summaryrefslogtreecommitdiff
path: root/powerpc
diff options
context:
space:
mode:
Diffstat (limited to 'powerpc')
-rw-r--r--powerpc/Asm.v18
-rw-r--r--powerpc/Asmgen.v24
-rw-r--r--powerpc/Asmgenproof.v24
-rw-r--r--powerpc/Asmgenproof1.v214
-rw-r--r--powerpc/Asmgenretaddr.v10
-rw-r--r--powerpc/ConstpropOp.v856
-rw-r--r--powerpc/ConstpropOp.vp277
-rw-r--r--powerpc/ConstpropOpproof.v549
-rw-r--r--powerpc/Op.v1265
-rw-r--r--powerpc/PrintOp.ml2
-rw-r--r--powerpc/SelectOp.v1018
-rw-r--r--powerpc/SelectOp.vp432
-rw-r--r--powerpc/SelectOpproof.v1192
13 files changed, 2207 insertions, 3674 deletions
diff --git a/powerpc/Asm.v b/powerpc/Asm.v
index 321b074..7174f79 100644
--- a/powerpc/Asm.v
+++ b/powerpc/Asm.v
@@ -496,10 +496,10 @@ Definition compare_sint (rs: regset) (v1 v2: val) :=
#CR0_2 <- (Val.cmp Ceq v1 v2)
#CR0_3 <- Vundef.
-Definition compare_uint (rs: regset) (v1 v2: val) :=
- rs#CR0_0 <- (Val.cmpu Clt v1 v2)
- #CR0_1 <- (Val.cmpu Cgt v1 v2)
- #CR0_2 <- (Val.cmpu Ceq v1 v2)
+Definition compare_uint (rs: regset) (m: mem) (v1 v2: val) :=
+ rs#CR0_0 <- (Val.cmpu (Mem.valid_pointer m) Clt v1 v2)
+ #CR0_1 <- (Val.cmpu (Mem.valid_pointer m) Cgt v1 v2)
+ #CR0_2 <- (Val.cmpu (Mem.valid_pointer m) Ceq v1 v2)
#CR0_3 <- Vundef.
Definition compare_float (rs: regset) (v1 v2: val) :=
@@ -596,9 +596,9 @@ Definition exec_instr (c: code) (i: instruction) (rs: regset) (m: mem) : outcome
| _ => Error
end
| Pcmplw r1 r2 =>
- OK (nextinstr (compare_uint rs rs#r1 rs#r2)) m
+ OK (nextinstr (compare_uint rs m rs#r1 rs#r2)) m
| Pcmplwi r1 cst =>
- OK (nextinstr (compare_uint rs rs#r1 (const_low cst))) m
+ OK (nextinstr (compare_uint rs m rs#r1 (const_low cst))) m
| Pcmpw r1 r2 =>
OK (nextinstr (compare_sint rs rs#r1 rs#r2)) m
| Pcmpwi r1 cst =>
@@ -606,9 +606,9 @@ Definition exec_instr (c: code) (i: instruction) (rs: regset) (m: mem) : outcome
| Pcror bd b1 b2 =>
OK (nextinstr (rs#(reg_of_crbit bd) <- (Val.or rs#(reg_of_crbit b1) rs#(reg_of_crbit b2)))) m
| Pdivw rd r1 r2 =>
- OK (nextinstr (rs#rd <- (Val.divs rs#r1 rs#r2))) m
+ OK (nextinstr (rs#rd <- (Val.maketotal (Val.divs rs#r1 rs#r2)))) m
| Pdivwu rd r1 r2 =>
- OK (nextinstr (rs#rd <- (Val.divu rs#r1 rs#r2))) m
+ OK (nextinstr (rs#rd <- (Val.maketotal (Val.divu rs#r1 rs#r2)))) m
| Peqv rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.notint (Val.xor rs#r1 rs#r2)))) m
| Pextsb rd r1 =>
@@ -635,7 +635,7 @@ Definition exec_instr (c: code) (i: instruction) (rs: regset) (m: mem) : outcome
| Pfcmpu r1 r2 =>
OK (nextinstr (compare_float rs rs#r1 rs#r2)) m
| Pfcti rd r1 =>
- OK (nextinstr (rs#FPR13 <- Vundef #rd <- (Val.intoffloat rs#r1))) m
+ OK (nextinstr (rs#FPR13 <- Vundef #rd <- (Val.maketotal (Val.intoffloat rs#r1)))) m
| Pfdiv rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.divf rs#r1 rs#r2))) m
| Pfmadd rd r1 r2 r3 =>
diff --git a/powerpc/Asmgen.v b/powerpc/Asmgen.v
index 790b2b9..6d1a1fc 100644
--- a/powerpc/Asmgen.v
+++ b/powerpc/Asmgen.v
@@ -69,7 +69,7 @@ Definition addimm (r1 r2: ireg) (n: int) (k: code) :=
Paddis r1 r2 (Cint (high_s n)) ::
Paddi r1 r1 (Cint (low_s n)) :: k.
-Definition andimm (r1 r2: ireg) (n: int) (k: code) :=
+Definition andimm_base (r1 r2: ireg) (n: int) (k: code) :=
if Int.eq (high_u n) Int.zero then
Pandi_ r1 r2 (Cint n) :: k
else if Int.eq (low_u n) Int.zero then
@@ -77,6 +77,12 @@ Definition andimm (r1 r2: ireg) (n: int) (k: code) :=
else
loadimm GPR0 n (Pand_ r1 r2 GPR0 :: k).
+Definition andimm (r1 r2: ireg) (n: int) (k: code) :=
+ if is_rlw_mask n then
+ Prlwinm r1 r2 Int.zero n :: k
+ else
+ andimm_base r1 r2 n k.
+
Definition orimm (r1 r2: ireg) (n: int) (k: code) :=
if Int.eq (high_u n) Int.zero then
Pori r1 r2 (Cint n) :: k
@@ -95,6 +101,12 @@ Definition xorimm (r1 r2: ireg) (n: int) (k: code) :=
Pxoris r1 r2 (Cint (high_u n)) ::
Pxori r1 r1 (Cint (low_u n)) :: k.
+Definition rolm (r1 r2: ireg) (amount mask: int) (k: code) :=
+ if is_rlw_mask mask then
+ Prlwinm r1 r2 amount mask :: k
+ else
+ Prlwinm r1 r2 amount Int.mone :: andimm_base r1 r1 mask k.
+
(** Accessing slots in the stack frame. *)
Definition loadind (base: ireg) (ofs: int) (ty: typ) (dst: mreg) (k: code) :=
@@ -166,9 +178,9 @@ Definition transl_cond
| Cnotcompf cmp, a1 :: a2 :: nil =>
floatcomp cmp (freg_of a1) (freg_of a2) k
| Cmaskzero n, a1 :: nil =>
- andimm GPR0 (ireg_of a1) n k
+ andimm_base GPR0 (ireg_of a1) n k
| Cmasknotzero n, a1 :: nil =>
- andimm GPR0 (ireg_of a1) n k
+ andimm_base GPR0 (ireg_of a1) n k
| _, _ =>
k (**r never happens for well-typed code *)
end.
@@ -302,12 +314,8 @@ Definition transl_op
addimm (ireg_of r) GPR1 n k
| Ocast8signed, a1 :: nil =>
Pextsb (ireg_of r) (ireg_of a1) :: k
- | Ocast8unsigned, a1 :: nil =>
- Prlwinm (ireg_of r) (ireg_of a1) Int.zero (Int.repr 255) :: k
| Ocast16signed, a1 :: nil =>
Pextsh (ireg_of r) (ireg_of a1) :: k
- | Ocast16unsigned, a1 :: nil =>
- Prlwinm (ireg_of r) (ireg_of a1) Int.zero (Int.repr 65535) :: k
| Oadd, a1 :: a2 :: nil =>
Padd (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Oaddimm n, a1 :: nil =>
@@ -360,7 +368,7 @@ Definition transl_op
| Oshru, a1 :: a2 :: nil =>
Psrw (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Orolm amount mask, a1 :: nil =>
- Prlwinm (ireg_of r) (ireg_of a1) amount mask :: k
+ rolm (ireg_of r) (ireg_of a1) amount mask k
| Oroli amount mask, a1 :: a2 :: nil =>
if mreg_eq a1 r then (**r should always be true *)
Prlwimi (ireg_of r) (ireg_of a2) amount mask :: k
diff --git a/powerpc/Asmgenproof.v b/powerpc/Asmgenproof.v
index 27b2108..e7b7385 100644
--- a/powerpc/Asmgenproof.v
+++ b/powerpc/Asmgenproof.v
@@ -343,12 +343,21 @@ Proof.
Qed.
Hint Rewrite addimm_label: labels.
+Remark andimm_base_label:
+ forall r1 r2 n k, find_label lbl (andimm_base r1 r2 n k) = find_label lbl k.
+Proof.
+ intros; unfold andimm_base.
+ case (Int.eq (high_u n) Int.zero). reflexivity.
+ case (Int.eq (low_u n) Int.zero). reflexivity.
+ autorewrite with labels. reflexivity.
+Qed.
+Hint Rewrite andimm_base_label: labels.
+
Remark andimm_label:
forall r1 r2 n k, find_label lbl (andimm r1 r2 n k) = find_label lbl k.
Proof.
intros; unfold andimm.
- case (Int.eq (high_u n) Int.zero). reflexivity.
- case (Int.eq (low_u n) Int.zero). reflexivity.
+ case (is_rlw_mask n). reflexivity.
autorewrite with labels. reflexivity.
Qed.
Hint Rewrite andimm_label: labels.
@@ -371,6 +380,15 @@ Proof.
Qed.
Hint Rewrite xorimm_label: labels.
+Remark rolm_label:
+ forall r1 r2 amount mask k, find_label lbl (rolm r1 r2 amount mask k) = find_label lbl k.
+Proof.
+ intros; unfold rolm.
+ case (is_rlw_mask mask). reflexivity.
+ simpl. autorewrite with labels. auto.
+Qed.
+Hint Rewrite rolm_label: labels.
+
Remark loadind_label:
forall base ofs ty dst k, find_label lbl (loadind base ofs ty dst k) = find_label lbl k.
Proof.
@@ -405,7 +423,7 @@ Proof.
case (Int.eq (high_u i) Int.zero). reflexivity.
autorewrite with labels; reflexivity.
apply floatcomp_label. apply floatcomp_label.
- apply andimm_label. apply andimm_label.
+ apply andimm_base_label. apply andimm_base_label.
Qed.
Hint Rewrite transl_cond_label: labels.
diff --git a/powerpc/Asmgenproof1.v b/powerpc/Asmgenproof1.v
index 0b7f4d0..77a19af 100644
--- a/powerpc/Asmgenproof1.v
+++ b/powerpc/Asmgenproof1.v
@@ -595,11 +595,11 @@ Proof.
Qed.
Lemma compare_uint_spec:
- forall rs v1 v2,
- let rs1 := nextinstr (compare_uint rs v1 v2) in
- rs1#CR0_0 = Val.cmpu Clt v1 v2
- /\ rs1#CR0_1 = Val.cmpu Cgt v1 v2
- /\ rs1#CR0_2 = Val.cmpu Ceq v1 v2
+ forall rs m v1 v2,
+ let rs1 := nextinstr (compare_uint rs m v1 v2) in
+ rs1#CR0_0 = Val.cmpu (Mem.valid_pointer m) Clt v1 v2
+ /\ rs1#CR0_1 = Val.cmpu (Mem.valid_pointer m) Cgt v1 v2
+ /\ rs1#CR0_2 = Val.cmpu (Mem.valid_pointer m) Ceq v1 v2
/\ forall r', r' <> CR0_0 -> r' <> CR0_1 -> r' <> CR0_2 -> r' <> CR0_3 -> r' <> PC -> rs1#r' = rs#r'.
Proof.
intros. unfold rs1.
@@ -687,17 +687,17 @@ Qed.
(** And integer immediate. *)
-Lemma andimm_correct:
+Lemma andimm_base_correct:
forall r1 r2 n k (rs : regset) m,
r2 <> GPR0 ->
let v := Val.and rs#r2 (Vint n) in
exists rs',
- exec_straight (andimm r1 r2 n k) rs m k rs' m
+ exec_straight (andimm_base r1 r2 n k) rs m k rs' m
/\ rs'#r1 = v
/\ rs'#CR0_2 = Val.cmp Ceq v Vzero
/\ forall r', is_data_reg r' = true -> r' <> r1 -> rs'#r' = rs#r'.
Proof.
- intros. unfold andimm.
+ intros. unfold andimm_base.
case (Int.eq (high_u n) Int.zero).
(* andi *)
exists (nextinstr (compare_sint (rs#r1 <- v) v Vzero)).
@@ -734,6 +734,25 @@ Proof.
intros. rewrite D; auto with ppcgen. SIMP.
Qed.
+Lemma andimm_correct:
+ forall r1 r2 n k (rs : regset) m,
+ r2 <> GPR0 ->
+ exists rs',
+ exec_straight (andimm r1 r2 n k) rs m k rs' m
+ /\ rs'#r1 = Val.and rs#r2 (Vint n)
+ /\ forall r', is_data_reg r' = true -> r' <> r1 -> rs'#r' = rs#r'.
+Proof.
+ intros. unfold andimm. destruct (is_rlw_mask n).
+ (* turned into rlw *)
+ exists (nextinstr (rs#r1 <- (Val.and rs#r2 (Vint n)))).
+ split. apply exec_straight_one. simpl. rewrite Val.rolm_zero. auto. reflexivity.
+ split. SIMP. apply Pregmap.gss.
+ intros. SIMP. apply Pregmap.gso; auto with ppcgen.
+ (* andimm_base *)
+ destruct (andimm_base_correct r1 r2 n k rs m) as [rs' [A [B [C D]]]]; auto.
+ exists rs'; auto.
+Qed.
+
(** Or integer immediate. *)
Lemma orimm_correct:
@@ -797,6 +816,33 @@ Proof.
intros. repeat SIMP.
Qed.
+(** Rotate and mask. *)
+
+Lemma rolm_correct:
+ forall r1 r2 amount mask k (rs : regset) m,
+ r1 <> GPR0 ->
+ exists rs',
+ exec_straight (rolm r1 r2 amount mask k) rs m k rs' m
+ /\ rs'#r1 = Val.rolm rs#r2 amount mask
+ /\ forall r', is_data_reg r' = true -> r' <> r1 -> rs'#r' = rs#r'.
+Proof.
+ intros. unfold rolm. destruct (is_rlw_mask mask).
+ (* rlwinm *)
+ exists (nextinstr (rs#r1 <- (Val.rolm rs#r2 amount mask))).
+ split. apply exec_straight_one; auto.
+ split. SIMP. apply Pregmap.gss.
+ intros. SIMP. apply Pregmap.gso; auto.
+ (* rlwinm ; andimm *)
+ set (rs1 := nextinstr (rs#r1 <- (Val.rolm rs#r2 amount Int.mone))).
+ destruct (andimm_base_correct r1 r1 mask k rs1 m) as [rs' [A [B [C D]]]]; auto.
+ exists rs'.
+ split. eapply exec_straight_step; eauto. auto. auto.
+ split. rewrite B. unfold rs1. SIMP. rewrite Pregmap.gss.
+ destruct (rs r2); simpl; auto. unfold Int.rolm. rewrite Int.and_assoc.
+ decEq; decEq; decEq. rewrite Int.and_commut. apply Int.and_mone.
+ intros. rewrite D; auto. unfold rs1; SIMP. apply Pregmap.gso; auto.
+Qed.
+
(** Indexed memory loads. *)
Lemma loadind_correct:
@@ -947,13 +993,14 @@ Lemma transl_cond_correct_1:
exec_straight (transl_cond cond args k) rs m k rs' m
/\ rs'#(reg_of_crbit (fst (crbit_for_cond cond))) =
(if snd (crbit_for_cond cond)
- then eval_condition_total cond (map rs (map preg_of args))
- else Val.notbool (eval_condition_total cond (map rs (map preg_of args))))
+ then Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)
+ else Val.notbool (Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)))
/\ forall r, is_data_reg r = true -> rs'#r = rs#r.
Proof.
intros.
destruct cond; simpl in H; TypeInv; simpl; UseTypeInfo.
(* Ccomp *)
+ fold (Val.cmp c (rs (ireg_of m0)) (rs (ireg_of m1))).
destruct (compare_sint_spec rs (rs (ireg_of m0)) (rs (ireg_of m1)))
as [A [B [C D]]].
econstructor; split.
@@ -962,7 +1009,8 @@ Proof.
case c; simpl; auto; rewrite <- Val.negate_cmp; simpl; auto.
auto with ppcgen.
(* Ccompu *)
- destruct (compare_uint_spec rs (rs (ireg_of m0)) (rs (ireg_of m1)))
+ fold (Val.cmpu (Mem.valid_pointer m) c (rs (ireg_of m0)) (rs (ireg_of m1))).
+ destruct (compare_uint_spec rs m (rs (ireg_of m0)) (rs (ireg_of m1)))
as [A [B [C D]]].
econstructor; split.
apply exec_straight_one. simpl; reflexivity. reflexivity.
@@ -970,6 +1018,7 @@ Proof.
case c; simpl; auto; rewrite <- Val.negate_cmpu; simpl; auto.
auto with ppcgen.
(* Ccompimm *)
+ fold (Val.cmp c (rs (ireg_of m0)) (Vint i)).
case (Int.eq (high_s i) Int.zero).
destruct (compare_sint_spec rs (rs (ireg_of m0)) (Vint i))
as [A [B [C D]]].
@@ -992,8 +1041,9 @@ Proof.
case c; simpl; auto; rewrite <- Val.negate_cmp; simpl; auto.
intros. rewrite H; rewrite D; auto with ppcgen.
(* Ccompuimm *)
+ fold (Val.cmpu (Mem.valid_pointer m) c (rs (ireg_of m0)) (Vint i)).
case (Int.eq (high_u i) Int.zero).
- destruct (compare_uint_spec rs (rs (ireg_of m0)) (Vint i))
+ destruct (compare_uint_spec rs m (rs (ireg_of m0)) (Vint i))
as [A [B [C D]]].
econstructor; split.
apply exec_straight_one. simpl. eauto. reflexivity.
@@ -1002,10 +1052,10 @@ Proof.
auto with ppcgen.
generalize (loadimm_correct GPR0 i (Pcmplw (ireg_of m0) GPR0 :: k) rs m).
intros [rs1 [EX1 [RES1 OTH1]]].
- destruct (compare_uint_spec rs1 (rs (ireg_of m0)) (Vint i))
+ destruct (compare_uint_spec rs1 m (rs (ireg_of m0)) (Vint i))
as [A [B [C D]]].
assert (rs1 (ireg_of m0) = rs (ireg_of m0)). apply OTH1; auto with ppcgen.
- exists (nextinstr (compare_uint rs1 (rs1 (ireg_of m0)) (Vint i))).
+ exists (nextinstr (compare_uint rs1 m (rs1 (ireg_of m0)) (Vint i))).
split. eapply exec_straight_trans. eexact EX1.
apply exec_straight_one. simpl. rewrite RES1; rewrite H; auto.
reflexivity.
@@ -1013,32 +1063,33 @@ Proof.
case c; simpl; auto; rewrite <- Val.negate_cmpu; simpl; auto.
intros. rewrite H; rewrite D; auto with ppcgen.
(* Ccompf *)
+ fold (Val.cmpf c (rs (freg_of m0)) (rs (freg_of m1))).
destruct (floatcomp_correct c (freg_of m0) (freg_of m1) k rs m)
as [rs' [EX [RES OTH]]].
exists rs'. split. auto.
split. apply RES.
auto with ppcgen.
(* Cnotcompf *)
+ rewrite Val.notbool_negb_3. rewrite Val.notbool_idem4.
+ fold (Val.cmpf c (rs (freg_of m0)) (rs (freg_of m1))).
destruct (floatcomp_correct c (freg_of m0) (freg_of m1) k rs m)
as [rs' [EX [RES OTH]]].
exists rs'. split. auto.
- split. rewrite RES.
- assert (forall v1 v2, Val.notbool (Val.notbool (Val.cmpf c v1 v2)) = Val.cmpf c v1 v2).
- intros v1 v2; unfold Val.cmpf; destruct v1; destruct v2; auto.
- apply Val.notbool_idem2.
- rewrite H. case (snd (crbit_for_fcmp c)); simpl; auto.
+ split. rewrite RES. destruct (snd (crbit_for_fcmp c)); auto.
auto with ppcgen.
(* Cmaskzero *)
- destruct (andimm_correct GPR0 (ireg_of m0) i k rs m)
+ destruct (andimm_base_correct GPR0 (ireg_of m0) i k rs m)
as [rs' [A [B [C D]]]]. auto with ppcgen.
exists rs'. split. assumption.
- split. rewrite C. auto.
+ split. rewrite C. destruct (rs (ireg_of m0)); auto.
auto with ppcgen.
(* Cmasknotzero *)
- destruct (andimm_correct GPR0 (ireg_of m0) i k rs m)
+ destruct (andimm_base_correct GPR0 (ireg_of m0) i k rs m)
as [rs' [A [B [C D]]]]. auto with ppcgen.
exists rs'. split. assumption.
- split. rewrite C. rewrite Val.notbool_idem3. reflexivity.
+ split. rewrite C. destruct (rs (ireg_of m0)); auto.
+ fold (option_map negb (Some (Int.eq (Int.and i0 i) Int.zero))).
+ rewrite Val.notbool_negb_3. rewrite Val.notbool_idem4. auto.
auto with ppcgen.
Qed.
@@ -1055,9 +1106,10 @@ Lemma transl_cond_correct_2:
/\ forall r, is_data_reg r = true -> rs'#r = rs#r.
Proof.
intros.
- assert (eval_condition_total cond rs ## (preg_of ## args) = Val.of_bool b).
- apply eval_condition_weaken with m. auto.
- rewrite <- H1. eapply transl_cond_correct_1; eauto.
+ replace (Val.of_bool b)
+ with (Val.of_optbool (eval_condition cond rs ## (preg_of ## args) m)).
+ eapply transl_cond_correct_1; eauto.
+ rewrite H0; auto.
Qed.
Lemma transl_cond_correct:
@@ -1128,46 +1180,43 @@ Proof.
Qed.
Lemma transl_cond_op_correct:
- forall cond args r k rs m b,
+ forall cond args r k rs m,
mreg_type r = Tint ->
map mreg_type args = type_of_condition cond ->
- eval_condition cond (map rs (map preg_of args)) m = Some b ->
exists rs',
exec_straight (transl_cond_op cond args r k) rs m k rs' m
- /\ rs'#(ireg_of r) = Val.of_bool b
+ /\ rs'#(ireg_of r) = Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)
/\ forall r', is_data_reg r' = true -> r' <> ireg_of r -> rs'#r' = rs#r'.
Proof.
intros until args. unfold transl_cond_op.
destruct (classify_condition cond args);
- intros until b; intros TY1 TY2 EV; simpl in TY2.
+ intros until m; intros TY1 TY2; simpl in TY2.
(* eq 0 *)
- inv TY2. simpl in EV. unfold preg_of in *; rewrite H0 in *.
+ inv TY2. simpl. unfold preg_of; rewrite H0.
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
- split. repeat SIMP. destruct (rs (ireg_of r)); inv EV. simpl.
+ split. repeat SIMP. destruct (rs (ireg_of r)); simpl; auto.
apply add_carry_eq0.
intros; repeat SIMP.
(* ne 0 *)
- inv TY2. simpl in EV. unfold preg_of in *; rewrite H0 in *.
