of rd) <- v)); split.
  apply exec_straight_one. rewrite H. simpl. rewrite <- H6. rewrite H5. 
  unfold exec_load. rewrite H4. auto. auto.
  auto with ppcgen.
Qed.

Lemma transl_load_float_correct:
  forall (mk_instr: freg -> ireg -> int -> instruction)
         (is_immed: int -> bool)
         (rd: mreg) addr args k ms sp rs m chunk a v,
  (forall (c: code) (r1: freg) (r2: ireg) (n: int) (rs1: regset),
    exec_instr ge c (mk_instr r1 r2 n) rs1 m =
    exec_load chunk (Val.add rs1#r2 (Vint n)) r1 rs1 m) ->
  agree ms sp rs ->
  map mreg_type args = type_of_addressing addr ->
  mreg_type rd = Tfloat ->
  eval_addressing ge sp addr (map ms args) = Some a ->
  Mem.loadv chunk m a = Some v ->
  exists rs',
    exec_straight (transl_load_store_float mk_instr is_immed rd addr args k) rs m
                        k rs' m
  /\ agree (Regmap.set rd v ms) sp rs'.
Proof.
  intros. unfold transl_load_store_float.
  exploit eval_addressing_weaken. eauto. intros. 
  apply transl_load_store_correct with ms; auto.
  intros. exists (nextinstr (rs1#(freg_of rd) <- v)); split.
  apply exec_straight_one. rewrite H. rewrite <- H6. rewrite H5. 
  unfold exec_load. rewrite H4. auto. auto.
  auto with ppcgen.
Qed.

Lemma transl_store_int_correct:
  forall (mk_instr: ireg -> ireg -> shift_addr -> instruction)
         (is_immed: int -> bool)
         (rd: mreg) addr args k ms sp rs m chunk a m',
  (forall (c: code) (r1 r2: ireg) (sa: shift_addr) (rs1: regset),
    exec_instr ge c (mk_instr r1 r2 sa) rs1 m =
    exec_store chunk (Val.add rs1#r2 (eval_shift_addr sa rs1)) r1 rs1 m) ->
  agree ms sp rs ->
  map mreg_type args = type_of_addressing addr ->
  mreg_type rd = Tint ->
  eval_addressing ge sp addr (map ms args) = Some a ->
  Mem.storev chunk m a (ms rd) = Some m' ->
  exists rs',
    exec_straight (transl_load_store_int mk_instr is_immed rd addr args k) rs m
                        k rs' m'
  /\ agree ms sp rs'.
Proof.
  intros. unfold transl_load_store_int.
  exploit eval_addressing_weaken. eauto. intros. 
  apply transl_load_store_correct with ms; auto.
  intros. exists (nextinstr rs1); split.
  apply exec_straight_one. rewrite H. simpl. rewrite <- H6. rewrite H5.
  unfold exec_store. rewrite <- (ireg_val ms sp rs1); auto.
  rewrite H4. auto. auto.
  auto with ppcgen.
  intros. exists (nextinstr rs1); split.
  apply exec_straight_one. rewrite H. simpl. rewrite <- H6. rewrite H5.
  unfold exec_store. rewrite <- (ireg_val ms sp rs1); auto.
  rewrite H4. auto. auto.
  auto with ppcgen.
Qed.

Lemma transl_store_float_correct:
  forall (mk_instr: freg -> ireg -> int -> instruction)
         (is_immed: int -> bool)
         (rd: mreg) addr args k ms sp rs m chunk a m',
  (forall (c: code) (r1: freg) (r2: ireg) (n: int) (rs1: regset),
    exec_instr ge c (mk_instr r1 r2 n) rs1 m =
    exec_store chunk (Val.add rs1#r2 (Vint n)) r1 rs1 m) ->
  agree ms sp rs ->
  map mreg_type args = type_of_addressing addr ->
  mreg_type rd = Tfloat ->
  eval_addressing ge sp addr (map ms args) = Some a ->
  Mem.storev chunk m a (ms rd) = Some m' ->
  exists rs',
    exec_straight (transl_load_store_float mk_instr is_immed rd addr args k) rs m
                        k rs' m'
  /\ agree ms sp rs'.
Proof.
  intros. unfold transl_load_store_float.
  exploit eval_addressing_weaken. eauto. intros. 
  apply transl_load_store_correct with ms; auto.
  intros. exists (nextinstr rs1); split.
  apply exec_straight_one. rewrite H. simpl. rewrite <- H6. rewrite H5.
  unfold exec_store. rewrite <- (freg_val ms sp rs1); auto.
  rewrite H4. auto. auto.
  auto with ppcgen.
Qed.

(** Translation of allocations *)

Lemma transl_alloc_correct:
  forall ms sp rs sz m m' blk k,
  agree ms sp rs ->
  ms Conventions.loc_alloc_argument = Vint sz ->
  Mem.alloc m 0 (Int.signed sz) = (m', blk) ->
  let ms' := Regmap.set Conventions.loc_alloc_result (Vptr blk Int.zero) ms in
  exists rs',
    exec_straight (Pallocblock :: k) rs m k rs' m'
  /\ agree ms' sp rs'.
Proof.
  intros. 
  pose (rs' := nextinstr (rs#IR0 <- (Vptr blk Int.zero) #IR14 <- (Val.add rs#PC Vone))).
  exists rs'; split.
  apply exec_straight_one. unfold exec_instr. 
  generalize (preg_val _ _ _ Conventions.loc_alloc_argument H).
  unfold preg_of; intro. simpl in H2. rewrite <- H2. rewrite H0.
  rewrite H1. reflexivity.
  reflexivity. 
  unfold ms', rs'. apply agree_nextinstr. apply agree_set_other. 
  change (IR IR0) with (preg_of Conventions.loc_alloc_result).
  apply agree_set_mreg. auto.
  simpl. tauto.
Qed.

End STRAIGHTLINE.