+ inv TY2. simpl. unfold preg_of; rewrite H0.
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
split. repeat SIMP. rewrite gpr_or_zero_not_zero; auto with ppcgen.
- destruct (rs (ireg_of r)); inv EV. simpl.
+ destruct (rs (ireg_of r)); simpl; auto.
apply add_carry_ne0.
intros; repeat SIMP.
(* ge 0 *)
- inv TY2. simpl in EV. unfold preg_of in *; rewrite H0 in *.
+ inv TY2. simpl. unfold preg_of; rewrite H0.
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
- split. repeat SIMP. rewrite Val.rolm_ge_zero.
- destruct (rs (ireg_of r)); simpl; congruence.
+ split. repeat SIMP. rewrite Val.rolm_ge_zero. auto.
intros; repeat SIMP.
(* lt 0 *)
- inv TY2. simpl in EV. unfold preg_of in *; rewrite H0 in *.
+ inv TY2. simpl. unfold preg_of; rewrite H0.
econstructor; split.
apply exec_straight_one; simpl; reflexivity.
- split. repeat SIMP. rewrite Val.rolm_lt_zero.
- destruct (rs (ireg_of r)); simpl; congruence.
+ split. repeat SIMP. rewrite Val.rolm_lt_zero. auto.
intros; repeat SIMP.
(* default *)
set (bit := fst (crbit_for_cond c)).
@@ -1177,7 +1226,7 @@ Proof.
(if isset
then k
else Pxori (ireg_of r) (ireg_of r) (Cint Int.one) :: k)).
- generalize (transl_cond_correct_2 c rl k1 rs m b TY2 EV).
+ generalize (transl_cond_correct_1 c rl k1 rs m TY2).
fold bit; fold isset.
intros [rs1 [EX1 [RES1 AG1]]].
destruct isset.
@@ -1188,7 +1237,8 @@ Proof.
(* bit clear *)
econstructor; split. eapply exec_straight_trans. eexact EX1.
unfold k1. eapply exec_straight_two; simpl; reflexivity.
- split. repeat SIMP. rewrite RES1. destruct b; compute; reflexivity.
+ split. repeat SIMP. rewrite RES1.
+ destruct (eval_condition c rs ## (preg_of ## rl) m). destruct b; auto. auto.
intros; repeat SIMP.
Qed.
@@ -1210,26 +1260,23 @@ Lemma transl_op_correct_aux:
match op with Omove => is_data_reg r = true | _ => is_nontemp_reg r = true end ->
r <> preg_of res -> rs'#r = rs#r.
Proof.
- intros.
- exploit eval_operation_weaken; eauto. intro EV.
- inv H.
+ intros until v; intros WT EV.
+ inv WT.
(* Omove *)
- simpl in *.
+ simpl in *. inv EV.
exists (nextinstr (rs#(preg_of res) <- (rs#(preg_of r1)))).
- split. unfold preg_of. rewrite <- H2.
+ split. unfold preg_of. rewrite <- H0.
destruct (mreg_type r1); apply exec_straight_one; auto.
split. repeat SIMP. intros; repeat SIMP.
(* Other instructions *)
- destruct op; simpl; simpl in H5; injection H5; clear H5; intros;
- TypeInv; simpl in *; UseTypeInfo; try (TranslOpSimpl).
- (* Omove again *)
- congruence.
+ destruct op; simpl; simpl in H3; injection H3; clear H3; intros;
+ TypeInv; simpl in *; UseTypeInfo; inv EV; try (TranslOpSimpl).
(* Ointconst *)
destruct (loadimm_correct (ireg_of res) i k rs m) as [rs' [A [B C]]].
exists rs'. split. auto. split. auto. auto with ppcgen.
(* Oaddrsymbol *)
- change (find_symbol_offset ge i i0) with (symbol_offset ge i i0) in *.
- set (v' := symbol_offset ge i i0) in *.
+ change (symbol_address ge i i0) with (symbol_offset ge i i0).
+ set (v' := symbol_offset ge i i0).
caseEq (symbol_is_small_data i i0); intro SD.
(* small data *)
econstructor; split. apply exec_straight_one; simpl; reflexivity.
@@ -1249,18 +1296,6 @@ Opaque Val.add.
destruct (addimm_correct (ireg_of res) GPR1 i k rs m) as [rs' [EX [RES OTH]]].
auto with ppcgen. congruence.
exists rs'; auto with ppcgen.
- (* Ocast8unsigned *)
- econstructor; split. apply exec_straight_one; simpl; reflexivity.
- split. repeat SIMP.
- destruct (rs (ireg_of m0)); simpl; auto.
- rewrite Int.rolm_zero. rewrite Int.zero_ext_and. auto. compute; auto.
- intros; repeat SIMP.
- (* Ocast16unsigned *)
- econstructor; split. apply exec_straight_one; simpl; reflexivity.
- split. repeat SIMP.
- destruct (rs (ireg_of m0)); simpl; auto.
- rewrite Int.rolm_zero. rewrite Int.zero_ext_and. auto. compute; auto.
- intros; repeat SIMP.
(* Oaddimm *)
destruct (addimm_correct (ireg_of res) (ireg_of m0) i k rs m) as [rs' [A [B C]]]; auto with ppcgen.
exists rs'; auto with ppcgen.
@@ -1280,6 +1315,14 @@ Opaque Val.add.
eapply exec_straight_trans. eexact EX. apply exec_straight_one; simpl; reflexivity.
split. repeat SIMP. rewrite RES. rewrite OTH; auto with ppcgen.
intros; repeat SIMP.
+ (* Odivs *)
+ replace v with (Val.maketotal (Val.divs (rs (ireg_of m0)) (rs (ireg_of m1)))).
+ TranslOpSimpl.
+ rewrite H2; auto.
+ (* Odivu *)
+ replace v with (Val.maketotal (Val.divu (rs (ireg_of m0)) (rs (ireg_of m1)))).
+ TranslOpSimpl.
+ rewrite H2; auto.
(* Oand *)
set (v' := Val.and (rs (ireg_of m0)) (rs (ireg_of m1))) in *.
pose (rs1 := rs#(ireg_of res) <- v').
@@ -1289,7 +1332,7 @@ Opaque Val.add.
split. rewrite D; auto with ppcgen. unfold rs1. SIMP.
intros. rewrite D; auto with ppcgen. unfold rs1. SIMP.
(* Oandimm *)
- destruct (andimm_correct (ireg_of res) (ireg_of m0) i k rs m) as [rs' [A [B [C D]]]]; auto with ppcgen.
+ destruct (andimm_correct (ireg_of res) (ireg_of m0) i k rs m) as [rs' [A [B C]]]; auto with ppcgen.
exists rs'; auto with ppcgen.
(* Oorimm *)
destruct (orimm_correct (ireg_of res) (ireg_of m0) i k rs m) as [rs' [A [B C]]].
@@ -1300,19 +1343,24 @@ Opaque Val.add.
(* Oshrximm *)
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
- split. repeat SIMP. apply Val.shrx_carry.
+ split. repeat SIMP. apply Val.shrx_carry. auto.
intros; repeat SIMP.
+ (* Orolm *)
+ destruct (rolm_correct (ireg_of res) (ireg_of m0) i i0 k rs m) as [rs' [A [B C]]]; auto with ppcgen.
+ exists rs'; auto with ppcgen.
(* Oroli *)
destruct (mreg_eq m0 res). subst m0.
TranslOpSimpl.
econstructor; split.
eapply exec_straight_three; simpl; reflexivity.
split. repeat SIMP. intros; repeat SIMP.
+ (* Ointoffloat *)
+ replace v with (Val.maketotal (Val.intoffloat (rs (freg_of m0)))).
+ TranslOpSimpl.
+ rewrite H2; auto.
(* Ocmp *)
- destruct (eval_condition c rs ## (preg_of ## args) m) as [ b | ] _eqn; try discriminate.
- destruct (transl_cond_op_correct c args res k rs m b) as [rs' [A [B C]]]; auto.
- exists rs'; intuition auto with ppcgen.
- rewrite B. destruct b; inv H0; auto.
+ destruct (transl_cond_op_correct c args res k rs m) as [rs' [A [B C]]]; auto.
+ exists rs'; auto with ppcgen.
Qed.
Lemma transl_op_correct:
@@ -1340,14 +1388,14 @@ Lemma transl_load_store_correct:
forall (mk1: constant -> ireg -> instruction) (mk2: ireg -> ireg -> instruction)
addr args (temp: ireg) k ms sp rs m ms' m',
(forall cst (r1: ireg) (rs1: regset) k,
- eval_addressing_total ge sp addr (map rs (map preg_of args)) =
- Val.add (gpr_or_zero rs1 r1) (const_low ge cst) ->
+ eval_addressing ge sp addr (map rs (map preg_of args)) =
+ Some(Val.add (gpr_or_zero rs1 r1) (const_low ge cst)) ->
(forall (r: preg), r <> PC -> r <> temp -> rs1 r = rs r) ->
exists rs',
exec_straight (mk1 cst r1 :: k) rs1 m k rs' m' /\
agree ms' sp rs') ->
(forall (r1 r2: ireg) k,
- eval_addressing_total ge sp addr (map rs (map preg_of args)) = Val.add rs#r1 rs#r2 ->
+ eval_addressing ge sp addr (map rs (map preg_of args)) = Some(Val.add rs#r1 rs#r2) ->
exists rs',
exec_straight (mk2 r1 r2 :: k) rs m k rs' m' /\
agree ms' sp rs') ->
@@ -1386,7 +1434,7 @@ Transparent Val.add.
(* Aglobal from small data *)
apply H. rewrite gpr_or_zero_zero. simpl const_low.
rewrite small_data_area_addressing; auto. simpl.
- unfold find_symbol_offset, symbol_offset.
+ unfold symbol_address, symbol_offset.
destruct (Genv.find_symbol ge i); auto. rewrite Int.add_zero. auto.
auto.
(* Aglobal general case *)
@@ -1396,7 +1444,7 @@ Transparent Val.add.
unfold rs1. rewrite nextinstr_inv. rewrite Pregmap.gss.
unfold const_high, const_low.
set (v := symbol_offset ge i i0).
- symmetry. rewrite Val.add_commut. unfold v. apply low_high_half.
+ symmetry. rewrite Val.add_commut. unfold v. rewrite low_high_half. auto.
discriminate.
intros; unfold rs1. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
intros [rs' [EX' AG']].
@@ -1414,8 +1462,8 @@ Transparent Val.add.
rewrite Val.add_assoc.
unfold const_high, const_low.
set (v := symbol_offset ge i i0).
- symmetry. rewrite Val.add_commut. decEq.
- unfold v. rewrite Val.add_commut. apply low_high_half.
+ symmetry. rewrite Val.add_commut. decEq. decEq.
+ unfold v. rewrite Val.add_commut. rewrite low_high_half. auto.
UseTypeInfo. auto. discriminate.
intros. unfold rs1. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
intros [rs' [EX' AG']].
@@ -1465,12 +1513,11 @@ Proof.
exploit eval_addressing_lessdef. eapply preg_vals; eauto. eauto.
intros [a' [A B]].
exploit Mem.loadv_extends; eauto. intros [v' [C D]].
- exploit eval_addressing_weaken. eexact A. intro E. rewrite <- E in C.
apply transl_load_store_correct with ms; auto.
(* mk1 *)
intros. exists (nextinstr (rs1#(preg_of dst) <- v')).
split. apply exec_straight_one. rewrite H.
- unfold load1. rewrite <- H6. rewrite C. auto.
+ unfold load1. rewrite A in H6. inv H6. rewrite C. auto.
unfold nextinstr. SIMP. decEq. SIMP. apply sym_not_equal; auto with ppcgen.
apply agree_set_mreg with rs1.
apply agree_undef_temps with rs; auto with ppcgen.
@@ -1479,7 +1526,7 @@ Proof.
(* mk2 *)
intros. exists (nextinstr (rs#(preg_of dst) <- v')).
split. apply exec_straight_one. rewrite H0.
- unfold load2. rewrite <- H6. rewrite C. auto.
+ unfold load2. rewrite A in H6. inv H6. rewrite C. auto.
unfold nextinstr. SIMP. decEq. SIMP. apply sym_not_equal; auto with ppcgen.
apply agree_set_mreg with rs.
apply agree_undef_temps with rs; auto with ppcgen.
@@ -1521,13 +1568,12 @@ Proof.
intros [a' [A B]].
assert (Z: Val.lessdef (ms src) (rs (preg_of src))). eapply preg_val; eauto.
exploit Mem.storev_extends; eauto. intros [m1' [C D]].
- exploit eval_addressing_weaken. eexact A. intro E. rewrite <- E in C.
exists m1'; split; auto.
apply transl_load_store_correct with ms; auto.
(* mk1 *)
intros.
exploit (H cst r1 rs1 (nextinstr rs1) m1').
- unfold store1. rewrite <- H6.
+ unfold store1. rewrite A in H6. inv H6.
replace (rs1 (preg_of src)) with (rs (preg_of src)).
rewrite C. auto.
symmetry. apply H7. auto with ppcgen.
@@ -1541,7 +1587,7 @@ Proof.
(* mk2 *)
intros.
exploit (H0 r1 r2 rs (nextinstr rs) m1').
- unfold store2. rewrite <- H6. rewrite C. auto.
+ unfold store2. rewrite A in H6. inv H6. rewrite C. auto.
intros [rs3 [U V]].
exists rs3; split.
apply exec_straight_one. auto. rewrite V; auto with ppcgen.
diff --git a/powerpc/Asmgenretaddr.v b/powerpc/Asmgenretaddr.v
index adc1529..081336c 100644
--- a/powerpc/Asmgenretaddr.v
+++ b/powerpc/Asmgenretaddr.v
@@ -112,6 +112,11 @@ Lemma addimm_tail:
Proof. unfold addimm; intros; IsTail. Qed.
Hint Resolve addimm_tail: ppcretaddr.
+Lemma andimm_base_tail:
+ forall r1 r2 n k, is_tail k (andimm_base r1 r2 n k).
+Proof. unfold andimm_base; intros; IsTail. Qed.
+Hint Resolve andimm_base_tail: ppcretaddr.
+
Lemma andimm_tail:
forall r1 r2 n k, is_tail k (andimm r1 r2 n k).
Proof. unfold andimm; intros; IsTail. Qed.
@@ -127,6 +132,11 @@ Lemma xorimm_tail:
Proof. unfold xorimm; intros; IsTail. Qed.
Hint Resolve xorimm_tail: ppcretaddr.
+Lemma rolm_tail:
+ forall r1 r2 amount mask k, is_tail k (rolm r1 r2 amount mask k).
+Proof. unfold rolm; intros; IsTail. Qed.
+Hint Resolve rolm_tail: ppcretaddr.
+
Lemma loadind_tail:
forall base ofs ty dst k, is_tail k (loadind base ofs ty dst k).
Proof. unfold loadind; intros. destruct ty; IsTail. Qed.
diff --git a/powerpc/ConstpropOp.v b/powerpc/ConstpropOp.v
deleted file mode 100644
index 07a1872..0000000
--- a/powerpc/ConstpropOp.v
+++ /dev/null
@@ -1,856 +0,0 @@
-(* *********************************************************************)
-(* *)
-(* The Compcert verified compiler *)
-(* *)
-(* Xavier Leroy, INRIA Paris-Rocquencourt *)
-(* *)
-(* Copyright Institut National de Recherche en Informatique et en *)
-(* Automatique. All rights reserved. This file is distributed *)
-(* under the terms of the INRIA Non-Commercial License Agreement. *)
-(* *)
-(* *********************************************************************)
-
-(** Static analysis and strength reduction for operators
- and conditions. This is the machine-dependent part of [Constprop]. *)
-
-Require Import Coqlib.
-Require Import AST.
-Require Import Integers.
-Require Import Floats.
-Require Import Values.
-Require Import Op.
-Require Import Registers.
-
-(** * Static analysis *)
-
-(** To each pseudo-register at each program point, the static analysis
- associates a compile-time approximation taken from the following set. *)
-
-Inductive approx : Type :=
- | Novalue: approx (** No value possible, code is unreachable. *)
- | Unknown: approx (** All values are possible,
- no compile-time information is available. *)
- | I: int -> approx (** A known integer value. *)
- | F: float -> approx (** A known floating-point value. *)
- | S: ident -> int -> approx.
- (** The value is the address of the given global
- symbol plus the given integer offset. *)
-
-(** We now define the abstract interpretations of conditions and operators
- over this set of approximations. For instance, the abstract interpretation
- of the operator [Oaddf] applied to two expressions [a] and [b] is
- [F(Float.add f g)] if [a] and [b] have static approximations [Vfloat f]
- and [Vfloat g] respectively, and [Unknown] otherwise.
-
- The static approximations are defined by large pattern-matchings over
- the approximations of the results. We write these matchings in the
- indirect style described in file [Cmconstr] to avoid excessive
- duplication of cases in proofs. *)
-
-(*
-Definition eval_static_condition (cond: condition) (vl: list approx) :=
- match cond, vl with
- | Ccomp c, I n1 :: I n2 :: nil => Some(Int.cmp c n1 n2)
- | Ccompu c, I n1 :: I n2 :: nil => Some(Int.cmpu c n1 n2)
- | Ccompimm c n, I n1 :: nil => Some(Int.cmp c n1 n)
- | Ccompuimm c n, I n1 :: nil => Some(Int.cmpu c n1 n)
- | Ccompf c, F n1 :: F n2 :: nil => Some(Float.cmp c n1 n2)
- | Cnotcompf c, F n1 :: F n2 :: nil => Some(negb(Float.cmp c n1 n2))
- | Cmaskzero n, I n1 :: nil => Some(Int.eq (Int.and n1 n) Int.zero)
- | Cmasknotzero n, n1::nil => Some(negb(Int.eq (Int.and n1 n) Int.zero))
- | _, _ => None
- end.
-*)
-
-Inductive eval_static_condition_cases: forall (cond: condition) (vl: list approx), Type :=
- | eval_static_condition_case1:
- forall c n1 n2,
- eval_static_condition_cases (Ccomp c) (I n1 :: I n2 :: nil)
- | eval_static_condition_case2:
- forall c n1 n2,
- eval_static_condition_cases (Ccompu c) (I n1 :: I n2 :: nil)
- | eval_static_condition_case3:
- forall c n n1,
- eval_static_condition_cases (Ccompimm c n) (I n1 :: nil)
- | eval_static_condition_case4:
- forall c n n1,
- eval_static_condition_cases (Ccompuimm c n) (I n1 :: nil)
- | eval_static_condition_case5:
- forall c n1 n2,
- eval_static_condition_cases (Ccompf c) (F n1 :: F n2 :: nil)
- | eval_static_condition_case6:
- forall c n1 n2,
- eval_static_condition_cases (Cnotcompf c) (F n1 :: F n2 :: nil)
- | eval_static_condition_case7:
- forall n n1,
- eval_static_condition_cases (Cmaskzero n) (I n1 :: nil)
- | eval_static_condition_case8:
- forall n n1,
- eval_static_condition_cases (Cmasknotzero n) (I n1 :: nil)
- | eval_static_condition_default:
- forall (cond: condition) (vl: list approx),
- eval_static_condition_cases cond vl.
-
-Definition eval_static_condition_match (cond: condition) (vl: list approx) :=
- match cond as z1, vl as z2 return eval_static_condition_cases z1 z2 with
- | Ccomp c, I n1 :: I n2 :: nil =>
- eval_static_condition_case1 c n1 n2
- | Ccompu c, I n1 :: I n2 :: nil =>
- eval_static_condition_case2 c n1 n2
- | Ccompimm c n, I n1 :: nil =>
- eval_static_condition_case3 c n n1
- | Ccompuimm c n, I n1 :: nil =>
- eval_static_condition_case4 c n n1
- | Ccompf c, F n1 :: F n2 :: nil =>
- eval_static_condition_case5 c n1 n2
- | Cnotcompf c, F n1 :: F n2 :: nil =>
- eval_static_condition_case6 c n1 n2
- | Cmaskzero n, I n1 :: nil =>
- eval_static_condition_case7 n n1
- | Cmasknotzero n, I n1 :: nil =>
- eval_static_condition_case8 n n1
- | cond, vl =>
- eval_static_condition_default cond vl
- end.
-
-Definition eval_static_condition (cond: condition) (vl: list approx) :=
- match eval_static_condition_match cond vl with
- | eval_static_condition_case1 c n1 n2 =>
- Some(Int.cmp c n1 n2)
- | eval_static_condition_case2 c n1 n2 =>
- Some(Int.cmpu c n1 n2)
- | eval_static_condition_case3 c n n1 =>
- Some(Int.cmp c n1 n)
- | eval_static_condition_case4 c n n1 =>
- Some(Int.cmpu c n1 n)
- | eval_static_condition_case5 c n1 n2 =>
- Some(Float.cmp c n1 n2)
- | eval_static_condition_case6 c n1 n2 =>
- Some(negb(Float.cmp c n1 n2))
- | eval_static_condition_case7 n n1 =>
- Some(Int.eq (Int.and n1 n) Int.zero)
- | eval_static_condition_case8 n n1 =>
- Some(negb(Int.eq (Int.and n1 n) Int.zero))
- | eval_static_condition_default cond vl =>
- None
- end.
-
-(*
-Definition eval_static_operation (op: operation) (vl: list approx) :=
- match op, vl with
- | Omove, v1::nil => v1
- | Ointconst n, nil => I n
- | Ofloatconst n, nil => F n
- | Oaddrsymbol s n, nil => S s n
- | Ocast8signed, I n1 :: nil => I(Int.sign_ext 8 n)
- | Ocast8unsigned, I n1 :: nil => I(Int.zero_ext 8 n)
- | Ocast16signed, I n1 :: nil => I(Int.sign_ext 16 n)
- | Ocast16unsigned, I n1 :: nil => I(Int.zero_ext 16 n)
- | Oadd, I n1 :: I n2 :: nil => I(Int.add n1 n2)
- | Oadd, S s1 n1 :: I n2 :: nil => S s1 (Int.add n1 n2)
- | Oaddimm n, I n1 :: nil => I (Int.add n1 n)
- | Oaddimm n, S s1 n1 :: nil => S s1 (Int.add n1 n)
- | Osub, I n1 :: I n2 :: nil => I(Int.sub n1 n2)
- | Osub, S s1 n1 :: I n2 :: nil => S s1 (Int.sub n1 n2)
- | Osubimm n, I n1 :: nil => I (Int.sub n n1)
- | Omul, I n1 :: I n2 :: nil => I(Int.mul n1 n2)
- | Omulimm n, I n1 :: nil => I(Int.mul n1 n)
- | Odiv, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else I(Int.divs n1 n2)
- | Odivu, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else I(Int.divu n1 n2)
- | Oand, I n1 :: I n2 :: nil => I(Int.and n1 n2)
- | Oandimm n, I n1 :: nil => I(Int.and n1 n)
- | Oor, I n1 :: I n2 :: nil => I(Int.or n1 n2)
- | Oorimm n, I n1 :: nil => I(Int.or n1 n)
- | Oxor, I n1 :: I n2 :: nil => I(Int.xor n1 n2)
- | Oxorimm n, I n1 :: nil => I(Int.xor n1 n)
- | Onand, I n1 :: I n2 :: nil => I(Int.xor (Int.and n1 n2) Int.mone)
- | Onor, I n1 :: I n2 :: nil => I(Int.xor (Int.or n1 n2) Int.mone)
- | Onxor, I n1 :: I n2 :: nil => I(Int.xor (Int.xor n1 n2) Int.mone)
- | Oshl, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shl n1 n2) else Unknown
- | Oshr, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shr n1 n2) else Unknown
- | Oshrimm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.shr n1 n) else Unknown
- | Oshrximm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.shrx n1 n) else Unknown
- | Oshru, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shru n1 n2) else Unknown
- | Orolm amount mask, I n1 :: nil => I(Int.rolm n1 amount mask)
- | Onegf, F n1 :: nil => F(Float.neg n1)
- | Oabsf, F n1 :: nil => F(Float.abs n1)
- | Oaddf, F n1 :: F n2 :: nil => F(Float.add n1 n2)
- | Osubf, F n1 :: F n2 :: nil => F(Float.sub n1 n2)
- | Omulf, F n1 :: F n2 :: nil => F(Float.mul n1 n2)
- | Odivf, F n1 :: F n2 :: nil => F(Float.div n1 n2)
- | Omuladdf, F n1 :: F n2 :: F n3 :: nil => F(Float.add (Float.mul n1 n2) n3)
- | Omulsubf, F n1 :: F n2 :: F n3 :: nil => F(Float.sub (Float.mul n1 n2) n3)
- | Osingleoffloat, F n1 :: nil => F(Float.singleoffloat n1)
- | Ointoffloat, F n1 :: nil => match Float.intoffloat n1 with Some x => I x | None => Unknown end
- | Ofloatofwords, I n1 :: I n2 :: nil => F(Float.from_words n1 n2)
- | Ocmp c, vl =>
- match eval_static_condition c vl with
- | None => Unknown
- | Some b => I(if b then Int.one else Int.zero)
- end
- | _, _ => Unknown
- end.
-*)
-
-Inductive eval_static_operation_cases: forall (op: operation) (vl: list approx), Type :=
- | eval_static_operation_case1:
- forall v1,
- eval_static_operation_cases (Omove) (v1::nil)
- | eval_static_operation_case2:
- forall n,
- eval_static_operation_cases (Ointconst n) (nil)
- | eval_static_operation_case3:
- forall n,
- eval_static_operation_cases (Ofloatconst n) (nil)
- | eval_static_operation_case4:
- forall s n,
- eval_static_operation_cases (Oaddrsymbol s n) (nil)
- | eval_static_operation_case6:
- forall n1,
- eval_static_operation_cases (Ocast8signed) (I n1 :: nil)
- | eval_static_operation_case7:
- forall n1,
- eval_static_operation_cases (Ocast16signed) (I n1 :: nil)
- | eval_static_operation_case8:
- forall n1 n2,
- eval_static_operation_cases (Oadd) (I n1 :: I n2 :: nil)
- | eval_static_operation_case9:
- forall s1 n1 n2,
- eval_static_operation_cases (Oadd) (S s1 n1 :: I n2 :: nil)
- | eval_static_operation_case11:
- forall n n1,
- eval_static_operation_cases (Oaddimm n) (I n1 :: nil)
- | eval_static_operation_case12:
- forall n s1 n1,
- eval_static_operation_cases (Oaddimm n) (S s1 n1 :: nil)
- | eval_static_operation_case13:
- forall n1 n2,
- eval_static_operation_cases (Osub) (I n1 :: I n2 :: nil)
- | eval_static_operation_case14:
- forall s1 n1 n2,
- eval_static_operation_cases (Osub) (S s1 n1 :: I n2 :: nil)
- | eval_static_operation_case15:
- forall n n1,
- eval_static_operation_cases (Osubimm n) (I n1 :: nil)
- | eval_static_operation_case16:
- forall n1 n2,
- eval_static_operation_cases (Omul) (I n1 :: I n2 :: nil)
- | eval_static_operation_case17:
- forall n n1,
- eval_static_operation_cases (Omulimm n) (I n1 :: nil)
- | eval_static_operation_case18:
- forall n1 n2,
- eval_static_operation_cases (Odiv) (I n1 :: I n2 :: nil)
- | eval_static_operation_case19:
- forall n1 n2,
- eval_static_operation_cases (Odivu) (I n1 :: I n2 :: nil)
- | eval_static_operation_case20:
- forall n1 n2,
- eval_static_operation_cases (Oand) (I n1 :: I n2 :: nil)
- | eval_static_operation_case21:
- forall n n1,
- eval_static_operation_cases (Oandimm n) (I n1 :: nil)
- | eval_static_operation_case22:
- forall n1 n2,
- eval_static_operation_cases (Oor) (I n1 :: I n2 :: nil)
- | eval_static_operation_case23:
- forall n n1,
- eval_static_operation_cases (Oorimm n) (I n1 :: nil)
- | eval_static_operation_case24:
- forall n1 n2,
- eval_static_operation_cases (Oxor) (I n1 :: I n2 :: nil)
- | eval_static_operation_case25:
- forall n n1,
- eval_static_operation_cases (Oxorimm n) (I n1 :: nil)
- | eval_static_operation_case26:
- forall n1 n2,
- eval_static_operation_cases (Onand) (I n1 :: I n2 :: nil)
- | eval_static_operation_case27:
- forall n1 n2,
- eval_static_operation_cases (Onor) (I n1 :: I n2 :: nil)
- | eval_static_operation_case28:
- forall n1 n2,
- eval_static_operation_cases (Onxor) (I n1 :: I n2 :: nil)
- | eval_static_operation_case29:
- forall n1 n2,
- eval_static_operation_cases (Oshl) (I n1 :: I n2 :: nil)
- | eval_static_operation_case30:
- forall n1 n2,
- eval_static_operation_cases (Oshr) (I n1 :: I n2 :: nil)
- | eval_static_operation_case31:
- forall n n1,
- eval_static_operation_cases (Oshrimm n) (I n1 :: nil)
- | eval_static_operation_case32:
- forall n n1,
- eval_static_operation_cases (Oshrximm n) (I n1 :: nil)
- | eval_static_operation_case33:
- forall n1 n2,
- eval_static_operation_cases (Oshru) (I n1 :: I n2 :: nil)
- | eval_static_operation_case34:
- forall amount mask n1,
- eval_static_operation_cases (Orolm amount mask) (I n1 :: nil)
- | eval_static_operation_case35:
- forall n1,
- eval_static_operation_cases (Onegf) (F n1 :: nil)
- | eval_static_operation_case36:
- forall n1,
- eval_static_operation_cases (Oabsf) (F n1 :: nil)
- | eval_static_operation_case37:
- forall n1 n2,
- eval_static_operation_cases (Oaddf) (F n1 :: F n2 :: nil)
- | eval_static_operation_case38:
- forall n1 n2,
- eval_static_operation_cases (Osubf) (F n1 :: F n2 :: nil)
- | eval_static_operation_case39:
- forall n1 n2,
- eval_static_operation_cases (Omulf) (F n1 :: F n2 :: nil)
- | eval_static_operation_case40:
- forall n1 n2,
- eval_static_operation_cases (Odivf) (F n1 :: F n2 :: nil)
- | eval_static_operation_case41:
- forall n1 n2 n3,
- eval_static_operation_cases (Omuladdf) (F n1 :: F n2 :: F n3 :: nil)
- | eval_static_operation_case42:
- forall n1 n2 n3,
- eval_static_operation_cases (Omulsubf) (F n1 :: F n2 :: F n3 :: nil)
- | eval_static_operation_case43:
- forall n1,
- eval_static_operation_cases (Osingleoffloat) (F n1 :: nil)
- | eval_static_operation_case44:
- forall n1,
- eval_static_operation_cases (Ointoffloat) (F n1 :: nil)
- | eval_static_operation_case45:
- forall n1 n2,
- eval_static_operation_cases (Ofloatofwords) (I n1 :: I n2 :: nil)
- | eval_static_operation_case47:
- forall c vl,
- eval_static_operation_cases (Ocmp c) (vl)
- | eval_static_operation_case48:
- forall n1,
- eval_static_operation_cases (Ocast8unsigned) (I n1 :: nil)
- | eval_static_operation_case49:
- forall n1,
- eval_static_operation_cases (Ocast16unsigned) (I n1 :: nil)
- | eval_static_operation_default:
- forall (op: operation) (vl: list approx),
- eval_static_operation_cases op vl.
-
-Definition eval_static_operation_match (op: operation) (vl: list approx) :=
- match op as z1, vl as z2 return eval_static_operation_cases z1 z2 with
- | Omove, v1::nil =>
- eval_static_operation_case1 v1
- | Ointconst n, nil =>
- eval_static_operation_case2 n
- | Ofloatconst n, nil =>
- eval_static_operation_case3 n
- | Oaddrsymbol s n, nil =>
- eval_static_operation_case4 s n
- | Ocast8signed, I n1 :: nil =>
- eval_static_operation_case6 n1
- | Ocast16signed, I n1 :: nil =>
- eval_static_operation_case7 n1
- | Oadd, I n1 :: I n2 :: nil =>
- eval_static_operation_case8 n1 n2
- | Oadd, S s1 n1 :: I n2 :: nil =>
- eval_static_operation_case9 s1 n1 n2
- | Oaddimm n, I n1 :: nil =>
- eval_static_operation_case11 n n1
- | Oaddimm n, S s1 n1 :: nil =>
- eval_static_operation_case12 n s1 n1
- | Osub, I n1 :: I n2 :: nil =>
- eval_static_operation_case13 n1 n2
- | Osub, S s1 n1 :: I n2 :: nil =>
- eval_static_operation_case14 s1 n1 n2
- | Osubimm n, I n1 :: nil =>
- eval_static_operation_case15 n n1
- | Omul, I n1 :: I n2 :: nil =>
- eval_static_operation_case16 n1 n2
- | Omulimm n, I n1 :: nil =>
- eval_static_operation_case17 n n1
- | Odiv, I n1 :: I n2 :: nil =>
- eval_static_operation_case18 n1 n2
- | Odivu, I n1 :: I n2 :: nil =>
- eval_static_operation_case19 n1 n2
- | Oand, I n1 :: I n2 :: nil =>
- eval_static_operation_case20 n1 n2
- | Oandimm n, I n1 :: nil =>
- eval_static_operation_case21 n n1
- | Oor, I n1 :: I n2 :: nil =>
- eval_static_operation_case22 n1 n2
- | Oorimm n, I n1 :: nil =>
- eval_static_operation_case23 n n1
- | Oxor, I n1 :: I n2 :: nil =>
- eval_static_operation_case24 n1 n2
- | Oxorimm n, I n1 :: nil =>
- eval_static_operation_case25 n n1
- | Onand, I n1 :: I n2 :: nil =>
- eval_static_operation_case26 n1 n2
- | Onor, I n1 :: I n2 :: nil =>
- eval_static_operation_case27 n1 n2
- | Onxor, I n1 :: I n2 :: nil =>
- eval_static_operation_case28 n1 n2
- | Oshl, I n1 :: I n2 :: nil =>
- eval_static_operation_case29 n1 n2
- | Oshr, I n1 :: I n2 :: nil =>
- eval_static_operation_case30 n1 n2
- | Oshrimm n, I n1 :: nil =>
- eval_static_operation_case31 n n1
- | Oshrximm n, I n1 :: nil =>
- eval_static_operation_case32 n n1
- | Oshru, I n1 :: I n2 :: nil =>
- eval_static_operation_case33 n1 n2
- | Orolm amount mask, I n1 :: nil =>
- eval_static_operation_case34 amount mask n1
- | Onegf, F n1 :: nil =>
- eval_static_operation_case35 n1
- | Oabsf, F n1 :: nil =>
- eval_static_operation_case36 n1
- | Oaddf, F n1 :: F n2 :: nil =>
- eval_static_operation_case37 n1 n2
- | Osubf, F n1 :: F n2 :: nil =>
- eval_static_operation_case38 n1 n2
- | Omulf, F n1 :: F n2 :: nil =>
- eval_static_operation_case39 n1 n2
- | Odivf, F n1 :: F n2 :: nil =>
- eval_static_operation_case40 n1 n2
- | Omuladdf, F n1 :: F n2 :: F n3 :: nil =>
- eval_static_operation_case41 n1 n2 n3
- | Omulsubf, F n1 :: F n2 :: F n3 :: nil =>
- eval_static_operation_case42 n1 n2 n3
- | Osingleoffloat, F n1 :: nil =>
- eval_static_operation_case43 n1
- | Ointoffloat, F n1 :: nil =>
- eval_static_operation_case44 n1
- | Ofloatofwords, I n1 :: I n2 :: nil =>
- eval_static_operation_case45 n1 n2
- | Ocmp c, vl =>
- eval_static_operation_case47 c vl
- | Ocast8unsigned, I n1 :: nil =>
- eval_static_operation_case48 n1
- | Ocast16unsigned, I n1 :: nil =>
- eval_static_operation_case49 n1
- | op, vl =>
- eval_static_operation_default op vl
- end.
-
-Definition eval_static_operation (op: operation) (vl: list approx) :=
- match eval_static_operation_match op vl with
- | eval_static_operation_case1 v1 =>
- v1
- | eval_static_operation_case2 n =>
- I n
- | eval_static_operation_case3 n =>
- F n
- | eval_static_operation_case4 s n =>
- S s n
- | eval_static_operation_case6 n1 =>
- I(Int.sign_ext 8 n1)
- | eval_static_operation_case7 n1 =>
- I(Int.sign_ext 16 n1)
- | eval_static_operation_case8 n1 n2 =>
- I(Int.add n1 n2)
- | eval_static_operation_case9 s1 n1 n2 =>
- S s1 (Int.add n1 n2)
- | eval_static_operation_case11 n n1 =>
- I (Int.add n1 n)
- | eval_static_operation_case12 n s1 n1 =>
- S s1 (Int.add n1 n)
- | eval_static_operation_case13 n1 n2 =>
- I(Int.sub n1 n2)
- | eval_static_operation_case14 s1 n1 n2 =>
- S s1 (Int.sub n1 n2)
- | eval_static_operation_case15 n n1 =>
- I (Int.sub n n1)
- | eval_static_operation_case16 n1 n2 =>
- I(Int.mul n1 n2)
- | eval_static_operation_case17 n n1 =>
- I(Int.mul n1 n)
- | eval_static_operation_case18 n1 n2 =>
- if Int.eq n2 Int.zero then Unknown else I(Int.divs n1 n2)
- | eval_static_operation_case19 n1 n2 =>
- if Int.eq n2 Int.zero then Unknown else I(Int.divu n1 n2)
- | eval_static_operation_case20 n1 n2 =>
- I(Int.and n1 n2)
- | eval_static_operation_case21 n n1 =>
- I(Int.and n1 n)
- | eval_static_operation_case22 n1 n2 =>
- I(Int.or n1 n2)
- | eval_static_operation_case23 n n1 =>
- I(Int.or n1 n)
- | eval_static_operation_case24 n1 n2 =>
- I(Int.xor n1 n2)
- | eval_static_operation_case25 n n1 =>
- I(Int.xor n1 n)
- | eval_static_operation_case26 n1 n2 =>
- I(Int.xor (Int.and n1 n2) Int.mone)
- | eval_static_operation_case27 n1 n2 =>
- I(Int.xor (Int.or n1 n2) Int.mone)
- | eval_static_operation_case28 n1 n2 =>
- I(Int.xor (Int.xor n1 n2) Int.mone)
- | eval_static_operation_case29 n1 n2 =>
- if Int.ltu n2 Int.iwordsize then I(Int.shl n1 n2) else Unknown
- | eval_static_operation_case30 n1 n2 =>
- if Int.ltu n2 Int.iwordsize then I(Int.shr n1 n2) else Unknown
- | eval_static_operation_case31 n n1 =>
- if Int.ltu n Int.iwordsize then I(Int.shr n1 n) else Unknown
- | eval_static_operation_case32 n n1 =>
- if Int.ltu n Int.iwordsize then I(Int.shrx n1 n) else Unknown
- | eval_static_operation_case33 n1 n2 =>
- if Int.ltu n2 Int.iwordsize then I(Int.shru n1 n2) else Unknown
- | eval_static_operation_case34 amount mask n1 =>
- I(Int.rolm n1 amount mask)
- | eval_static_operation_case35 n1 =>
- F(Float.neg n1)
- | eval_static_operation_case36 n1 =>
- F(Float.abs n1)
- | eval_static_operation_case37 n1 n2 =>
- F(Float.add n1 n2)
- | eval_static_operation_case38 n1 n2 =>
- F(Float.sub n1 n2)
- | eval_static_operation_case39 n1 n2 =>
- F(Float.mul n1 n2)
- | eval_static_operation_case40 n1 n2 =>
- F(Float.div n1 n2)
- | eval_static_operation_case41 n1 n2 n3 =>
- F(Float.add (Float.mul n1 n2) n3)
- | eval_static_operation_case42 n1 n2 n3 =>
- F(Float.sub (Float.mul n1 n2) n3)
- | eval_static_operation_case43 n1 =>
- F(Float.singleoffloat n1)
- | eval_static_operation_case44 n1 =>
- match Float.intoffloat n1 with Some x => I x | None => Unknown end
- | eval_static_operation_case45 n1 n2 =>
- F(Float.from_words n1 n2)
- | eval_static_operation_case47 c vl =>
- match eval_static_condition c vl with
- | None => Unknown
- | Some b => I(if b then Int.one else Int.zero)
- end
- | eval_static_operation_case48 n1 =>
- I(Int.zero_ext 8 n1)
- | eval_static_operation_case49 n1 =>
- I(Int.zero_ext 16 n1)
- | eval_static_operation_default op vl =>
- Unknown
- end.
-
-(** * Operator strength reduction *)
-
-(** We now define auxiliary functions for strength reduction of
- operators and addressing modes: replacing an operator with a cheaper
- one if some of its arguments are statically known. These are again
- large pattern-matchings expressed in indirect style. *)
-
-Section STRENGTH_REDUCTION.
-
-Variable app: reg -> approx.
-
-Definition intval (r: reg) : option int :=
- match app r with I n => Some n | _ => None end.
-
-Inductive cond_strength_reduction_cases: condition -> list reg -> Type :=
- | csr_case1:
- forall c r1 r2,
- cond_strength_reduction_cases (Ccomp c) (r1 :: r2 :: nil)
- | csr_case2:
- forall c r1 r2,
- cond_strength_reduction_cases (Ccompu c) (r1 :: r2 :: nil)
- | csr_default:
- forall c rl,
- cond_strength_reduction_cases c rl.
-
-Definition cond_strength_reduction_match (cond: condition) (rl: list reg) :=
- match cond as x, rl as y return cond_strength_reduction_cases x y with
- | Ccomp c, r1 :: r2 :: nil =>
- csr_case1 c r1 r2
- | Ccompu c, r1 :: r2 :: nil =>
- csr_case2 c r1 r2
- | cond, rl =>
- csr_default cond rl
- end.
-
-Definition cond_strength_reduction
- (cond: condition) (args: list reg) : condition * list reg :=
- match cond_strength_reduction_match cond args with
- | csr_case1 c r1 r2 =>
- match intval r1, intval r2 with
- | Some n, _ =>
- (Ccompimm (swap_comparison c) n, r2 :: nil)
- | _, Some n =>
- (Ccompimm c n, r1 :: nil)
- | _, _ =>
- (cond, args)
- end
- | csr_case2 c r1 r2 =>
- match intval r1, intval r2 with
- | Some n, _ =>
- (Ccompuimm (swap_comparison c) n, r2 :: nil)
- | _, Some n =>
- (Ccompuimm c n, r1 :: nil)
- | _, _ =>
- (cond, args)
- end
- | csr_default cond args =>
- (cond, args)
- end.
-
-Definition make_addimm (n: int) (r: reg) :=
- if Int.eq n Int.zero
- then (Omove, r :: nil)
- else (Oaddimm n, r :: nil).
-
-Definition make_shlimm (n: int) (r: reg) :=
- if Int.eq n Int.zero
- then (Omove, r :: nil)
- else (Orolm n (Int.shl Int.mone n), r :: nil).
-
-Definition make_shrimm (n: int) (r: reg) :=
- if Int.eq n Int.zero
- then (Omove, r :: nil)
- else (Oshrimm n, r :: nil).
-
-Definition make_shruimm (n: int) (r: reg) :=
- if Int.eq n Int.zero
- then (Omove, r :: nil)
- else (Orolm (Int.sub Int.iwordsize n) (Int.shru Int.mone n), r :: nil).
-
-Definition make_mulimm (n: int) (r: reg) :=
- if Int.eq n Int.zero then
- (Ointconst Int.zero, nil)
- else if Int.eq n Int.one then
- (Omove, r :: nil)
- else
- match Int.is_power2 n with
- | Some l => make_shlimm l r
- | None => (Omulimm n, r :: nil)
- end.
-
-Definition make_andimm (n: int) (r: reg) :=
- if Int.eq n Int.zero
- then (Ointconst Int.zero, nil)
- else if Int.eq n Int.mone then (Omove, r :: nil)
- else (Oandimm n, r :: nil).
-
-Definition make_orimm (n: int) (r: reg) :=
- if Int.eq n Int.zero then (Omove, r :: nil)
- else if Int.eq n Int.mone then (Ointconst Int.mone, nil)
- else (Oorimm n, r :: nil).
-
-Definition make_xorimm (n: int) (r: reg) :=
- if Int.eq n Int.zero
- then (Omove, r :: nil)
- else (Oxorimm n, r :: nil).
-
-Inductive op_strength_reduction_cases: operation -> list reg -> Type :=
- | op_strength_reduction_case1:
- forall (r1: reg) (r2: reg),
- op_strength_reduction_cases Oadd (r1 :: r2 :: nil)
- | op_strength_reduction_case2:
- forall (r1: reg) (r2: reg),
- op_strength_reduction_cases Osub (r1 :: r2 :: nil)
- | op_strength_reduction_case3:
- forall (r1: reg) (r2: reg),
- op_strength_reduction_cases Omul (r1 :: r2 :: nil)
- | op_strength_reduction_case4:
- forall (r1: reg) (r2: reg),
- op_strength_reduction_cases Odiv (r1 :: r2 :: nil)
- | op_strength_reduction_case5:
- forall (r1: reg) (r2: reg),
- op_strength_reduction_cases Odivu (r1 :: r2 :: nil)
- | op_strength_reduction_case6:
- forall (r1: reg) (r2: reg),
- op_strength_reduction_cases Oand (r1 :: r2 :: nil)
- | op_strength_reduction_case7:
- forall (r1: reg) (r2: reg),
- op_strength_reduction_cases Oor (r1 :: r2 :: nil)
- | op_strength_reduction_case8:
- forall (r1: reg) (r2: reg),
- op_strength_reduction_cases Oxor (r1 :: r2 :: nil)
- | op_strength_reduction_case9:
- forall (r1: reg) (r2: reg),
- op_strength_reduction_cases Oshl (r1 :: r2 :: nil)
- | op_strength_reduction_case10:
- forall (r1: reg) (r2: reg),
- op_strength_reduction_cases Oshr (r1 :: r2 :: nil)
- | op_strength_reduction_case11:
- forall (r1: reg) (r2: reg),
- op_strength_reduction_cases Oshru (r1 :: r2 :: nil)
- | op_strength_reduction_case12:
- forall (c: condition) (rl: list reg),
- op_strength_reduction_cases (Ocmp c) rl
- | op_strength_reduction_default:
- forall (op: operation) (args: list reg),
- op_strength_reduction_cases op args.
-
-Definition op_strength_reduction_match (op: operation) (args: list reg) :=
- match op as z1, args as z2 return op_strength_reduction_cases z1 z2 with
- | Oadd, r1 :: r2 :: nil =>
- op_strength_reduction_case1 r1 r2
- | Osub, r1 :: r2 :: nil =>
- op_strength_reduction_case2 r1 r2
- | Omul, r1 :: r2 :: nil =>
- op_strength_reduction_case3 r1 r2
- | Odiv, r1 :: r2 :: nil =>
- op_strength_reduction_case4 r1 r2
- | Odivu, r1 :: r2 :: nil =>
- op_strength_reduction_case5 r1 r2
- | Oand, r1 :: r2 :: nil =>
- op_strength_reduction_case6 r1 r2
- | Oor, r1 :: r2 :: nil =>
- op_strength_reduction_case7 r1 r2
- | Oxor, r1 :: r2 :: nil =>
- op_strength_reduction_case8 r1 r2
- | Oshl, r1 :: r2 :: nil =>
- op_strength_reduction_case9 r1 r2
- | Oshr, r1 :: r2 :: nil =>
- op_strength_reduction_case10 r1 r2
- | Oshru, r1 :: r2 :: nil =>
- op_strength_reduction_case11 r1 r2
- | Ocmp c, rl =>
- op_strength_reduction_case12 c rl
- | op, args =>
- op_strength_reduction_default op args
- end.
-
-Definition op_strength_reduction (op: operation) (args: list reg) :=
- match op_strength_reduction_match op args with
- | op_strength_reduction_case1 r1 r2 => (* Oadd *)
- match intval r1, intval r2 with
- | Some n, _ => make_addimm n r2
- | _, Some n => make_addimm n r1
- | _, _ => (op, args)
- end
- | op_strength_reduction_case2 r1 r2 => (* Osub *)
- match intval r1, intval r2 with
- | Some n, _ => (Osubimm n, r2 :: nil)
- | _, Some n => make_addimm (Int.neg n) r1
- | _, _ => (op, args)
- end
- | op_strength_reduction_case3 r1 r2 => (* Omul *)
- match intval r1, intval r2 with
- | Some n, _ => make_mulimm n r2
- | _, Some n => make_mulimm n r1
- | _, _ => (op, args)
- end
- | op_strength_reduction_case4 r1 r2 => (* Odiv *)
- match intval r2 with
- | Some n =>
- match Int.is_power2 n with
- | Some l => (Oshrximm l, r1 :: nil)
- | None => (op, args)
- end
- | None =>
- (op, args)
- end
- | op_strength_reduction_case5 r1 r2 => (* Odivu *)
- match intval r2 with
- | Some n =>
- match Int.is_power2 n with
- | Some l => make_shruimm l r1
- | None => (op, args)
- end
- | None =>
- (op, args)
- end
- | op_strength_reduction_case6 r1 r2 => (* Oand *)
- match intval r1, intval r2 with
- | Some n, _ => make_andimm n r2
- | _, Some n => make_andimm n r1
- | _, _ => (op, args)
- end
- | op_strength_reduction_case7 r1 r2 => (* Oor *)
- match intval r1, intval r2 with
- | Some n, _ => make_orimm n r2
- | _, Some n => make_orimm n r1
- | _, _ => (op, args)
- end
- | op_strength_reduction_case8 r1 r2 => (* Oxor *)
- match intval r1, intval r2 with
- | Some n, _ => make_xorimm n r2
- | _, Some n => make_xorimm n r1
- | _, _ => (op, args)
- end
- | op_strength_reduction_case9 r1 r2 => (* Oshl *)
- match intval r2 with
- | Some n =>
- if Int.ltu n Int.iwordsize
- then make_shlimm n r1
- else (op, args)
- | _ => (op, args)
- end
- | op_strength_reduction_case10 r1 r2 => (* Oshr *)
- match intval r2 with
- | Some n =>
- if Int.ltu n Int.iwordsize
- then make_shrimm n r1
- else (op, args)
- | _ => (op, args)
- end
- | op_strength_reduction_case11 r1 r2 => (* Oshru *)
- match intval r2 with
- | Some n =>
- if Int.ltu n Int.iwordsize
- then make_shruimm n r1
- else (op, args)
- | _ => (op, args)
- end
- | op_strength_reduction_case12 c args => (* Ocmp *)
- let (c', args') := cond_strength_reduction c args in
- (Ocmp c', args')
- | op_strength_reduction_default op args => (* default *)
- (op, args)
- end.
-
-Inductive addr_strength_reduction_cases: forall (addr: addressing) (args: list reg), Type :=
- | addr_strength_reduction_case1:
- forall (r1: reg) (r2: reg),
- addr_strength_reduction_cases (Aindexed2) (r1 :: r2 :: nil)
- | addr_strength_reduction_case2:
- forall (symb: ident) (ofs: int) (r1: reg),
- addr_strength_reduction_cases (Abased symb ofs) (r1 :: nil)
- | addr_strength_reduction_case3:
- forall n r1,
- addr_strength_reduction_cases (Aindexed n) (r1 :: nil)
- | addr_strength_reduction_default:
- forall (addr: addressing) (args: list reg),
- addr_strength_reduction_cases addr args.
-
-Definition addr_strength_reduction_match (addr: addressing) (args: list reg) :=
- match addr as z1, args as z2 return addr_strength_reduction_cases z1 z2 with
- | Aindexed2, r1 :: r2 :: nil =>
- addr_strength_reduction_case1 r1 r2
- | Abased symb ofs, r1 :: nil =>
- addr_strength_reduction_case2 symb ofs r1
- | Aindexed n, r1 :: nil =>
- addr_strength_reduction_case3 n r1
- | addr, args =>
- addr_strength_reduction_default addr args
- end.
-
-Definition addr_strength_reduction (addr: addressing) (args: list reg) :=
- match addr_strength_reduction_match addr args with
- | addr_strength_reduction_case1 r1 r2 => (* Aindexed2 *)
- match app r1, app r2 with
- | S symb n1, I n2 => (Aglobal symb (Int.add n1 n2), nil)
- | S symb n1, _ => (Abased symb n1, r2 :: nil)
- | I n1, S symb n2 => (Aglobal symb (Int.add n1 n2), nil)
- | I n1, _ => (Aindexed n1, r2 :: nil)
- | _, S symb n2 => (Abased symb n2, r1 :: nil)
- | _, I n2 => (Aindexed n2, r1 :: nil)
- | _, _ => (addr, args)
- end
- | addr_strength_reduction_case2 symb ofs r1 => (* Abased *)
- match intval r1 with
- | Some n => (Aglobal symb (Int.add ofs n), nil)
- | _ => (addr, args)
- end
- | addr_strength_reduction_case3 n r1 => (* Aindexed *)
- match app r1 with
- | S symb ofs => (Aglobal symb (Int.add ofs n), nil)
- | _ => (addr, args)
- end
- | addr_strength_reduction_default addr args => (* default *)
- (addr, args)
- end.
-
-End STRENGTH_REDUCTION.
diff --git a/powerpc/ConstpropOp.vp b/powerpc/ConstpropOp.vp
new file mode 100644
index 0000000..22e89e3
--- /dev/null
+++ b/powerpc/ConstpropOp.vp
@@ -0,0 +1,277 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Static analysis and strength reduction for operators
+ and conditions. This is the machine-dependent part of [Constprop]. *)
+
+Require Import Coqlib.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Op.
+Require Import Registers.
+
+(** * Static analysis *)
+
+(** To each pseudo-register at each program point, the static analysis
+ associates a compile-time approximation taken from the following set. *)
+
+Inductive approx : Type :=
+ | Novalue: approx (** No value possible, code is unreachable. *)
+ | Unknown: approx (** All values are possible,
+ no compile-time information is available. *)
+ | I: int -> approx (** A known integer value. *)
+ | F: float -> approx (** A known floating-point value. *)
+ | G: ident -> int -> approx
+ (** The value is the address of the given global
+ symbol plus the given integer offset. *)
+ | S: int -> approx. (** The value is the stack pointer plus the offset. *)
+
+(** We now define the abstract interpretations of conditions and operators
+ over this set of approximations. For instance, the abstract interpretation
+ of the operator [Oaddf] applied to two expressions [a] and [b] is
+ [F(Float.add f g)] if [a] and [b] have static approximations [Vfloat f]
+ and [Vfloat g] respectively, and [Unknown] otherwise.
+
+ The static approximations are defined by large pattern-matchings over
+ the approximations of the results. We write these matchings in the
+ indirect style described in file [SelectOp] to avoid excessive
+ duplication of cases in proofs. *)
+
+Nondetfunction eval_static_condition (cond: condition) (vl: list approx) :=
+ match cond, vl with
+ | Ccomp c, I n1 :: I n2 :: nil => Some(Int.cmp c n1 n2)
+ | Ccompu c, I n1 :: I n2 :: nil => Some(Int.cmpu c n1 n2)
+ | Ccompimm c n, I n1 :: nil => Some(Int.cmp c n1 n)
+ | Ccompuimm c n, I n1 :: nil => Some(Int.cmpu c n1 n)
+ | Ccompf c, F n1 :: F n2 :: nil => Some(Float.cmp c n1 n2)
+ | Cnotcompf c, F n1 :: F n2 :: nil => Some(negb(Float.cmp c n1 n2))
+ | Cmaskzero n, I n1 :: nil => Some(Int.eq (Int.and n1 n) Int.zero)
+ | Cmasknotzero n, I n1::nil => Some(negb(Int.eq (Int.and n1 n) Int.zero))
+ | _, _ => None
+ end.
+
+Definition eval_static_condition_val (cond: condition) (vl: list approx) :=
+ match eval_static_condition cond vl with
+ | None => Unknown
+ | Some b => I(if b then Int.one else Int.zero)
+ end.
+
+Definition eval_static_intoffloat (f: float) :=
+ match Float.intoffloat f with Some x => I x | None => Unknown end.
+
+Nondetfunction eval_static_operation (op: operation) (vl: list approx) :=
+ match op, vl with
+ | Omove, v1::nil => v1
+ | Ointconst n, nil => I n
+ | Ofloatconst n, nil => F n
+ | Oaddrsymbol s n, nil => G s n
+ | Oaddrstack n, nil => S n
+ | Ocast8signed, I n1 :: nil => I(Int.sign_ext 8 n1)
+ | Ocast16signed, I n1 :: nil => I(Int.sign_ext 16 n1)
+ | Oadd, I n1 :: I n2 :: nil => I(Int.add n1 n2)
+ | Oadd, G s1 n1 :: I n2 :: nil => G s1 (Int.add n1 n2)
+ | Oadd, I n1 :: G s2 n2 :: nil => G s2 (Int.add n1 n2)
+ | Oadd, S n1 :: I n2 :: nil => S (Int.add n1 n2)
+ | Oadd, I n1 :: S n2 :: nil => S (Int.add n1 n2)
+ | Oaddimm n, I n1 :: nil => I (Int.add n1 n)
+ | Oaddimm n, G s1 n1 :: nil => G s1 (Int.add n1 n)
+ | Oaddimm n, S n1 :: nil => S (Int.add n1 n)
+ | Osub, I n1 :: I n2 :: nil => I(Int.sub n1 n2)
+ | Osub, G s1 n1 :: I n2 :: nil => G s1 (Int.sub n1 n2)
+ | Osub, S n1 :: I n2 :: nil => S (Int.sub n1 n2)
+ | Osubimm n, I n1 :: nil => I (Int.sub n n1)
+ | Omul, I n1 :: I n2 :: nil => I(Int.mul n1 n2)
+ | Omulimm n, I n1 :: nil => I(Int.mul n1 n)
+ | Odiv, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else I(Int.divs n1 n2)
+ | Odivu, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else I(Int.divu n1 n2)
+ | Oand, I n1 :: I n2 :: nil => I(Int.and n1 n2)
+ | Oandimm n, I n1 :: nil => I(Int.and n1 n)
+ | Oor, I n1 :: I n2 :: nil => I(Int.or n1 n2)
+ | Oorimm n, I n1 :: nil => I(Int.or n1 n)
+ | Oxor, I n1 :: I n2 :: nil => I(Int.xor n1 n2)
+ | Oxorimm n, I n1 :: nil => I(Int.xor n1 n)
+ | Onand, I n1 :: I n2 :: nil => I(Int.xor (Int.and n1 n2) Int.mone)
+ | Onor, I n1 :: I n2 :: nil => I(Int.xor (Int.or n1 n2) Int.mone)
+ | Onxor, I n1 :: I n2 :: nil => I(Int.xor (Int.xor n1 n2) Int.mone)
+ | Oshl, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shl n1 n2) else Unknown
+ | Oshr, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shr n1 n2) else Unknown
+ | Oshrimm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.shr n1 n) else Unknown
+ | Oshrximm n, I n1 :: nil => if Int.ltu n (Int.repr 31) then I(Int.shrx n1 n) else Unknown
+ | Oshru, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shru n1 n2) else Unknown
+ | Orolm amount mask, I n1 :: nil => I(Int.rolm n1 amount mask)
+ | Oroli amount mask, I n1 :: I n2 :: nil => I(Int.or (Int.and n1 (Int.not mask)) (Int.rolm n2 amount mask))
+ | Onegf, F n1 :: nil => F(Float.neg n1)
+ | Oabsf, F n1 :: nil => F(Float.abs n1)
+ | Oaddf, F n1 :: F n2 :: nil => F(Float.add n1 n2)
+ | Osubf, F n1 :: F n2 :: nil => F(Float.sub n1 n2)
+ | Omulf, F n1 :: F n2 :: nil => F(Float.mul n1 n2)
+ | Odivf, F n1 :: F n2 :: nil => F(Float.div n1 n2)
+ | Omuladdf, F n1 :: F n2 :: F n3 :: nil => F(Float.add (Float.mul n1 n2) n3)
+ | Omulsubf, F n1 :: F n2 :: F n3 :: nil => F(Float.sub (Float.mul n1 n2) n3)
+ | Osingleoffloat, F n1 :: nil => F(Float.singleoffloat n1)
+ | Ointoffloat, F n1 :: nil => eval_static_intoffloat n1
+ | Ofloatofwords, I n1 :: I n2 :: nil => F(Float.from_words n1 n2)
+ | Ocmp c, vl => eval_static_condition_val c vl
+ | _, _ => Unknown
+ end.
+
+(** * Operator strength reduction *)
+
+(** We now define auxiliary functions for strength reduction of
+ operators and addressing modes: replacing an operator with a cheaper
+ one if some of its arguments are statically known. These are again
+ large pattern-matchings expressed in indirect style. *)
+
+Section STRENGTH_REDUCTION.
+
+Nondetfunction cond_strength_reduction
+ (cond: condition) (args: list reg) (vl: list approx) :=
+ match cond, args, vl with
+ | Ccomp c, r1 :: r2 :: nil, I n1 :: v2 :: nil =>
+ (Ccompimm (swap_comparison c) n1, r2 :: nil)
+ | Ccomp c, r1 :: r2 :: nil, v1 :: I n2 :: nil =>
+ (Ccompimm c n2, r1 :: nil)
+ | Ccompu c, r1 :: r2 :: nil, I n1 :: v2 :: nil =>
+ (Ccompuimm (swap_comparison c) n1, r2 :: nil)
+ | Ccompu c, r1 :: r2 :: nil, v1 :: I n2 :: nil =>
+ (Ccompuimm c n2, r1 :: nil)
+ | _, _, _ =>
+ (cond, args)
+ end.
+
+Definition make_addimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero
+ then (Omove, r :: nil)
+ else (Oaddimm n, r :: nil).
+
+Definition make_shlimm (n: int) (r1 r2: reg) :=
+ if Int.eq n Int.zero then
+ (Omove, r1 :: nil)
+ else if Int.ltu n Int.iwordsize then
+ (Orolm n (Int.shl Int.mone n), r1 :: nil)
+ else
+ (Oshl, r1 :: r2 :: nil).
+
+Definition make_shrimm (n: int) (r1 r2: reg) :=
+ if Int.eq n Int.zero then
+ (Omove, r1 :: nil)
+ else if Int.ltu n Int.iwordsize then
+ (Oshrimm n, r1 :: nil)
+ else
+ (Oshr, r1 :: r2 :: nil).
+
+Definition make_shruimm (n: int) (r1 r2: reg) :=
+ if Int.eq n Int.zero then
+ (Omove, r1 :: nil)
+ else if Int.ltu n Int.iwordsize then
+ (Orolm (Int.sub Int.iwordsize n) (Int.shru Int.mone n), r1 :: nil)
+ else
+ (Oshru, r1 :: r2 :: nil).
+
+Definition make_mulimm (n: int) (r1 r2: reg) :=
+ if Int.eq n Int.zero then
+ (Ointconst Int.zero, nil)
+ else if Int.eq n Int.one then
+ (Omove, r1 :: nil)
+ else
+ match Int.is_power2 n with
+ | Some l => (Orolm l (Int.shl Int.mone l), r1 :: nil)
+ | None => (Omulimm n, r1 :: nil)
+ end.
+
+Definition make_divimm (n: int) (r1 r2: reg) :=
+ match Int.is_power2 n with
+ | Some l => if Int.ltu l (Int.repr 31)
+ then (Oshrximm l, r1 :: nil)
+ else (Odiv, r1 :: r2 :: nil)
+ | None => (Odiv, r1 :: r2 :: nil)
+ end.
+
+Definition make_divuimm (n: int) (r1 r2: reg) :=
+ match Int.is_power2 n with
+ | Some l => (Orolm (Int.sub Int.iwordsize l) (Int.shru Int.mone l), r1 :: nil)
+ | None => (Odivu, r1 :: r2 :: nil)
+ end.
+
+Definition make_andimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero
+ then (Ointconst Int.zero, nil)
+ else if Int.eq n Int.mone then (Omove, r :: nil)
+ else (Oandimm n, r :: nil).
+
+Definition make_orimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero then (Omove, r :: nil)
+ else if Int.eq n Int.mone then (Ointconst Int.mone, nil)
+ else (Oorimm n, r :: nil).
+
+Definition make_xorimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero
+ then (Omove, r :: nil)
+ else (Oxorimm n, r :: nil).
+
+Nondetfunction op_strength_reduction
+ (op: operation) (args: list reg) (vl: list approx) :=
+ match op, args, vl with
+ | Oadd, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_addimm n1 r2
+ | Oadd, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_addimm n2 r1
+ | Osub, r1 :: r2 :: nil, I n1 :: v2 :: nil => (Osubimm n1, r2 :: nil)
+ | Osub, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_addimm (Int.neg n2) r1
+ | Omul, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_mulimm n1 r2 r1
+ | Omul, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_mulimm n2 r1 r2
+ | Odiv, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_divimm n2 r1 r2
+ | Odivu, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_divuimm n2 r1 r2
+ | Oand, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_andimm n1 r2
+ | Oand, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_andimm n2 r1
+ | Oor, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_orimm n1 r2
+ | Oor, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_orimm n2 r1
+ | Oxor, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_xorimm n1 r2
+ | Oxor, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_xorimm n2 r1
+ | Oshl, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shlimm n2 r1 r2
+ | Oshr, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shrimm n2 r1 r2
+ | Oshru, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shruimm n2 r1 r2
+ | Ocmp c, args, vl =>
+ let (c', args') := cond_strength_reduction c args vl in (Ocmp c', args')
+ | _, _, _ => (op, args)
+ end.
+
+Nondetfunction addr_strength_reduction
+ (addr: addressing) (args: list reg) (vl: list approx) :=
+ match addr, args, vl with
+ | Aindexed2, r1 :: r2 :: nil, G symb n1 :: I n2 :: nil =>
+ (Aglobal symb (Int.add n1 n2), nil)
+ | Aindexed2, r1 :: r2 :: nil, I n1 :: G symb n2 :: nil =>
+ (Aglobal symb (Int.add n1 n2), nil)
+ | Aindexed2, r1 :: r2 :: nil, S n1 :: I n2 :: nil =>
+ (Ainstack (Int.add n1 n2), nil)
+ | Aindexed2, r1 :: r2 :: nil, I n1 :: S n2 :: nil =>
+ (Ainstack (Int.add n1 n2), nil)
+ | Aindexed2, r1 :: r2 :: nil, G symb n1 :: v2 :: nil =>
+ (Abased symb n1, r2 :: nil)
+ | Aindexed2, r1 :: r2 :: nil, v1 :: G symb n2 :: nil =>
+ (Abased symb n2, r1 :: nil)
+ | Aindexed2, r1 :: r2 :: nil, I n1 :: v2 :: nil =>
+ (Aindexed n1, r2 :: nil)
+ | Aindexed2, r1 :: r2 :: nil, v1 :: I n2 :: nil =>
+ (Aindexed n2, r1 :: nil)
+ | Abased symb ofs, r1 :: nil, I n1 :: nil =>
+ (Aglobal symb (Int.add ofs n1), nil)
+ | Aindexed n, r1 :: nil, G symb n1 :: nil =>
+ (Aglobal symb (Int.add n1 n), nil)
+ | Aindexed n, r1 :: nil, S n1 :: nil =>
+ (Ainstack (Int.add n1 n), nil)
+ | _, _, _ =>
+ (addr, args)
+ end.
+
+End STRENGTH_REDUCTION.
diff --git a/powerpc/ConstpropOpproof.v b/powerpc/ConstpropOpproof.v
index bf065b7..36444b3 100644
--- a/powerpc/ConstpropOpproof.v
+++ b/powerpc/ConstpropOpproof.v
@@ -30,6 +30,7 @@ Require Import Constprop.
Section ANALYSIS.
Variable ge: genv.
+Variable sp: val.
(** We first show that the dataflow analysis is correct with respect
to the dynamic semantics: the approximations (sets of values)
@@ -43,7 +44,8 @@ Definition val_match_approx (a: approx) (v: val) : Prop :=
| Unknown => True
| I p => v = Vint p
| F p => v = Vfloat p
- | S symb ofs => exists b, Genv.find_symbol ge symb = Some b /\ v = Vptr b ofs
+ | G symb ofs => v = symbol_address ge symb ofs
+ | S ofs => v = Val.add sp (Vint ofs)
| _ => False
end.
@@ -62,12 +64,10 @@ Ltac SimplVMA :=
simpl in H; (try subst v); SimplVMA
| H: (val_match_approx (F _) ?v) |- _ =>
simpl in H; (try subst v); SimplVMA
- | H: (val_match_approx (S _ _) ?v) |- _ =>
- simpl in H;
- (try (elim H;
- let b := fresh "b" in let A := fresh in let B := fresh in
- (intros b [A B]; subst v; clear H)));
- SimplVMA
+ | H: (val_match_approx (G _ _) ?v) |- _ =>
+ simpl in H; (try subst v); SimplVMA
+ | H: (val_match_approx (S _) ?v) |- _ =>
+ simpl in H; (try subst v); SimplVMA
| _ =>
idtac
end.
@@ -75,9 +75,9 @@ Ltac SimplVMA :=
Ltac InvVLMA :=
match goal with
| H: (val_list_match_approx nil ?vl) |- _ =>
- inversion H
+ inv H
| H: (val_list_match_approx (?a :: ?al) ?vl) |- _ =>
- inversion H; SimplVMA; InvVLMA
+ inv H; SimplVMA; InvVLMA
| _ =>
idtac
end.
@@ -99,8 +99,15 @@ Proof.
InvVLMA; simpl; congruence.
Qed.
+Remark shift_symbol_address:
+ forall symb ofs n,
+ symbol_address ge symb (Int.add ofs n) = Val.add (symbol_address ge symb ofs) (Vint n).
+Proof.
+ unfold symbol_address; intros. destruct (Genv.find_symbol ge symb); auto.
+Qed.
+
Lemma eval_static_operation_correct:
- forall op sp al vl m v,
+ forall op al vl m v,
val_list_match_approx al vl ->
eval_operation ge sp op vl m = Some v ->
val_match_approx (eval_static_operation op al) v.
@@ -108,57 +115,44 @@ Proof.
intros until v.
unfold eval_static_operation.
case (eval_static_operation_match op al); intros;
- InvVLMA; simpl in *; FuncInv; try congruence.
-
- destruct (Genv.find_symbol ge s). exists b. intuition congruence.
- congruence.
-
- rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
- rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
-
- exists b. split. auto. congruence.
- exists b. split. auto. congruence.
- exists b. split. auto. congruence.
+ InvVLMA; simpl in *; FuncInv; try subst v; auto.
- replace n2 with i0. destruct (Int.eq i0 Int.zero).
- discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
+ rewrite shift_symbol_address; auto.
- replace n2 with i0. destruct (Int.eq i0 Int.zero).
- discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
+ rewrite Int.add_commut. rewrite shift_symbol_address. rewrite Val.add_commut. auto.
- subst v. unfold Int.not. congruence.
- subst v. unfold Int.not. congruence.
- subst v. unfold Int.not. congruence.
+ rewrite Int.add_commut; auto.
- replace n2 with i0. destruct (Int.ltu i0 Int.iwordsize).
- injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
+ rewrite Val.add_assoc. rewrite Int.add_commut. auto.
- replace n2 with i0. destruct (Int.ltu i0 Int.iwordsize).
- injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
+ change (Val.add (Vint n1) (Val.add sp (Vint n2)) = Val.add sp (Vint (Int.add n1 n2))).
+ rewrite Val.add_permut. auto.
- destruct (Int.ltu n Int.iwordsize).
- injection H0; intro; subst v. simpl. congruence. discriminate.
+ rewrite shift_symbol_address; auto.
- destruct (Int.ltu n Int.iwordsize).
- injection H0; intro; subst v. simpl. congruence. discriminate.
+ rewrite Val.add_assoc; auto.
- replace n2 with i0. destruct (Int.ltu i0 Int.iwordsize).
- injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
+ unfold symbol_address. destruct (Genv.find_symbol ge s1); auto.
- rewrite <- H3. replace v0 with (Vfloat n1). reflexivity. congruence.
+ rewrite Val.sub_add_opp. rewrite Val.add_assoc. simpl. rewrite Int.sub_add_opp. auto.
- inv H4. destruct (Float.intoffloat f); simpl in H0; inv H0. red; auto.
+ destruct (Int.eq n2 Int.zero); inv H0; simpl; auto.
+ destruct (Int.eq n2 Int.zero); inv H0; simpl; auto.
- caseEq (eval_static_condition c vl0).
- intros. generalize (eval_static_condition_correct _ _ _ m _ H H1).
- intro. rewrite H2 in H0.
- destruct b; injection H0; intro; subst v; simpl; auto.
- intros; simpl; auto.
+ destruct (Int.ltu n2 Int.iwordsize); simpl; auto.
+ destruct (Int.ltu n2 Int.iwordsize); simpl; auto.
+ destruct (Int.ltu n Int.iwordsize); simpl; auto.
+ destruct (Int.ltu n (Int.repr 31)); inv H0. simpl; auto.
+ destruct (Int.ltu n2 Int.iwordsize); simpl; auto.
- rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
- rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
+ unfold eval_static_intoffloat. destruct (Float.intoffloat n1); simpl in H0; inv H0.
+ simpl; auto.
- auto.
+ unfold eval_static_condition_val, Val.of_optbool.
+ destruct (eval_static_condition c vl0) as []_eqn.
+ rewrite (eval_static_condition_correct _ _ _ m _ H Heqo).
+ destruct b; simpl; auto.
+ simpl; auto.
Qed.
(** * Correctness of strength reduction *)
@@ -171,352 +165,243 @@ Qed.
Section STRENGTH_REDUCTION.
-Variable app: reg -> approx.
-Variable sp: val.
+Variable app: D.t.
Variable rs: regset.
Variable m: mem.
-Hypothesis MATCH: forall r, val_match_approx (app r) rs#r.
+Hypothesis MATCH: forall r, val_match_approx (approx_reg app r) rs#r.
-Lemma intval_correct:
- forall r n,
- intval app r = Some n -> rs#r = Vint n.
-Proof.
- intros until n.
- unfold intval. caseEq (app r); intros; try discriminate.
- generalize (MATCH r). unfold val_match_approx. rewrite H.
- congruence.
-Qed.
+Ltac InvApproxRegs :=
+ match goal with
+ | [ H: _ :: _ = _ :: _ |- _ ] =>
+ injection H; clear H; intros; InvApproxRegs
+ | [ H: ?v = approx_reg app ?r |- _ ] =>
+ generalize (MATCH r); rewrite <- H; clear H; intro; InvApproxRegs
+ | _ => idtac
+ end.
Lemma cond_strength_reduction_correct:
- forall cond args,
- let (cond', args') := cond_strength_reduction app cond args in
+ forall cond args vl,
+ vl = approx_regs app args ->
+ let (cond', args') := cond_strength_reduction cond args vl in
eval_condition cond' rs##args' m = eval_condition cond rs##args m.
Proof.
- intros. unfold cond_strength_reduction.
- case (cond_strength_reduction_match cond args); intros.
- caseEq (intval app r1); intros.
- simpl. rewrite (intval_correct _ _ H).
- destruct (rs#r2); auto. rewrite Int.swap_cmp. auto.
- caseEq (intval app r2); intros.
- simpl. rewrite (intval_correct _ _ H0). auto.
- auto.
- caseEq (intval app r1); intros.
- simpl. rewrite (intval_correct _ _ H).
- destruct (rs#r2); auto. rewrite Int.swap_cmpu. auto.
- destruct c; reflexivity.
- caseEq (intval app r2); intros.
- simpl. rewrite (intval_correct _ _ H0). auto.
- auto.
+ intros until vl. unfold cond_strength_reduction.
+ case (cond_strength_reduction_match cond args vl); simpl; intros; InvApproxRegs; SimplVMA.
+ rewrite H0. apply Val.swap_cmp_bool.
+ rewrite H. auto.
+ rewrite H0. apply Val.swap_cmpu_bool.
+ rewrite H. auto.
auto.
Qed.
Lemma make_addimm_correct:
- forall n r v,
+ forall n r,
let (op, args) := make_addimm n r in
- eval_operation ge sp Oadd (rs#r :: Vint n :: nil) m = Some v ->
- eval_operation ge sp op rs##args m = Some v.
+ exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.add rs#r (Vint n)) v.
Proof.
- intros; unfold make_addimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
- subst n. simpl in *. FuncInv. rewrite Int.add_zero in H. congruence.
- rewrite Int.add_zero in H. congruence.
- exact H0.
+ intros. unfold make_addimm.
+ predSpec Int.eq Int.eq_spec n Int.zero; intros.
+ subst. exists (rs#r); split; auto. destruct (rs#r); simpl; auto; rewrite Int.add_zero; auto.
+ exists (Val.add rs#r (Vint n)); auto.
Qed.
Lemma make_shlimm_correct:
- forall n r v,
- let (op, args) := make_shlimm n r in
- eval_operation ge sp Oshl (rs#r :: Vint n :: nil) m = Some v ->
- eval_operation ge sp op rs##args m = Some v.
+ forall n r1 r2,
+ rs#r2 = Vint n ->
+ let (op, args) := make_shlimm n r1 r2 in
+ exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.shl rs#r1 (Vint n)) v.
Proof.
intros; unfold make_shlimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
- subst n. simpl in *. FuncInv. rewrite Int.shl_zero in H. congruence.
- simpl in *. FuncInv. caseEq (Int.ltu n Int.iwordsize); intros.
- rewrite H1 in H0. rewrite Int.shl_rolm in H0. auto. exact H1.
- rewrite H1 in H0. discriminate.
+ predSpec Int.eq Int.eq_spec n Int.zero; intros. subst.
+ exists (rs#r1); split; auto. destruct (rs#r1); simpl; auto. rewrite Int.shl_zero. auto.
+ destruct (Int.ltu n Int.iwordsize) as []_eqn; intros.
+ rewrite Val.shl_rolm; auto. econstructor; split; eauto. auto.
+ econstructor; split; eauto. simpl. congruence.
Qed.
Lemma make_shrimm_correct:
- forall n r v,
- let (op, args) := make_shrimm n r in
- eval_operation ge sp Oshr (rs#r :: Vint n :: nil) m = Some v ->
- eval_operation ge sp op rs##args m = Some v.
+ forall n r1 r2,
+ rs#r2 = Vint n ->
+ let (op, args) := make_shrimm n r1 r2 in
+ exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.shr rs#r1 (Vint n)) v.
Proof.
intros; unfold make_shrimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
- subst n. simpl in *. FuncInv. rewrite Int.shr_zero in H. congruence.
- assumption.
+ predSpec Int.eq Int.eq_spec n Int.zero; intros. subst.
+ exists (rs#r1); split; auto. destruct (rs#r1); simpl; auto. rewrite Int.shr_zero. auto.
+ destruct (Int.ltu n Int.iwordsize) as []_eqn.
+ econstructor; split; eauto. simpl. auto.
+ econstructor; split; eauto. simpl. congruence.
Qed.
Lemma make_shruimm_correct:
- forall n r v,
- let (op, args) := make_shruimm n r in
- eval_operation ge sp Oshru (rs#r :: Vint n :: nil) m = Some v ->
- eval_operation ge sp op rs##args m = Some v.
+ forall n r1 r2,
+ rs#r2 = Vint n ->
+ let (op, args) := make_shruimm n r1 r2 in
+ exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.shru rs#r1 (Vint n)) v.
Proof.
intros; unfold make_shruimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
- subst n. simpl in *. FuncInv. rewrite Int.shru_zero in H. congruence.
- simpl in *. FuncInv. caseEq (Int.ltu n Int.iwordsize); intros.
- rewrite H1 in H0. rewrite Int.shru_rolm in H0. auto. exact H1.
- rewrite H1 in H0. discriminate.
+ predSpec Int.eq Int.eq_spec n Int.zero; intros. subst.
+ exists (rs#r1); split; auto. destruct (rs#r1); simpl; auto. rewrite Int.shru_zero. auto.
+ destruct (Int.ltu n Int.iwordsize) as []_eqn; intros.
+ rewrite Val.shru_rolm; auto. econstructor; split; eauto. auto.
+ econstructor; split; eauto. simpl. congruence.
Qed.
Lemma make_mulimm_correct:
- forall n r v,
- let (op, args) := make_mulimm n r in
- eval_operation ge sp Omul (rs#r :: Vint n :: nil) m = Some v ->
- eval_operation ge sp op rs##args m = Some v.
+ forall n r1 r2,
+ rs#r2 = Vint n ->
+ let (op, args) := make_mulimm n r1 r2 in
+ exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.mul rs#r1 (Vint n)) v.
Proof.
intros; unfold make_mulimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
- subst n. simpl in H0. FuncInv. rewrite Int.mul_zero in H. simpl. congruence.
- generalize (Int.eq_spec n Int.one); case (Int.eq n Int.one); intros.
- subst n. simpl in H1. simpl. FuncInv. rewrite Int.mul_one in H0. congruence.
- caseEq (Int.is_power2 n); intros.
- replace (eval_operation ge sp Omul (rs # r :: Vint n :: nil) m)
- with (eval_operation ge sp Oshl (rs # r :: Vint i :: nil) m).
- apply make_shlimm_correct.
- simpl. generalize (Int.is_power2_range _ _ H1).
- change (Z_of_nat Int.wordsize) with 32. intro. rewrite H2.
- destruct rs#r; auto. rewrite (Int.mul_pow2 i0 _ _ H1). auto.
- exact H2.
+ predSpec Int.eq Int.eq_spec n Int.zero; intros. subst.
+ exists (Vint Int.zero); split; auto. destruct (rs#r1); simpl; auto. rewrite Int.mul_zero; auto.
+ predSpec Int.eq Int.eq_spec n Int.one; intros. subst.
+ exists (rs#r1); split; auto. destruct (rs#r1); simpl; auto. rewrite Int.mul_one; auto.
+ destruct (Int.is_power2 n) as []_eqn; intros.
+ rewrite (Val.mul_pow2 rs#r1 _ _ Heqo). rewrite Val.shl_rolm.
+ econstructor; split; eauto. auto.
+ eapply Int.is_power2_range; eauto.
+ econstructor; split; eauto. auto.
+Qed.
+
+Lemma make_divimm_correct:
+ forall n r1 r2 v,
+ Val.divs rs#r1 rs#r2 = Some v ->
+ rs#r2 = Vint n ->
+ let (op, args) := make_divimm n r1 r2 in
+ exists w, eval_operation ge sp op rs##args m = Some w /\ Val.lessdef v w.
+Proof.
+ intros; unfold make_divimm.
+ destruct (Int.is_power2 n) as []_eqn.
+ destruct (Int.ltu i (Int.repr 31)) as []_eqn.
+ exists v; split; auto. simpl. eapply Val.divs_pow2; eauto. congruence.
+ exists v; auto.
+ exists v; auto.
+Qed.
+
+Lemma make_divuimm_correct:
+ forall n r1 r2 v,
+ Val.divu rs#r1 rs#r2 = Some v ->
+ rs#r2 = Vint n ->
+ let (op, args) := make_divuimm n r1 r2 in
+ exists w, eval_operation ge sp op rs##args m = Some w /\ Val.lessdef v w.
+Proof.
+ intros; unfold make_divuimm.
+ destruct (Int.is_power2 n) as []_eqn.
+ econstructor; split. simpl; eauto.
+ exploit Int.is_power2_range; eauto. intros RANGE.
+ rewrite <- Val.shru_rolm; auto. rewrite H0 in H.
+ destruct (rs#r1); simpl in *; inv H.
+ destruct (Int.eq n Int.zero); inv H2.
+ rewrite RANGE. rewrite (Int.divu_pow2 i0 _ _ Heqo). auto.
+ exists v; auto.
Qed.
Lemma make_andimm_correct:
- forall n r v,
+ forall n r,
let (op, args) := make_andimm n r in
- eval_operation ge sp Oand (rs#r :: Vint n :: nil) m = Some v ->
- eval_operation ge sp op rs##args m = Some v.
+ exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.and rs#r (Vint n)) v.
Proof.
intros; unfold make_andimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
- subst n. simpl in *. FuncInv. rewrite Int.and_zero in H. congruence.
- generalize (Int.eq_spec n Int.mone); case (Int.eq n Int.mone); intros.
- subst n. simpl in *. FuncInv. rewrite Int.and_mone in H0. congruence.
- exact H1.
+ predSpec Int.eq Int.eq_spec n Int.zero; intros.
+ subst n. exists (Vint Int.zero); split; auto. destruct (rs#r); simpl; auto. rewrite Int.and_zero; auto.
+ predSpec Int.eq Int.eq_spec n Int.mone; intros.
+ subst n. exists (rs#r); split; auto. destruct (rs#r); simpl; auto. rewrite Int.and_mone; auto.
+ econstructor; split; eauto. auto.
Qed.
Lemma make_orimm_correct:
- forall n r v,
+ forall n r,
let (op, args) := make_orimm n r in
- eval_operation ge sp Oor (rs#r :: Vint n :: nil) m = Some v ->
- eval_operation ge sp op rs##args m = Some v.
+ exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.or rs#r (Vint n)) v.
Proof.
intros; unfold make_orimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
- subst n. simpl in *. FuncInv. rewrite Int.or_zero in H. congruence.
- generalize (Int.eq_spec n Int.mone); case (Int.eq n Int.mone); intros.
- subst n. simpl in *. FuncInv. rewrite Int.or_mone in H0. congruence.
- exact H1.
+ predSpec Int.eq Int.eq_spec n Int.zero; intros.
+ subst n. exists (rs#r); split; auto. destruct (rs#r); simpl; auto. rewrite Int.or_zero; auto.
+ predSpec Int.eq Int.eq_spec n Int.mone; intros.
+ subst n. exists (Vint Int.mone); split; auto. destruct (rs#r); simpl; auto. rewrite Int.or_mone; auto.
+ econstructor; split; eauto. auto.
Qed.
Lemma make_xorimm_correct:
- forall n r v,
+ forall n r,
let (op, args) := make_xorimm n r in
- eval_operation ge sp Oxor (rs#r :: Vint n :: nil) m = Some v ->
- eval_operation ge sp op rs##args m = Some v.
+ exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.xor rs#r (Vint n)) v.
Proof.
intros; unfold make_xorimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
- subst n. simpl in *. FuncInv. rewrite Int.xor_zero in H. congruence.
- exact H0.
+ predSpec Int.eq Int.eq_spec n Int.zero; intros.
+ subst n. exists (rs#r); split; auto. destruct (rs#r); simpl; auto. rewrite Int.xor_zero; auto.
+ econstructor; split; eauto. auto.
Qed.
Lemma op_strength_reduction_correct:
- forall op args v,
- let (op', args') := op_strength_reduction app op args in
+ forall op args vl v,
+ vl = approx_regs app args ->
eval_operation ge sp op rs##args m = Some v ->
- eval_operation ge sp op' rs##args' m = Some v.
+ let (op', args') := op_strength_reduction op args vl in
+ exists w, eval_operation ge sp op' rs##args' m = Some w /\ Val.lessdef v w.
Proof.
- intros; unfold op_strength_reduction;
- case (op_strength_reduction_match op args); intros; simpl List.map.
- (* Oadd *)
- caseEq (intval app r1); intros.
- rewrite (intval_correct _ _ H).
- replace (eval_operation ge sp Oadd (Vint i :: rs # r2 :: nil) m)
- with (eval_operation ge sp Oadd (rs # r2 :: Vint i :: nil) m).
- apply make_addimm_correct.
- simpl. destruct rs#r2; auto. rewrite Int.add_commut; auto.
- caseEq (intval app r2); intros.
- rewrite (intval_correct _ _ H0). apply make_addimm_correct.
- assumption.
- (* Osub *)
- caseEq (intval app r1); intros.
- rewrite (intval_correct _ _ H) in H0. assumption.
- caseEq (intval app r2); intros.
- rewrite (intval_correct _ _ H0).
- replace (eval_operation ge sp Osub (rs # r1 :: Vint i :: nil) m)
- with (eval_operation ge sp Oadd (rs # r1 :: Vint (Int.neg i) :: nil) m).
- apply make_addimm_correct.
- simpl. destruct rs#r1; auto; rewrite Int.sub_add_opp; auto.
- assumption.
- (* Omul *)
- caseEq (intval app r1); intros.
- rewrite (intval_correct _ _ H).
- replace (eval_operation ge sp Omul (Vint i :: rs # r2 :: nil) m)
- with (eval_operation ge sp Omul (rs # r2 :: Vint i :: nil) m).
- apply make_mulimm_correct.
- simpl. destruct rs#r2; auto. rewrite Int.mul_commut; auto.
- caseEq (intval app r2); intros.
- rewrite (intval_correct _ _ H0). apply make_mulimm_correct.
- assumption.
- (* Odiv *)
- caseEq (intval app r2); intros.
- caseEq (Int.is_power2 i); intros.
- rewrite (intval_correct _ _ H) in H1.
- simpl in *; FuncInv. destruct (Int.eq i Int.zero). congruence.
- change 32 with (Z_of_nat Int.wordsize).
- rewrite (Int.is_power2_range _ _ H0).
- rewrite (Int.divs_pow2 i1 _ _ H0) in H1. auto.
- assumption.
- assumption.
- (* Odivu *)
- caseEq (intval app r2); intros.
- caseEq (Int.is_power2 i); intros.
- rewrite (intval_correct _ _ H).
- replace (eval_operation ge sp Odivu (rs # r1 :: Vint i :: nil) m)
- with (eval_operation ge sp Oshru (rs # r1 :: Vint i0 :: nil) m).
- apply make_shruimm_correct.
- simpl. destruct rs#r1; auto.
- change 32 with (Z_of_nat Int.wordsize).
- rewrite (Int.is_power2_range _ _ H0).
- generalize (Int.eq_spec i Int.zero); case (Int.eq i Int.zero); intros.
- subst i. discriminate.
- rewrite (Int.divu_pow2 i1 _ _ H0). auto.
- assumption.
- assumption.
- (* Oand *)
- caseEq (intval app r1); intros.
- rewrite (intval_correct _ _ H).
- replace (eval_operation ge sp Oand (Vint i :: rs # r2 :: nil) m)
- with (eval_operation ge sp Oand (rs # r2 :: Vint i :: nil) m).
- apply make_andimm_correct.
- simpl. destruct rs#r2; auto. rewrite Int.and_commut; auto.
- caseEq (intval app r2); intros.
- rewrite (intval_correct _ _ H0). apply make_andimm_correct.
- assumption.
- (* Oor *)
- caseEq (intval app r1); intros.
- rewrite (intval_correct _ _ H).
- replace (eval_operation ge sp Oor (Vint i :: rs # r2 :: nil) m)
- with (eval_operation ge sp Oor (rs # r2 :: Vint i :: nil) m).
- apply make_orimm_correct.
- simpl. destruct rs#r2; auto. rewrite Int.or_commut; auto.
- caseEq (intval app r2); intros.
- rewrite (intval_correct _ _ H0). apply make_orimm_correct.
- assumption.
- (* Oxor *)
- caseEq (intval app r1); intros.
- rewrite (intval_correct _ _ H).
- replace (eval_operation ge sp Oxor (Vint i :: rs # r2 :: nil) m)
- with (eval_operation ge sp Oxor (rs # r2 :: Vint i :: nil) m).
- apply make_xorimm_correct.
- simpl. destruct rs#r2; auto. rewrite Int.xor_commut; auto.
- caseEq (intval app r2); intros.
- rewrite (intval_correct _ _ H0). apply make_xorimm_correct.
- assumption.
- (* Oshl *)
- caseEq (intval app r2); intros.
- caseEq (Int.ltu i Int.iwordsize); intros.
- rewrite (intval_correct _ _ H). apply make_shlimm_correct.
- assumption.
- assumption.
- (* Oshr *)
- caseEq (intval app r2); intros.
- caseEq (Int.ltu i Int.iwordsize); intros.
- rewrite (intval_correct _ _ H). apply make_shrimm_correct.
- assumption.
- assumption.
- (* Oshru *)
- caseEq (intval app r2); intros.
- caseEq (Int.ltu i Int.iwordsize); intros.
- rewrite (intval_correct _ _ H). apply make_shruimm_correct.
- assumption.
- assumption.
- (* Ocmp *)
- generalize (cond_strength_reduction_correct c rl).
- destruct (cond_strength_reduction app c rl).
- simpl. intro. rewrite H. auto.
- (* default *)
- assumption.
+ intros until v; unfold op_strength_reduction;
+ case (op_strength_reduction_match op args vl); simpl; intros.
+(* add *)
+ InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.add_commut. apply make_addimm_correct.
+ InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_addimm_correct.
+(* sub *)
+ InvApproxRegs; SimplVMA. inv H0. rewrite H1. econstructor; split; eauto.
+ InvApproxRegs; SimplVMA. inv H0. rewrite H. rewrite Val.sub_add_opp. apply make_addimm_correct.
+(* mul *)
+ InvApproxRegs; SimplVMA. inv H0. rewrite H1. rewrite Val.mul_commut. apply make_mulimm_correct; auto.
+ InvApproxRegs; SimplVMA. inv H0. rewrite H. apply make_mulimm_correct; auto.
+(* divs *)
+ assert (rs#r2 = Vint n2). clear H0. InvApproxRegs; SimplVMA; auto.
+ apply make_divimm_correct; auto.
+(* divu *)
+ assert (rs#r2 = Vint n2). clear H0. InvApproxRegs; SimplVMA; auto.
+ apply make_divuimm_correct; auto.
+(* and *)
+ InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.and_commut. apply make_andimm_correct.
+ InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_andimm_correct.
+(* or *)
+ InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.or_commut. apply make_orimm_correct.
+ InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_orimm_correct.
+(* xor *)
+ InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.xor_commut. apply make_xorimm_correct.
+ InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_xorimm_correct.
+(* shl *)
+ InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_shlimm_correct; auto.
+(* shr *)
+ InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_shrimm_correct; auto.
+(* shru *)
+ InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_shruimm_correct; auto.
+(* cmp *)
+ generalize (cond_strength_reduction_correct c args0 vl0).
+ destruct (cond_strength_reduction c args0 vl0) as [c' args']; intros.
+ rewrite <- H1 in H0; auto. econstructor; split; eauto.
+(* default *)
+ exists v; auto.
Qed.
-
-Ltac KnownApprox :=
- match goal with
- | H: ?approx ?r = ?a |- _ =>
- generalize (MATCH r); rewrite H; intro; clear H; KnownApprox
- | _ => idtac
- end.
Lemma addr_strength_reduction_correct:
- forall addr args,
- let (addr', args') := addr_strength_reduction app addr args in
+ forall addr args vl,
+ vl = approx_regs app args ->
+ let (addr', args') := addr_strength_reduction addr args vl in
eval_addressing ge sp addr' rs##args' = eval_addressing ge sp addr rs##args.
Proof.
- intros.
-
- (* Useful lemmas *)
- assert (A0: forall r1 r2,
- eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil)) =
- eval_addressing ge sp Aindexed2 (rs ## (r2 :: r1 :: nil))).
- intros. simpl. destruct (rs#r1); destruct (rs#r2); auto;
- rewrite Int.add_commut; auto.
-
- assert (A1: forall r1 r2 n,
- val_match_approx (I n) rs#r2 ->
- eval_addressing ge sp (Aindexed n) (rs ## (r1 :: nil)) =
- eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
- intros; simpl in *. rewrite H. auto.
-
- assert (A2: forall r1 r2 n,
- val_match_approx (I n) rs#r1 ->
- eval_addressing ge sp (Aindexed n) (rs ## (r2 :: nil)) =
- eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
- intros. rewrite A0. apply A1. auto.
-
- assert (A3: forall r1 r2 id ofs,
- val_match_approx (S id ofs) rs#r1 ->
- eval_addressing ge sp (Abased id ofs) (rs ## (r2 :: nil)) =
- eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
- intros. elim H. intros b [A B]. simpl. rewrite A; rewrite B. auto.
-
- assert (A4: forall r1 r2 id ofs,
- val_match_approx (S id ofs) rs#r2 ->
- eval_addressing ge sp (Abased id ofs) (rs ## (r1 :: nil)) =
- eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
- intros. rewrite A0. apply A3. auto.
-
- assert (A5: forall r1 r2 id ofs n,
- val_match_approx (S id ofs) rs#r1 ->
- val_match_approx (I n) rs#r2 ->
- eval_addressing ge sp (Aglobal id (Int.add ofs n)) nil =
- eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
- intros. elim H. intros b [A B]. simpl. rewrite A; rewrite B.
- simpl in H0. rewrite H0. auto.
-
- unfold addr_strength_reduction;
- case (addr_strength_reduction_match addr args); intros.
-
- (* Aindexed2 *)
- caseEq (app r1); intros;
- caseEq (app r2); intros;
- try reflexivity; KnownApprox; auto.
- rewrite A0. rewrite Int.add_commut. apply A5; auto.
-
- (* Abased *)
- caseEq (intval app r1); intros.
- simpl; rewrite (intval_correct _ _ H). auto.
+ intros until vl. unfold addr_strength_reduction.
+ destruct (addr_strength_reduction_match addr args vl); simpl; intros; InvApproxRegs; SimplVMA.
+ rewrite H; rewrite H0. rewrite shift_symbol_address. auto.
+ rewrite H; rewrite H0. rewrite Int.add_commut. rewrite shift_symbol_address. rewrite Val.add_commut; auto.
+ rewrite H; rewrite H0. rewrite Val.add_assoc; auto.
+ rewrite H; rewrite H0. rewrite Val.add_permut; auto.
+ rewrite H0. auto.
+ rewrite H. rewrite Val.add_commut. auto.
+ rewrite H0. rewrite Val.add_commut; auto.
+ rewrite H; auto.
+ rewrite H. rewrite shift_symbol_address. auto.
+ rewrite H. rewrite shift_symbol_address. auto.
+ rewrite H. rewrite Val.add_assoc. auto.
auto.
-
- (* Aindexed *)
- caseEq (app r1); intros; auto.
- simpl; KnownApprox.
- elim H0. intros b [A B]. rewrite A; rewrite B. auto.
-
- (* default *)
- reflexivity.
Qed.
End STRENGTH_REDUCTION.
diff --git a/powerpc/Op.v b/powerpc/Op.v
index 7bd4247..68b349e 100644
--- a/powerpc/Op.v
+++ b/powerpc/Op.v
@@ -59,9 +59,7 @@ Inductive operation : Type :=
| Oaddrstack: int -> operation (**r [rd] is set to the stack pointer plus the given offset *)
(*c Integer arithmetic: *)
| Ocast8signed: operation (**r [rd] is 8-bit sign extension of [r1] *)
- | Ocast8unsigned: operation (**r [rd] is 8-bit zero extension of [r1] *)
| Ocast16signed: operation (**r [rd] is 16-bit sign extension of [r1] *)
- | Ocast16unsigned: operation (**r [rd] is 16-bit zero extension of [r1] *)
| Oadd: operation (**r [rd = r1 + r2] *)
| Oaddimm: int -> operation (**r [rd = r1 + n] *)
| Osub: operation (**r [rd = r1 - r2] *)
@@ -131,138 +129,80 @@ Proof.
decide equality.
Qed.
-(** Evaluation of conditions, operators and addressing modes applied
- to lists of values. Return [None] when the computation is undefined:
- wrong number of arguments, arguments of the wrong types, undefined
- operations such as division by zero. [eval_condition] returns a boolean,
- [eval_operation] and [eval_addressing] return a value. *)
+(** * Evaluation functions *)
-Definition eval_compare_mismatch (c: comparison) : option bool :=
- match c with Ceq => Some false | Cne => Some true | _ => None end.
+Definition symbol_address (F V: Type) (genv: Genv.t F V) (id: ident) (ofs: int) : val :=
+ match Genv.find_symbol genv id with
+ | Some b => Vptr b ofs
+ | None => Vundef
+ end.
-Definition eval_compare_null (c: comparison) (n: int) : option bool :=
- if Int.eq n Int.zero then eval_compare_mismatch c else None.
+(** Evaluation of conditions, operators and addressing modes applied
+ to lists of values. Return [None] when the computation can trigger an
+ error, e.g. integer division by zero. [eval_condition] returns a boolean,
+ [eval_operation] and [eval_addressing] return a value. *)
-Definition eval_condition (cond: condition) (vl: list val) (m: mem):
- option bool :=
+Definition eval_condition (cond: condition) (vl: list val) (m: mem): option bool :=
match cond, vl with
- | Ccomp c, Vint n1 :: Vint n2 :: nil =>
- Some (Int.cmp c n1 n2)
- | Ccompu c, Vint n1 :: Vint n2 :: nil =>
- Some (Int.cmpu c n1 n2)
- | Ccompu c, Vptr b1 n1 :: Vptr b2 n2 :: nil =>
- if Mem.valid_pointer m b1 (Int.unsigned n1)
- && Mem.valid_pointer m b2 (Int.unsigned n2) then
- if eq_block b1 b2
- then Some (Int.cmpu c n1 n2)
- else eval_compare_mismatch c
- else None
- | Ccompu c, Vptr b1 n1 :: Vint n2 :: nil =>
- eval_compare_null c n2
- | Ccompu c, Vint n1 :: Vptr b2 n2 :: nil =>
- eval_compare_null c n1
- | Ccompimm c n, Vint n1 :: nil =>
- Some (Int.cmp c n1 n)
- | Ccompuimm c n, Vint n1 :: nil =>
- Some (Int.cmpu c n1 n)
- | Ccompuimm c n, Vptr b1 n1 :: nil =>
- eval_compare_null c n
- | Ccompf c, Vfloat f1 :: Vfloat f2 :: nil =>
- Some (Float.cmp c f1 f2)
- | Cnotcompf c, Vfloat f1 :: Vfloat f2 :: nil =>
- Some (negb (Float.cmp c f1 f2))
- | Cmaskzero n, Vint n1 :: nil =>
- Some (Int.eq (Int.and n1 n) Int.zero)
- | Cmasknotzero n, Vint n1 :: nil =>
- Some (negb (Int.eq (Int.and n1 n) Int.zero))
- | _, _ =>
- None
- end.
-
-Definition offset_sp (sp: val) (delta: int) : option val :=
- match sp with
- | Vptr b n => Some (Vptr b (Int.add n delta))
- | _ => None
+ | Ccomp c, v1 :: v2 :: nil => Val.cmp_bool c v1 v2
+ | Ccompu c, v1 :: v2 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 v2
+ | Ccompimm c n, v1 :: nil => Val.cmp_bool c v1 (Vint n)
+ | Ccompuimm c n, v1 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint n)
+ | Ccompf c, v1 :: v2 :: nil => Val.cmpf_bool c v1 v2
+ | Cnotcompf c, v1 :: v2 :: nil => option_map negb (Val.cmpf_bool c v1 v2)
+ | Cmaskzero n, Vint n1 :: nil => Some (Int.eq (Int.and n1 n) Int.zero)
+ | Cmasknotzero n, Vint n1 :: nil => Some (negb (Int.eq (Int.and n1 n) Int.zero))
+ | _, _ => None
end.
Definition eval_operation
- (F V: Type) (genv: Genv.t F V) (sp: val)
- (op: operation) (vl: list val) (m: mem): option val :=
+ (F V: Type) (genv: Genv.t F V) (sp: val)
+ (op: operation) (vl: list val) (m: mem): option val :=
match op, vl with
| Omove, v1::nil => Some v1
| Ointconst n, nil => Some (Vint n)
| Ofloatconst n, nil => Some (Vfloat n)
- | Oaddrsymbol s ofs, nil =>
- match Genv.find_symbol genv s with
- | None => None
- | Some b => Some (Vptr b ofs)
- end
- | Oaddrstack ofs, nil => offset_sp sp ofs
- | Ocast8signed, v1 :: nil => Some (Val.sign_ext 8 v1)
- | Ocast8unsigned, v1 :: nil => Some (Val.zero_ext 8 v1)
- | Ocast16signed, v1 :: nil => Some (Val.sign_ext 16 v1)
- | Ocast16unsigned, v1 :: nil => Some (Val.zero_ext 16 v1)
- | Oadd, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.add n1 n2))
- | Oadd, Vint n1 :: Vptr b2 n2 :: nil => Some (Vptr b2 (Int.add n2 n1))
- | Oadd, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.add n1 n2))
- | Oaddimm n, Vint n1 :: nil => Some (Vint (Int.add n1 n))
- | Oaddimm n, Vptr b1 n1 :: nil => Some (Vptr b1 (Int.add n1 n))
- | Osub, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.sub n1 n2))
- | Osub, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.sub n1 n2))
- | Osub, Vptr b1 n1 :: Vptr b2 n2 :: nil =>
- if eq_block b1 b2 then Some (Vint (Int.sub n1 n2)) else None
- | Osubimm n, Vint n1 :: nil => Some (Vint (Int.sub n n1))
- | Omul, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.mul n1 n2))
- | Omulimm n, Vint n1 :: nil => Some (Vint (Int.mul n1 n))
- | Odiv, Vint n1 :: Vint n2 :: nil =>
- if Int.eq n2 Int.zero then None else Some (Vint (Int.divs n1 n2))
- | Odivu, Vint n1 :: Vint n2 :: nil =>
- if Int.eq n2 Int.zero then None else Some (Vint (Int.divu n1 n2))
- | Oand, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.and n1 n2))
- | Oandimm n, Vint n1 :: nil => Some (Vint (Int.and n1 n))
- | Oor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.or n1 n2))
- | Oorimm n, Vint n1 :: nil => Some (Vint (Int.or n1 n))
- | Oxor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.xor n1 n2))
- | Oxorimm n, Vint n1 :: nil => Some (Vint (Int.xor n1 n))
- | Onand, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.not (Int.and n1 n2)))
- | Onor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.not (Int.or n1 n2)))
- | Onxor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.not (Int.xor n1 n2)))
- | Oshl, Vint n1 :: Vint n2 :: nil =>
- if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shl n1 n2)) else None
- | Oshr, Vint n1 :: Vint n2 :: nil =>
- if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shr n1 n2)) else None
- | Oshrimm n, Vint n1 :: nil =>
- if Int.ltu n Int.iwordsize then Some (Vint (Int.shr n1 n)) else None
- | Oshrximm n, Vint n1 :: nil =>
- if Int.ltu n Int.iwordsize then Some (Vint (Int.shrx n1 n)) else None
- | Oshru, Vint n1 :: Vint n2 :: nil =>
- if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shru n1 n2)) else None
- | Orolm amount mask, Vint n1 :: nil =>
- Some (Vint (Int.rolm n1 amount mask))
- | Oroli amount mask, Vint n1 :: Vint n2 :: nil =>
- Some (Vint (Int.or (Int.and n1 (Int.not mask)) (Int.rolm n2 amount mask)))
- | Onegf, Vfloat f1 :: nil => Some (Vfloat (Float.neg f1))
- | Oabsf, Vfloat f1 :: nil => Some (Vfloat (Float.abs f1))
- | Oaddf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.add f1 f2))
- | Osubf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.sub f1 f2))
- | Omulf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.mul f1 f2))
- | Odivf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.div f1 f2))
- | Omuladdf, Vfloat f1 :: Vfloat f2 :: Vfloat f3 :: nil =>
- Some (Vfloat (Float.add (Float.mul f1 f2) f3))
- | Omulsubf, Vfloat f1 :: Vfloat f2 :: Vfloat f3 :: nil =>
- Some (Vfloat (Float.sub (Float.mul f1 f2) f3))
- | Osingleoffloat, v1 :: nil =>
- Some (Val.singleoffloat v1)
- | Ointoffloat, Vfloat f1 :: nil =>
- option_map Vint (Float.intoffloat f1)
- | Ofloatofwords, Vint i1 :: Vint i2 :: nil =>
- Some (Vfloat (Float.from_words i1 i2))
- | Ocmp c, _ =>
- match eval_condition c vl m with
- | None => None
- | Some false => Some Vfalse
- | Some true => Some Vtrue
- end
+ | Oaddrsymbol s ofs, nil => Some (symbol_address genv s ofs)
+ | Oaddrstack ofs, nil => Some (Val.add sp (Vint ofs))
+ | Ocast8signed, v1::nil => Some (Val.sign_ext 8 v1)
+ | Ocast16signed, v1::nil => Some (Val.sign_ext 16 v1)
+ | Oadd, v1::v2::nil => Some (Val.add v1 v2)
+ | Oaddimm n, v1::nil => Some (Val.add v1 (Vint n))
+ | Osub, v1::v2::nil => Some (Val.sub v1 v2)
+ | Osubimm n, v1::nil => Some (Val.sub (Vint n) v1)
+ | Omul, v1::v2::nil => Some (Val.mul v1 v2)
+ | Omulimm n, v1::nil => Some (Val.mul v1 (Vint n))
+ | Odiv, v1::v2::nil => Val.divs v1 v2
+ | Odivu, v1::v2::nil => Val.divu v1 v2
+ | Oand, v1::v2::nil => Some(Val.and v1 v2)
+ | Oandimm n, v1::nil => Some (Val.and v1 (Vint n))
+ | Oor, v1::v2::nil => Some(Val.or v1 v2)
+ | Oorimm n, v1::nil => Some (Val.or v1 (Vint n))
+ | Oxor, v1::v2::nil => Some(Val.xor v1 v2)
+ | Oxorimm n, v1::nil => Some (Val.xor v1 (Vint n))
+ | Onand, v1::v2::nil => Some (Val.notint (Val.and v1 v2))
+ | Onor, v1::v2::nil => Some (Val.notint (Val.or v1 v2))
+ | Onxor, v1::v2::nil => Some (Val.notint (Val.xor v1 v2))
+ | Oshl, v1::v2::nil => Some (Val.shl v1 v2)
+ | Oshr, v1::v2::nil => Some (Val.shr v1 v2)
+ | Oshrimm n, v1::nil => Some (Val.shr v1 (Vint n))
+ | Oshrximm n, v1::nil => Val.shrx v1 (Vint n)
+ | Oshru, v1::v2::nil => Some (Val.shru v1 v2)
+ | Orolm amount mask, v1::nil => Some (Val.rolm v1 amount mask)
+ | Oroli amount mask, v1::v2::nil =>
+ Some(Val.or (Val.and v1 (Vint (Int.not mask))) (Val.rolm v2 amount mask))
+ | Onegf, v1::nil => Some(Val.negf v1)
+ | Oabsf, v1::nil => Some(Val.absf v1)
+ | Oaddf, v1::v2::nil => Some(Val.addf v1 v2)
+ | Osubf, v1::v2::nil => Some(Val.subf v1 v2)
+ | Omulf, v1::v2::nil => Some(Val.mulf v1 v2)
+ | Odivf, v1::v2::nil => Some(Val.divf v1 v2)
+ | Omuladdf, v1::v2::v3::nil => Some(Val.addf (Val.mulf v1 v2) v3)
+ | Omulsubf, v1::v2::v3::nil => Some(Val.subf (Val.mulf v1 v2) v3)
+ | Osingleoffloat, v1::nil => Some(Val.singleoffloat v1)
+ | Ointoffloat, v1::nil => Val.intoffloat v1
+ | Ofloatofwords, v1::v2::nil => Some(Val.floatofwords v1 v2)
+ | Ocmp c, _ => Some(Val.of_optbool (eval_condition c vl m))
| _, _ => None
end.
@@ -270,39 +210,14 @@ Definition eval_addressing
(F V: Type) (genv: Genv.t F V) (sp: val)
(addr: addressing) (vl: list val) : option val :=
match addr, vl with
- | Aindexed n, Vptr b1 n1 :: nil =>
- Some (Vptr b1 (Int.add n1 n))
- | Aindexed2, Vptr b1 n1 :: Vint n2 :: nil =>
- Some (Vptr b1 (Int.add n1 n2))
- | Aindexed2, Vint n1 :: Vptr b2 n2 :: nil =>
- Some (Vptr b2 (Int.add n2 n1))
- | Aglobal s ofs, nil =>
- match Genv.find_symbol genv s with
- | None => None
- | Some b => Some (Vptr b ofs)
- end
- | Abased s ofs, Vint n1 :: nil =>
- match Genv.find_symbol genv s with
- | None => None
- | Some b => Some (Vptr b (Int.add ofs n1))
- end
- | Ainstack ofs, nil =>
- offset_sp sp ofs
+ | Aindexed n, v1::nil => Some (Val.add v1 (Vint n))
+ | Aindexed2, v1::v2::nil => Some (Val.add v1 v2)
+ | Aglobal s ofs, nil => Some (symbol_address genv s ofs)
+ | Abased s ofs, v1::nil => Some (Val.add (symbol_address genv s ofs) v1)
+ | Ainstack ofs, nil => Some(Val.add sp (Vint ofs))
| _, _ => None
end.
-Definition negate_condition (cond: condition): condition :=
- match cond with
- | Ccomp c => Ccomp(negate_comparison c)
- | Ccompu c => Ccompu(negate_comparison c)
- | Ccompimm c n => Ccompimm (negate_comparison c) n
- | Ccompuimm c n => Ccompuimm (negate_comparison c) n
- | Ccompf c => Cnotcompf c
- | Cnotcompf c => Ccompf c
- | Cmaskzero n => Cmasknotzero n
- | Cmasknotzero n => Cmaskzero n
- end.
-
Ltac FuncInv :=
match goal with
| H: (match ?x with nil => _ | _ :: _ => _ end = Some _) |- _ =>
@@ -315,103 +230,7 @@ Ltac FuncInv :=
idtac
end.
-Remark eval_negate_compare_mismatch:
- forall c b,
- eval_compare_mismatch c = Some b ->
- eval_compare_mismatch (negate_comparison c) = Some (negb b).
-Proof.
- intros until b. unfold eval_compare_mismatch.
- destruct c; intro EQ; inv EQ; auto.
-Qed.
-
-Remark eval_negate_compare_null:
- forall c i b,
- eval_compare_null c i = Some b ->
- eval_compare_null (negate_comparison c) i = Some (negb b).
-Proof.
- unfold eval_compare_null; intros.
- destruct (Int.eq i Int.zero). apply eval_negate_compare_mismatch; auto. congruence.
-Qed.
-
-Lemma eval_negate_condition:
- forall cond vl m b,
- eval_condition cond vl m = Some b ->
- eval_condition (negate_condition cond) vl m = Some (negb b).
-Proof.
- intros.
- destruct cond; simpl in H; FuncInv; try subst b; simpl.
- rewrite Int.negate_cmp. auto.
- rewrite Int.negate_cmpu. auto.
- apply eval_negate_compare_null; auto.
- apply eval_negate_compare_null; auto.
- destruct (Mem.valid_pointer m b0 (Int.unsigned i) &&
- Mem.valid_pointer m b1 (Int.unsigned i0)); try congruence.
- destruct (eq_block b0 b1). rewrite Int.negate_cmpu. congruence.
- apply eval_negate_compare_mismatch; auto.
- rewrite Int.negate_cmp. auto.
- rewrite Int.negate_cmpu. auto.
- apply eval_negate_compare_null; auto.
- auto.
- rewrite negb_elim. auto.
- auto.
- rewrite negb_elim. auto.
-Qed.
-
-(** [eval_operation] and [eval_addressing] depend on a global environment
- for resolving references to global symbols. We show that they give
- the same results if a global environment is replaced by another that
- assigns the same addresses to the same symbols. *)
-
-Section GENV_TRANSF.
-
-Variable F1 F2 V1 V2: Type.
-Variable ge1: Genv.t F1 V1.
-Variable ge2: Genv.t F2 V2.
-Hypothesis agree_on_symbols:
- forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s.
-
-Lemma eval_operation_preserved:
- forall sp op vl m,
- eval_operation ge2 sp op vl m = eval_operation ge1 sp op vl m.
-Proof.
- intros.
- unfold eval_operation; destruct op; try rewrite agree_on_symbols;
- reflexivity.
-Qed.
-
-Lemma eval_addressing_preserved:
- forall sp addr vl,
- eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl.
-Proof.
- intros.
- unfold eval_addressing; destruct addr; try rewrite agree_on_symbols;
- reflexivity.
-Qed.
-
-End GENV_TRANSF.
-
-(** Recognition of move operations. *)
-
-Definition is_move_operation
- (A: Type) (op: operation) (args: list A) : option A :=
- match op, args with
- | Omove, arg :: nil => Some arg
- | _, _ => None
- end.
-
-Lemma is_move_operation_correct:
- forall (A: Type) (op: operation) (args: list A) (a: A),
- is_move_operation op args = Some a ->
- op = Omove /\ args = a :: nil.
-Proof.
- intros until a. unfold is_move_operation; destruct op;
- try (intros; discriminate).
- destruct args. intros; discriminate.
- destruct args. intros. intuition congruence.
- intros; discriminate.
-Qed.
-
-(** Static typing of conditions, operators and addressing modes. *)
+(** * Static typing of conditions, operators and addressing modes. *)
Definition type_of_condition (c: condition) : list typ :=
match c with
@@ -433,9 +252,7 @@ Definition type_of_operation (op: operation) : list typ * typ :=
| Oaddrsymbol _ _ => (nil, Tint)
| Oaddrstack _ => (nil, Tint)
| Ocast8signed => (Tint :: nil, Tint)
- | Ocast8unsigned => (Tint :: nil, Tint)
| Ocast16signed => (Tint :: nil, Tint)
- | Ocast16unsigned => (Tint :: nil, Tint)
| Oadd => (Tint :: Tint :: nil, Tint)
| Oaddimm _ => (Tint :: nil, Tint)
| Osub => (Tint :: Tint :: nil, Tint)
@@ -497,38 +314,52 @@ Lemma type_of_operation_sound:
op <> Omove ->
eval_operation genv sp op vl m = Some v ->
Val.has_type v (snd (type_of_operation op)).
-Proof.
+Proof with (try exact I).
intros.
- destruct op; simpl in H0; FuncInv; try subst v; try exact I.
+ destruct op; simpl in H0; FuncInv; subst; simpl.
congruence.
- destruct (Genv.find_symbol genv i); simplify_eq H0; intro; subst v; exact I.
- simpl. unfold offset_sp in H0. destruct sp; try discriminate.
- inversion H0. exact I.
- destruct v0; exact I.
- destruct v0; exact I.
- destruct v0; exact I.
- destruct v0; exact I.
- destruct (eq_block b b0). injection H0; intro; subst v; exact I.
- discriminate.
- destruct (Int.eq i0 Int.zero). discriminate.
- injection H0; intro; subst v; exact I.
- destruct (Int.eq i0 Int.zero). discriminate.
- injection H0; intro; subst v; exact I.
- destruct (Int.ltu i0 Int.iwordsize).
- injection H0; intro; subst v; exact I. discriminate.
- destruct (Int.ltu i0 Int.iwordsize).
- injection H0; intro; subst v; exact I. discriminate.
- destruct (Int.ltu i Int.iwordsize).
- injection H0; intro; subst v; exact I. discriminate.
- destruct (Int.ltu i Int.iwordsize).
- injection H0; intro; subst v; exact I. discriminate.
- destruct (Int.ltu i0 Int.iwordsize).
- injection H0; intro; subst v; exact I. discriminate.
- destruct v0; exact I.
- destruct (Float.intoffloat f); simpl in H0; inv H0. exact I.
- destruct (eval_condition c vl).
- destruct b; injection H0; intro; subst v; exact I.
- discriminate.
+ exact I.
+ exact I.
+ unfold symbol_address. destruct (Genv.find_symbol genv i)...
+ destruct sp...
+ destruct v0...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0; destruct v1... simpl. destruct (zeq b b0)...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0; destruct v1; simpl in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2...
+ destruct v0; destruct v1; simpl in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
+ destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
+ destruct v0; simpl... destruct (Int.ltu i Int.iwordsize)...
+ destruct v0; simpl in *; inv H0. destruct (Int.ltu i (Int.repr 31)); inv H2...
+ destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1; destruct v2...
+ destruct v0; destruct v1; destruct v2...
+ destruct v0...
+ destruct v0; simpl in H0; inv H0. destruct (Float.intoffloat f); inv H2...
+ destruct v0; destruct v1...
+ destruct (eval_condition c vl m); simpl... destruct b...
Qed.
Lemma type_of_chunk_correct:
@@ -546,243 +377,436 @@ Qed.
End SOUNDNESS.
-(** Alternate definition of [eval_condition], [eval_op], [eval_addressing]
- as total functions that return [Vundef] when not applicable
- (instead of [None]). Used in the proof of [PPCgen]. *)
-
-Section EVAL_OP_TOTAL.
+(** * Manipulating and transforming operations *)
-Variable F V: Type.
-Variable genv: Genv.t F V.
+(** Recognition of move operations. *)
-Definition find_symbol_offset (id: ident) (ofs: int) : val :=
- match Genv.find_symbol genv id with
- | Some b => Vptr b ofs
- | None => Vundef
+Definition is_move_operation
+ (A: Type) (op: operation) (args: list A) : option A :=
+ match op, args with
+ | Omove, arg :: nil => Some arg
+ | _, _ => None
end.
-Definition eval_condition_total (cond: condition) (vl: list val) : val :=
- match cond, vl with
- | Ccomp c, v1::v2::nil => Val.cmp c v1 v2
- | Ccompu c, v1::v2::nil => Val.cmpu c v1 v2
- | Ccompimm c n, v1::nil => Val.cmp c v1 (Vint n)
- | Ccompuimm c n, v1::nil => Val.cmpu c v1 (Vint n)
- | Ccompf c, v1::v2::nil => Val.cmpf c v1 v2
- | Cnotcompf c, v1::v2::nil => Val.notbool(Val.cmpf c v1 v2)
- | Cmaskzero n, v1::nil => Val.notbool (Val.and v1 (Vint n))
- | Cmasknotzero n, v1::nil => Val.notbool(Val.notbool (Val.and v1 (Vint n)))
- | _, _ => Vundef
+Lemma is_move_operation_correct:
+ forall (A: Type) (op: operation) (args: list A) (a: A),
+ is_move_operation op args = Some a ->
+ op = Omove /\ args = a :: nil.
+Proof.
+ intros until a. unfold is_move_operation; destruct op;
+ try (intros; discriminate).
+ destruct args. intros; discriminate.
+ destruct args. intros. intuition congruence.
+ intros; discriminate.
+Qed.
+
+(** [negate_condition cond] returns a condition that is logically
+ equivalent to the negation of [cond]. *)
+
+Definition negate_condition (cond: condition): condition :=
+ match cond with
+ | Ccomp c => Ccomp(negate_comparison c)
+ | Ccompu c => Ccompu(negate_comparison c)
+ | Ccompimm c n => Ccompimm (negate_comparison c) n
+ | Ccompuimm c n => Ccompuimm (negate_comparison c) n
+ | Ccompf c => Cnotcompf c
+ | Cnotcompf c => Ccompf c
+ | Cmaskzero n => Cmasknotzero n
+ | Cmasknotzero n => Cmaskzero n
end.
-Definition eval_operation_total (sp: val) (op: operation) (vl: list val) : val :=
- match op, vl with
- | Omove, v1::nil => v1
- | Ointconst n, nil => Vint n
- | Ofloatconst n, nil => Vfloat n
- | Oaddrsymbol s ofs, nil => find_symbol_offset s ofs
- | Oaddrstack ofs, nil => Val.add sp (Vint ofs)
- | Ocast8signed, v1::nil => Val.sign_ext 8 v1
- | Ocast8unsigned, v1::nil => Val.zero_ext 8 v1
- | Ocast16signed, v1::nil => Val.sign_ext 16 v1
- | Ocast16unsigned, v1::nil => Val.zero_ext 16 v1
- | Oadd, v1::v2::nil => Val.add v1 v2
- | Oaddimm n, v1::nil => Val.add v1 (Vint n)
- | Osub, v1::v2::nil => Val.sub v1 v2
- | Osubimm n, v1::nil => Val.sub (Vint n) v1
- | Omul, v1::v2::nil => Val.mul v1 v2
- | Omulimm n, v1::nil => Val.mul v1 (Vint n)
- | Odiv, v1::v2::nil => Val.divs v1 v2
- | Odivu, v1::v2::nil => Val.divu v1 v2
- | Oand, v1::v2::nil => Val.and v1 v2
- | Oandimm n, v1::nil => Val.and v1 (Vint n)
- | Oor, v1::v2::nil => Val.or v1 v2
- | Oorimm n, v1::nil => Val.or v1 (Vint n)
- | Oxor, v1::v2::nil => Val.xor v1 v2
- | Oxorimm n, v1::nil => Val.xor v1 (Vint n)
- | Onand, v1::v2::nil => Val.notint(Val.and v1 v2)
- | Onor, v1::v2::nil => Val.notint(Val.or v1 v2)
- | Onxor, v1::v2::nil => Val.notint(Val.xor v1 v2)
- | Oshl, v1::v2::nil => Val.shl v1 v2
- | Oshr, v1::v2::nil => Val.shr v1 v2
- | Oshrimm n, v1::nil => Val.shr v1 (Vint n)
- | Oshrximm n, v1::nil => Val.shrx v1 (Vint n)
- | Oshru, v1::v2::nil => Val.shru v1 v2
- | Orolm amount mask, v1::nil => Val.rolm v1 amount mask
- | Oroli amount mask, v1::v2::nil =>
- Val.or (Val.and v1 (Vint (Int.not mask))) (Val.rolm v2 amount mask)
- | Onegf, v1::nil => Val.negf v1
- | Oabsf, v1::nil => Val.absf v1
- | Oaddf, v1::v2::nil => Val.addf v1 v2
- | Osubf, v1::v2::nil => Val.subf v1 v2
- | Omulf, v1::v2::nil => Val.mulf v1 v2
- | Odivf, v1::v2::nil => Val.divf v1 v2
- | Omuladdf, v1::v2::v3::nil => Val.addf (Val.mulf v1 v2) v3
- | Omulsubf, v1::v2::v3::nil => Val.subf (Val.mulf v1 v2) v3
- | Osingleoffloat, v1::nil => Val.singleoffloat v1
- | Ointoffloat, v1::nil => Val.intoffloat v1
- | Ofloatofwords, v1::v2::nil => Val.floatofwords v1 v2
- | Ocmp c, _ => eval_condition_total c vl
- | _, _ => Vundef
+Lemma eval_negate_condition:
+ forall cond vl m b,
+ eval_condition cond vl m = Some b ->
+ eval_condition (negate_condition cond) vl m = Some (negb b).
+Proof.
+ intros.
+ destruct cond; simpl in H; FuncInv; simpl.
+ rewrite Val.negate_cmp_bool; rewrite H; auto.
+ rewrite Val.negate_cmpu_bool; rewrite H; auto.
+ rewrite Val.negate_cmp_bool; rewrite H; auto.
+ rewrite Val.negate_cmpu_bool; rewrite H; auto.
+ rewrite H; auto.
+ destruct (Val.cmpf_bool c v v0); simpl in H; inv H. rewrite negb_elim; auto.
+ rewrite H0; auto.
+ rewrite <- H0. rewrite negb_elim; auto.
+Qed.
+
+(** Shifting stack-relative references. This is used in [Stacking]. *)
+
+Definition shift_stack_addressing (delta: int) (addr: addressing) :=
+ match addr with
+ | Ainstack ofs => Ainstack (Int.add delta ofs)
+ | _ => addr
end.
-Definition eval_addressing_total
- (sp: val) (addr: addressing) (vl: list val) : val :=
- match addr, vl with
- | Aindexed n, v1::nil => Val.add v1 (Vint n)
- | Aindexed2, v1::v2::nil => Val.add v1 v2
- | Aglobal s ofs, nil => find_symbol_offset s ofs
- | Abased s ofs, v1::nil => Val.add (find_symbol_offset s ofs) v1
- | Ainstack ofs, nil => Val.add sp (Vint ofs)
- | _, _ => Vundef
+Definition shift_stack_operation (delta: int) (op: operation) :=
+ match op with
+ | Oaddrstack ofs => Oaddrstack (Int.add delta ofs)
+ | _ => op
end.
-Lemma eval_compare_mismatch_weaken:
- forall c b,
- eval_compare_mismatch c = Some b ->
- Val.cmp_mismatch c = Val.of_bool b.
+Lemma type_shift_stack_addressing:
+ forall delta addr, type_of_addressing (shift_stack_addressing delta addr) = type_of_addressing addr.
Proof.
- unfold eval_compare_mismatch. intros. destruct c; inv H; auto.
+ intros. destruct addr; auto.
Qed.
-Lemma eval_compare_null_weaken:
- forall n c b,
- eval_compare_null c n = Some b ->
- (if Int.eq n Int.zero then Val.cmp_mismatch c else Vundef) = Val.of_bool b.
+Lemma type_shift_stack_operation:
+ forall delta op, type_of_operation (shift_stack_operation delta op) = type_of_operation op.
Proof.
- unfold eval_compare_null.
- intros. destruct (Int.eq n Int.zero). apply eval_compare_mismatch_weaken. auto.
- discriminate.
+ intros. destruct op; auto.
Qed.
-Lemma eval_condition_weaken:
- forall c vl b m,
- eval_condition c vl m = Some b ->
- eval_condition_total c vl = Val.of_bool b.
+Lemma eval_shift_stack_addressing:
+ forall F V (ge: Genv.t F V) sp addr vl delta,
+ eval_addressing ge sp (shift_stack_addressing delta addr) vl =
+ eval_addressing ge (Val.add sp (Vint delta)) addr vl.
Proof.
- intros.
- unfold eval_condition in H; destruct c; FuncInv;
- try subst b; try reflexivity; simpl;
- try (apply eval_compare_null_weaken; auto).
- destruct (Mem.valid_pointer m b0 (Int.unsigned i) &&
- Mem.valid_pointer m b1 (Int.unsigned i0)); try congruence.
- unfold eq_block in H. destruct (zeq b0 b1).
- congruence.
- apply eval_compare_mismatch_weaken; auto.
- symmetry. apply Val.notbool_negb_1.
- symmetry. apply Val.notbool_negb_1.
+ intros. destruct addr; simpl; auto.
+ rewrite Val.add_assoc. simpl. auto.
Qed.
-Lemma eval_operation_weaken:
- forall sp op vl v m,
- eval_operation genv sp op vl m = Some v ->
- eval_operation_total sp op vl = v.
+Lemma eval_shift_stack_operation:
+ forall F V (ge: Genv.t F V) sp op vl m delta,
+ eval_operation ge sp (shift_stack_operation delta op) vl m =
+ eval_operation ge (Val.add sp (Vint delta)) op vl m.
Proof.
- intros.
- unfold eval_operation in H; destruct op; FuncInv;
- try subst v; try reflexivity; simpl.
- unfold find_symbol_offset.
- destruct (Genv.find_symbol genv i); try discriminate.
- congruence.
- unfold offset_sp in H.
- destruct sp; try discriminate. simpl. congruence.
- unfold eq_block in H. destruct (zeq b b0); congruence.
- destruct (Int.eq i0 Int.zero); congruence.
- destruct (Int.eq i0 Int.zero); congruence.
- destruct (Int.ltu i0 Int.iwordsize); congruence.
- destruct (Int.ltu i0 Int.iwordsize); congruence.
- destruct (Int.ltu i Int.iwordsize); congruence.
- destruct (Int.ltu i Int.iwordsize); congruence.
- destruct (Int.ltu i0 Int.iwordsize); congruence.
- destruct (Float.intoffloat f); inv H. auto.
- caseEq (eval_condition c vl m); intros; rewrite H0 in H.
- replace v with (Val.of_bool b).
- eapply eval_condition_weaken; eauto.
- destruct b; simpl; congruence.
- discriminate.
+ intros. destruct op; simpl; auto.
+ rewrite Val.add_assoc. simpl. auto.
Qed.
-Lemma eval_addressing_weaken:
- forall sp addr vl v,
- eval_addressing genv sp addr vl = Some v ->
- eval_addressing_total sp addr vl = v.
+(** Transformation of addressing modes with two operands or more
+ into an equivalent arithmetic operation. This is used in the [Reload]
+ pass when a store instruction cannot be reloaded directly because
+ it runs out of temporary registers. *)
+
+(** For the PowerPC, there is only one binary addressing mode: [Aindexed2].
+ The corresponding operation is [Oadd]. *)
+
+Definition op_for_binary_addressing (addr: addressing) : operation := Oadd.
+
+Lemma eval_op_for_binary_addressing:
+ forall (F V: Type) (ge: Genv.t F V) sp addr args v m,
+ (length args >= 2)%nat ->
+ eval_addressing ge sp addr args = Some v ->
+ eval_operation ge sp (op_for_binary_addressing addr) args m = Some v.
Proof.
intros.
- unfold eval_addressing in H; destruct addr; FuncInv;
- try subst v; simpl; try reflexivity.
- unfold find_symbol_offset.
- destruct (Genv.find_symbol genv i); congruence.
- unfold find_symbol_offset.
- destruct (Genv.find_symbol genv i); try congruence.
- inversion H. reflexivity.
- unfold offset_sp in H. destruct sp; simpl; congruence.
+ destruct addr; simpl in H0; FuncInv; simpl in H; try omegaContradiction.
+ simpl; congruence.
Qed.
-Lemma eval_condition_total_is_bool:
- forall cond vl, Val.is_bool (eval_condition_total cond vl).
+Lemma type_op_for_binary_addressing:
+ forall addr,
+ (length (type_of_addressing addr) >= 2)%nat ->
+ type_of_operation (op_for_binary_addressing addr) = (type_of_addressing addr, Tint).
Proof.
- intros; destruct cond;
- destruct vl; try apply Val.undef_is_bool;
- destruct vl; try apply Val.undef_is_bool;
- try (destruct vl; try apply Val.undef_is_bool); simpl.
- apply Val.cmp_is_bool.
- apply Val.cmpu_is_bool.
- apply Val.cmp_is_bool.
- apply Val.cmpu_is_bool.
- apply Val.cmpf_is_bool.
- apply Val.notbool_is_bool.
- apply Val.notbool_is_bool.
- apply Val.notbool_is_bool.
+ intros. destruct addr; simpl in H; reflexivity || omegaContradiction.
Qed.
-End EVAL_OP_TOTAL.
+(** Two-address operations. There is only one: rotate-mask-insert. *)
-(** Compatibility of the evaluation functions with the
- ``is less defined'' relation over values. *)
+Definition two_address_op (op: operation) : bool :=
+ match op with
+ | Oroli _ _ => true
+ | _ => false
+ end.
-Section EVAL_LESSDEF.
+(** Operations that are so cheap to recompute that CSE should not factor them out. *)
+
+Definition is_trivial_op (op: operation) : bool :=
+ match op with
+ | Omove => true
+ | Ointconst _ => true
+ | Oaddrsymbol _ _ => true
+ | Oaddrstack _ => true
+ | _ => false
+ end.
+
+(** Operations that depend on the memory state. *)
+
+Definition op_depends_on_memory (op: operation) : bool :=
+ match op with
+ | Ocmp (Ccompu _) => true
+ | _ => false
+ end.
+
+Lemma op_depends_on_memory_correct:
+ forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2,
+ op_depends_on_memory op = false ->
+ eval_operation ge sp op args m1 = eval_operation ge sp op args m2.
+Proof.
+ intros until m2. destruct op; simpl; try congruence.
+ destruct c; simpl; auto; discriminate.
+Qed.
+
+(** * Invariance and compatibility properties. *)
+
+(** [eval_operation] and [eval_addressing] depend on a global environment
+ for resolving references to global symbols. We show that they give
+ the same results if a global environment is replaced by another that
+ assigns the same addresses to the same symbols. *)
+
+Section GENV_TRANSF.
+
+Variable F1 F2 V1 V2: Type.
+Variable ge1: Genv.t F1 V1.
+Variable ge2: Genv.t F2 V2.
+Hypothesis agree_on_symbols:
+ forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s.
+
+Lemma eval_operation_preserved:
+ forall sp op vl m,
+ eval_operation ge2 sp op vl m = eval_operation ge1 sp op vl m.
+Proof.
+ intros. destruct op; simpl; auto.
+ destruct vl; auto. decEq. unfold symbol_address. rewrite agree_on_symbols. auto.
+Qed.
+
+Lemma eval_addressing_preserved:
+ forall sp addr vl,
+ eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl.
+Proof.
+ intros. destruct addr; simpl; auto; unfold symbol_address; rewrite agree_on_symbols; auto.
+Qed.
+
+End GENV_TRANSF.
+
+(** Compatibility of the evaluation functions with value injections. *)
+
+Section EVAL_COMPAT.
Variable F V: Type.
Variable genv: Genv.t F V.
+Variable f: meminj.
-Ltac InvLessdef :=
+Hypothesis symbol_address_inj:
+ forall id ofs,
+ val_inject f (symbol_address genv id ofs) (symbol_address genv id ofs).
+
+Variable m1: mem.
+Variable m2: mem.
+
+Hypothesis valid_pointer_inj:
+ forall b1 ofs b2 delta,
+ f b1 = Some(b2, delta) ->
+ Mem.valid_pointer m1 b1 (Int.unsigned ofs) = true ->
+ Mem.valid_pointer m2 b2 (Int.unsigned (Int.add ofs (Int.repr delta))) = true.
+
+Hypothesis valid_pointer_no_overflow:
+ forall b1 ofs b2 delta,
+ f b1 = Some(b2, delta) ->
+ Mem.valid_pointer m1 b1 (Int.unsigned ofs) = true ->
+ 0 <= Int.unsigned ofs + Int.unsigned (Int.repr delta) <= Int.max_unsigned.
+
+Hypothesis valid_different_pointers_inj:
+ forall b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
+ b1 <> b2 ->
+ Mem.valid_pointer m1 b1 (Int.unsigned ofs1) = true ->
+ Mem.valid_pointer m1 b2 (Int.unsigned ofs2) = true ->
+ f b1 = Some (b1', delta1) ->
+ f b2 = Some (b2', delta2) ->
+ b1' <> b2' \/
+ Int.unsigned (Int.add ofs1 (Int.repr delta1)) <> Int.unsigned (Int.add ofs2 (Int.repr delta2)).
+
+Ltac InvInject :=
match goal with
- | [ H: Val.lessdef (Vint _) _ |- _ ] =>
- inv H; InvLessdef
- | [ H: Val.lessdef (Vfloat _) _ |- _ ] =>
- inv H; InvLessdef
- | [ H: Val.lessdef (Vptr _ _) _ |- _ ] =>
- inv H; InvLessdef
- | [ H: Val.lessdef_list nil _ |- _ ] =>
- inv H; InvLessdef
- | [ H: Val.lessdef_list (_ :: _) _ |- _ ] =>
- inv H; InvLessdef
+ | [ H: val_inject _ (Vint _) _ |- _ ] =>
+ inv H; InvInject
+ | [ H: val_inject _ (Vfloat _) _ |- _ ] =>
+ inv H; InvInject
+ | [ H: val_inject _ (Vptr _ _) _ |- _ ] =>
+ inv H; InvInject
+ | [ H: val_list_inject _ nil _ |- _ ] =>
+ inv H; InvInject
+ | [ H: val_list_inject _ (_ :: _) _ |- _ ] =>
+ inv H; InvInject
| _ => idtac
end.
-Lemma eval_condition_lessdef:
- forall cond vl1 vl2 b m1 m2,
- Val.lessdef_list vl1 vl2 ->
- Mem.extends m1 m2 ->
+Remark val_add_inj:
+ forall v1 v1' v2 v2',
+ val_inject f v1 v1' -> val_inject f v2 v2' -> val_inject f (Val.add v1 v2) (Val.add v1' v2').
+Proof.
+ intros. inv H; inv H0; simpl; econstructor; eauto.
+ repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
+ repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
+Qed.
+
+Lemma eval_condition_inj:
+ forall cond vl1 vl2 b,
+ val_list_inject f vl1 vl2 ->
eval_condition cond vl1 m1 = Some b ->
eval_condition cond vl2 m2 = Some b.
Proof.
- intros. destruct cond; simpl in *; FuncInv; InvLessdef; auto.
- destruct (Mem.valid_pointer m1 b0 (Int.unsigned i) &&
- Mem.valid_pointer m1 b1 (Int.unsigned i0)) as [] _eqn; try discriminate.
- destruct (andb_prop _ _ Heqb2) as [A B].
- assert (forall b ofs, Mem.valid_pointer m1 b ofs = true -> Mem.valid_pointer m2 b ofs = true).
- intros until ofs. repeat rewrite Mem.valid_pointer_nonempty_perm.
- apply Mem.perm_extends; auto.
- rewrite (H _ _ A). rewrite (H _ _ B). auto.
+Opaque Int.add.
+ assert (CMPU:
+ forall c v1 v2 v1' v2' b,
+ val_inject f v1 v1' ->
+ val_inject f v2 v2' ->
+ Val.cmpu_bool (Mem.valid_pointer m1) c v1 v2 = Some b ->
+ Val.cmpu_bool (Mem.valid_pointer m2) c v1' v2' = Some b).
+ intros. inv H; simpl in H1; try discriminate; inv H0; simpl in H1; try discriminate; simpl; auto.
+ destruct (Mem.valid_pointer m1 b1 (Int.unsigned ofs1)) as []_eqn; try discriminate.
+ destruct (Mem.valid_pointer m1 b0 (Int.unsigned ofs0)) as []_eqn; try discriminate.
+ rewrite (valid_pointer_inj _ H2 Heqb4).
+ rewrite (valid_pointer_inj _ H Heqb0). simpl.
+ destruct (zeq b1 b0); simpl in H1.
+ inv H1. rewrite H in H2; inv H2. rewrite zeq_true.
+ decEq. apply Int.translate_cmpu.
+ eapply valid_pointer_no_overflow; eauto.
+ eapply valid_pointer_no_overflow; eauto.
+ exploit valid_different_pointers_inj; eauto. intros P.
+ destruct (zeq b2 b3); auto.
+ destruct P. congruence.
+ destruct c; simpl in H1; inv H1.
+ simpl; decEq. rewrite Int.eq_false; auto. congruence.
+ simpl; decEq. rewrite Int.eq_false; auto. congruence.
+
+ intros. destruct cond; simpl in H0; FuncInv; InvInject; simpl; auto.
+ inv H3; inv H2; simpl in H0; inv H0; auto.
+ eauto.
+ inv H3; simpl in H0; inv H0; auto.
+ eauto.
+ inv H3; inv H2; simpl in H0; inv H0; auto.
+ inv H3; inv H2; simpl in H0; inv H0; auto.
Qed.
Ltac TrivialExists :=
match goal with
- | [ |- exists v2, Some ?v1 = Some v2 /\ Val.lessdef ?v1 v2 ] =>
- exists v1; split; [auto | constructor]
+ | [ |- exists v2, Some ?v1 = Some v2 /\ val_inject _ _ v2 ] =>
+ exists v1; split; auto
| _ => idtac
end.
+Lemma eval_operation_inj:
+ forall op sp1 vl1 sp2 vl2 v1,
+ val_inject f sp1 sp2 ->
+ val_list_inject f vl1 vl2 ->
+ eval_operation genv sp1 op vl1 m1 = Some v1 ->
+ exists v2, eval_operation genv sp2 op vl2 m2 = Some v2 /\ val_inject f v1 v2.
+Proof.
+ intros. destruct op; simpl in H1; simpl; FuncInv; InvInject; TrivialExists.
+ inv H; simpl; econstructor; eauto. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ apply val_add_inj; auto.
+ apply val_add_inj; auto.
+ inv H4; inv H2; simpl; auto. econstructor; eauto.
+ rewrite Int.sub_add_l. auto.
+ destruct (zeq b1 b0); auto. subst. rewrite H1 in H0. inv H0. rewrite zeq_true.
+ rewrite Int.sub_shifted. auto.
+ inv H4; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H3; simpl in H1; inv H1. simpl.
+ destruct (Int.eq i0 Int.zero); inv H2. TrivialExists.
+ inv H4; inv H3; simpl in H1; inv H1. simpl.
+ destruct (Int.eq i0 Int.zero); inv H2. TrivialExists.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
+ inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
+ inv H4; simpl; auto. destruct (Int.ltu i Int.iwordsize); auto.
+ inv H4; simpl in *; inv H1. destruct (Int.ltu i (Int.repr 31)); inv H2. econstructor; eauto.
+ inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto; inv H2; simpl; auto; inv H3; simpl; auto.
+ inv H4; simpl; auto; inv H2; simpl; auto; inv H3; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl in H1; inv H1. simpl. destruct (Float.intoffloat f0); simpl in H2; inv H2.
+ exists (Vint i); auto.
+ inv H4; inv H2; simpl; auto.
+ subst v1. destruct (eval_condition c vl1 m1) as []_eqn.
+ exploit eval_condition_inj; eauto. intros EQ; rewrite EQ.
+ destruct b; simpl; constructor.
+ simpl; constructor.
+Qed.
+
+Lemma eval_addressing_inj:
+ forall addr sp1 vl1 sp2 vl2 v1,
+ val_inject f sp1 sp2 ->
+ val_list_inject f vl1 vl2 ->
+ eval_addressing genv sp1 addr vl1 = Some v1 ->
+ exists v2, eval_addressing genv sp2 addr vl2 = Some v2 /\ val_inject f v1 v2.
+Proof.
+ intros. destruct addr; simpl in H1; simpl; FuncInv; InvInject; TrivialExists.
+ apply val_add_inj; auto.
+ apply val_add_inj; auto.
+ apply val_add_inj; auto.
+ apply val_add_inj; auto.
+Qed.
+
+End EVAL_COMPAT.
+
+(** Compatibility of the evaluation functions with the ``is less defined'' relation over values. *)
+
+Section EVAL_LESSDEF.
+
+Variable F V: Type.
+Variable genv: Genv.t F V.
+
+Remark valid_pointer_extends:
+ forall m1 m2, Mem.extends m1 m2 ->
+ forall b1 ofs b2 delta,
+ Some(b1, 0) = Some(b2, delta) ->
+ Mem.valid_pointer m1 b1 (Int.unsigned ofs) = true ->
+ Mem.valid_pointer m2 b2 (Int.unsigned (Int.add ofs (Int.repr delta))) = true.
+Proof.
+ intros. inv H0. rewrite Int.add_zero. eapply Mem.valid_pointer_extends; eauto.
+Qed.
+
+Remark valid_pointer_no_overflow_extends:
+ forall m1 b1 ofs b2 delta,
+ Some(b1, 0) = Some(b2, delta) ->
+ Mem.valid_pointer m1 b1 (Int.unsigned ofs) = true ->
+ 0 <= Int.unsigned ofs + Int.unsigned (Int.repr delta) <= Int.max_unsigned.
+Proof.
+ intros. inv H. rewrite Zplus_0_r. apply Int.unsigned_range_2.
+Qed.
+
+Remark valid_different_pointers_extends:
+ forall m1 b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
+ b1 <> b2 ->
+ Mem.valid_pointer m1 b1 (Int.unsigned ofs1) = true ->
+ Mem.valid_pointer m1 b2 (Int.unsigned ofs2) = true ->
+ Some(b1, 0) = Some (b1', delta1) ->
+ Some(b2, 0) = Some (b2', delta2) ->
+ b1' <> b2' \/
+ Int.unsigned(Int.add ofs1 (Int.repr delta1)) <> Int.unsigned(Int.add ofs2 (Int.repr delta2)).
+Proof.
+ intros. inv H2; inv H3. auto.
+Qed.
+
+Lemma eval_condition_lessdef:
+ forall cond vl1 vl2 b m1 m2,
+ Val.lessdef_list vl1 vl2 ->
+ Mem.extends m1 m2 ->
+ eval_condition cond vl1 m1 = Some b ->
+ eval_condition cond vl2 m2 = Some b.
+Proof.
+ intros. eapply eval_condition_inj with (f := fun b => Some(b, 0)) (m1 := m1).
+ apply valid_pointer_extends; auto.
+ apply valid_pointer_no_overflow_extends; auto.
+ apply valid_different_pointers_extends; auto.
+ rewrite <- val_list_inject_lessdef. eauto. auto.
+Qed.
+
Lemma eval_operation_lessdef:
forall sp op vl1 vl2 v1 m1 m2,
Val.lessdef_list vl1 vl2 ->
@@ -790,28 +814,18 @@ Lemma eval_operation_lessdef:
eval_operation genv sp op vl1 m1 = Some v1 ->
exists v2, eval_operation genv sp op vl2 m2 = Some v2 /\ Val.lessdef v1 v2.
Proof.
- intros. destruct op; simpl in *; FuncInv; InvLessdef; TrivialExists.
- exists v2; auto.
- destruct (Genv.find_symbol genv i); inv H1. TrivialExists.
- exists v1; auto.
- exists (Val.sign_ext 8 v2); split. auto. apply Val.sign_ext_lessdef; auto.
- exists (Val.zero_ext 8 v2); split. auto. apply Val.zero_ext_lessdef; auto.
- exists (Val.sign_ext 16 v2); split. auto. apply Val.sign_ext_lessdef; auto.
- exists (Val.zero_ext 16 v2); split. auto. apply Val.zero_ext_lessdef; auto.
- destruct (eq_block b b0); inv H1. TrivialExists.
- destruct (Int.eq i0 Int.zero); inv H1; TrivialExists.
- destruct (Int.eq i0 Int.zero); inv H1; TrivialExists.
- destruct (Int.ltu i0 Int.iwordsize); inv H1; TrivialExists.
- destruct (Int.ltu i0 Int.iwordsize); inv H1; TrivialExists.
- destruct (Int.ltu i Int.iwordsize); inv H1; TrivialExists.
- destruct (Int.ltu i Int.iwordsize); inv H1; TrivialExists.
- destruct (Int.ltu i0 Int.iwordsize); inv H1; TrivialExists.
- exists (Val.singleoffloat v2); split. auto. apply Val.singleoffloat_lessdef; auto.
- destruct (Float.intoffloat f); simpl in *; inv H1. TrivialExists.
- caseEq (eval_condition c vl1 m1); intros. rewrite H2 in H1.
- rewrite (eval_condition_lessdef c H H0 H2).
- destruct b; inv H1; TrivialExists.
- rewrite H2 in H1. discriminate.
+ intros. rewrite val_list_inject_lessdef in H.
+ assert (exists v2 : val,
+ eval_operation genv sp op vl2 m2 = Some v2
+ /\ val_inject (fun b => Some(b, 0)) v1 v2).
+ eapply eval_operation_inj with (m1 := m1) (sp1 := sp).
+ intros. rewrite <- val_inject_lessdef; auto.
+ apply valid_pointer_extends; auto.
+ apply valid_pointer_no_overflow_extends; auto.
+ apply valid_different_pointers_extends; auto.
+ rewrite <- val_inject_lessdef; auto.
+ eauto. auto.
+ destruct H2 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto.
Qed.
Lemma eval_addressing_lessdef:
@@ -820,40 +834,19 @@ Lemma eval_addressing_lessdef:
eval_addressing genv sp addr vl1 = Some v1 ->
exists v2, eval_addressing genv sp addr vl2 = Some v2 /\ Val.lessdef v1 v2.
Proof.
- intros. destruct addr; simpl in *; FuncInv; InvLessdef; TrivialExists.
- destruct (Genv.find_symbol genv i); inv H0. TrivialExists.
- destruct (Genv.find_symbol genv i); inv H0. TrivialExists.
- exists v1; auto.
+ intros. rewrite val_list_inject_lessdef in H.
+ assert (exists v2 : val,
+ eval_addressing genv sp addr vl2 = Some v2
+ /\ val_inject (fun b => Some(b, 0)) v1 v2).
+ eapply eval_addressing_inj with (sp1 := sp).
+ intros. rewrite <- val_inject_lessdef; auto.
+ rewrite <- val_inject_lessdef; auto.
+ eauto. auto.
+ destruct H1 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto.
Qed.
End EVAL_LESSDEF.
-(** Shifting stack-relative references. This is used in [Stacking]. *)
-
-Definition shift_stack_addressing (delta: int) (addr: addressing) :=
- match addr with
- | Ainstack ofs => Ainstack (Int.add delta ofs)
- | _ => addr
- end.
-
-Definition shift_stack_operation (delta: int) (op: operation) :=
- match op with
- | Oaddrstack ofs => Oaddrstack (Int.add delta ofs)
- | _ => op
- end.
-
-Lemma type_shift_stack_addressing:
- forall delta addr, type_of_addressing (shift_stack_addressing delta addr) = type_of_addressing addr.
-Proof.
- intros. destruct addr; auto.
-Qed.
-
-Lemma type_shift_stack_operation:
- forall delta op, type_of_operation (shift_stack_operation delta op) = type_of_operation op.
-Proof.
- intros. destruct op; auto.
-Qed.
-
(** Compatibility of the evaluation functions with memory injections. *)
Section EVAL_INJECT.
@@ -867,20 +860,13 @@ Variable sp2: block.
Variable delta: Z.
Hypothesis sp_inj: f sp1 = Some(sp2, delta).
-Ltac InvInject :=
- match goal with
- | [ H: val_inject _ (Vint _) _ |- _ ] =>
- inv H; InvInject
- | [ H: val_inject _ (Vfloat _) _ |- _ ] =>
- inv H; InvInject
- | [ H: val_inject _ (Vptr _ _) _ |- _ ] =>
- inv H; InvInject
- | [ H: val_list_inject _ nil _ |- _ ] =>
- inv H; InvInject
- | [ H: val_list_inject _ (_ :: _) _ |- _ ] =>
- inv H; InvInject
- | _ => idtac
- end.
+Remark symbol_address_inject:
+ forall id ofs, val_inject f (symbol_address genv id ofs) (symbol_address genv id ofs).
+Proof.
+ intros. unfold symbol_address. destruct (Genv.find_symbol genv id) as []_eqn; auto.
+ exploit (proj1 globals); eauto. intros.
+ econstructor; eauto. rewrite Int.add_zero; auto.
+Qed.
Lemma eval_condition_inject:
forall cond vl1 vl2 b m1 m2,
@@ -889,35 +875,12 @@ Lemma eval_condition_inject:
eval_condition cond vl1 m1 = Some b ->
eval_condition cond vl2 m2 = Some b.
Proof.
- intros. destruct cond; simpl in *; FuncInv; InvInject; auto.
- destruct (Mem.valid_pointer m1 b0 (Int.unsigned i)) as [] _eqn; try discriminate.
- destruct (Mem.valid_pointer m1 b1 (Int.unsigned i0)) as [] _eqn; try discriminate.
- simpl in H1.
- exploit Mem.valid_pointer_inject_val. eauto. eexact Heqb0. econstructor; eauto.
- intros V1. rewrite V1.
- exploit Mem.valid_pointer_inject_val. eauto. eexact Heqb2. econstructor; eauto.
- intros V2. rewrite V2.
- simpl.
- destruct (eq_block b0 b1); inv H1.
- rewrite H3 in H5; inv H5. rewrite dec_eq_true.
- decEq. apply Int.translate_cmpu.
- eapply Mem.valid_pointer_inject_no_overflow; eauto.
- eapply Mem.valid_pointer_inject_no_overflow; eauto.
- exploit Mem.different_pointers_inject; eauto. intros P.
- destruct (eq_block b3 b4); auto.
- destruct P. contradiction.
- destruct c; unfold eval_compare_mismatch in *; inv H2.
- unfold Int.cmpu. rewrite Int.eq_false; auto. congruence.
- unfold Int.cmpu. rewrite Int.eq_false; auto. congruence.
+ intros. eapply eval_condition_inj with (f := f) (m1 := m1); eauto.
+ intros; eapply Mem.valid_pointer_inject_val; eauto.
+ intros; eapply Mem.valid_pointer_inject_no_overflow; eauto.
+ intros; eapply Mem.different_pointers_inject; eauto.
Qed.
-Ltac TrivialExists2 :=
- match goal with
- | [ |- exists v2, Some ?v1 = Some v2 /\ val_inject _ _ v2 ] =>
- exists v1; split; [auto | econstructor; eauto]
- | _ => idtac
- end.
-
Lemma eval_addressing_inject:
forall addr vl1 vl2 v1,
val_list_inject f vl1 vl2 ->
@@ -926,15 +889,10 @@ Lemma eval_addressing_inject:
eval_addressing genv (Vptr sp2 Int.zero) (shift_stack_addressing (Int.repr delta) addr) vl2 = Some v2
/\ val_inject f v1 v2.
Proof.
- intros. destruct addr; simpl in *; FuncInv; InvInject; TrivialExists2.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- destruct (Genv.find_symbol genv i) as [] _eqn; inv H0.
- TrivialExists2. eapply (proj1 globals); eauto. rewrite Int.add_zero; auto.
- destruct (Genv.find_symbol genv i) as [] _eqn; inv H0.
- TrivialExists2. eapply (proj1 globals); eauto. rewrite Int.add_zero; auto.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
+ intros.
+ rewrite eval_shift_stack_addressing. simpl.
+ eapply eval_addressing_inj with (sp1 := Vptr sp1 Int.zero); eauto.
+ exact symbol_address_inject.
Qed.
Lemma eval_operation_inject:
@@ -946,102 +904,89 @@ Lemma eval_operation_inject:
eval_operation genv (Vptr sp2 Int.zero) (shift_stack_operation (Int.repr delta) op) vl2 m2 = Some v2
/\ val_inject f v1 v2.
Proof.
- intros. destruct op; simpl in *; FuncInv; InvInject; TrivialExists2.
- exists v'; auto.
- destruct (Genv.find_symbol genv i) as [] _eqn; inv H1.
- TrivialExists2. eapply (proj1 globals); eauto. rewrite Int.add_zero; auto.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- exists (Val.sign_ext 8 v'); split; auto. inv H4; simpl; auto.
- exists (Val.zero_ext 8 v'); split; auto. inv H4; simpl; auto.
- exists (Val.sign_ext 16 v'); split; auto. inv H4; simpl; auto.
- exists (Val.zero_ext 16 v'); split; auto. inv H4; simpl; auto.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- rewrite Int.sub_add_l. auto.
- destruct (eq_block b b0); inv H1. rewrite H3 in H5; inv H5. rewrite dec_eq_true.
- rewrite Int.sub_shifted. TrivialExists2.
- destruct (Int.eq i0 Int.zero); inv H1. TrivialExists2.
- destruct (Int.eq i0 Int.zero); inv H1. TrivialExists2.
- destruct (Int.eq i0 Int.zero); inv H1. TrivialExists2.
- destruct (Int.ltu i0 Int.iwordsize); inv H2. TrivialExists2.
- destruct (Int.ltu i0 Int.iwordsize); inv H2. TrivialExists2.
- destruct (Int.ltu i0 Int.iwordsize); inv H1. TrivialExists2.
- destruct (Int.ltu i Int.iwordsize); inv H1. TrivialExists2.
- destruct (Int.ltu i (Int.repr 31)); inv H1. TrivialExists2.
- destruct (Int.ltu i Int.iwordsize); inv H2. TrivialExists2.
- destruct (Int.ltu i Int.iwordsize); inv H2. TrivialExists2.
- destruct (Int.ltu i0 Int.iwordsize); inv H1. TrivialExists2.
- exists (Val.singleoffloat v'); split; auto. inv H4; simpl; auto.
- destruct (Float.intoffloat f0); simpl in *; inv H1. TrivialExists2.
- destruct (eval_condition c vl1 m1) as [] _eqn; try discriminate.
- exploit eval_condition_inject; eauto. intros EQ; rewrite EQ.
- destruct b; inv H1; TrivialExists2.
+ intros.
+ rewrite eval_shift_stack_operation. simpl.
+ eapply eval_operation_inj with (sp1 := Vptr sp1 Int.zero) (m1 := m1); eauto.
+ exact symbol_address_inject.
+ intros; eapply Mem.valid_pointer_inject_val; eauto.
+ intros; eapply Mem.valid_pointer_inject_no_overflow; eauto.
+ intros; eapply Mem.different_pointers_inject; eauto.
Qed.
End EVAL_INJECT.
-(** Transformation of addressing modes with two operands or more
- into an equivalent arithmetic operation. This is used in the [Reload]
- pass when a store instruction cannot be reloaded directly because
- it runs out of temporary registers. *)
-
-(** For the PowerPC, there is only one binary addressing mode: [Aindexed2].
- The corresponding operation is [Oadd]. *)
-
-Definition op_for_binary_addressing (addr: addressing) : operation := Oadd.
-
-Lemma eval_op_for_binary_addressing:
- forall (F V: Type) (ge: Genv.t F V) sp addr args v m,
- (length args >= 2)%nat ->
- eval_addressing ge sp addr args = Some v ->
- eval_operation ge sp (op_for_binary_addressing addr) args m = Some v.
-Proof.
- intros.
- unfold eval_addressing in H0; destruct addr; FuncInv; simpl in H; try omegaContradiction;
- simpl; congruence.
-Qed.
-
-Lemma type_op_for_binary_addressing:
- forall addr,
- (length (type_of_addressing addr) >= 2)%nat ->
- type_of_operation (op_for_binary_addressing addr) = (type_of_addressing addr, Tint).
-Proof.
- intros. destruct addr; simpl in H; reflexivity || omegaContradiction.
-Qed.
-
-(** Two-address operations. There is only one: rotate-mask-insert. *)
+(** * Masks for rotate and mask instructions *)
+
+(** Recognition of integers that are acceptable as immediate operands
+ to the [rlwim] PowerPC instruction. These integers are of the form
+ [000011110000] or [111100001111], that is, a run of one bits
+ surrounded by zero bits, or conversely. We recognize these integers by
+ running the following automaton on the bits. The accepting states are
+ 2, 3, 4, 5, and 6.
+<<
+ 0 1 0
+ / \ / \ / \
+ \ / \ / \ /
+ -0--> [1] --1--> [2] --0--> [3]
+ /
+ [0]
+ \
+ -1--> [4] --0--> [5] --1--> [6]
+ / \ / \ / \
+ \ / \ / \ /
+ 1 0 1
+>>
+*)
-Definition two_address_op (op: operation) : bool :=
- match op with
- | Oroli _ _ => true
- | _ => false
+Inductive rlw_state: Type :=
+ | RLW_S0 : rlw_state
+ | RLW_S1 : rlw_state
+ | RLW_S2 : rlw_state
+ | RLW_S3 : rlw_state
+ | RLW_S4 : rlw_state
+ | RLW_S5 : rlw_state
+ | RLW_S6 : rlw_state
+ | RLW_Sbad : rlw_state.
+
+Definition rlw_transition (s: rlw_state) (b: bool) : rlw_state :=
+ match s, b with
+ | RLW_S0, false => RLW_S1
+ | RLW_S0, true => RLW_S4
+ | RLW_S1, false => RLW_S1
+ | RLW_S1, true => RLW_S2
+ | RLW_S2, false => RLW_S3
+ | RLW_S2, true => RLW_S2
+ | RLW_S3, false => RLW_S3
+ | RLW_S3, true => RLW_Sbad
+ | RLW_S4, false => RLW_S5
+ | RLW_S4, true => RLW_S4
+ | RLW_S5, false => RLW_S5
+ | RLW_S5, true => RLW_S6
+ | RLW_S6, false => RLW_Sbad
+ | RLW_S6, true => RLW_S6
+ | RLW_Sbad, _ => RLW_Sbad
end.
-(** Operations that are so cheap to recompute that CSE should not factor them out. *)
-
-Definition is_trivial_op (op: operation) : bool :=
- match op with
- | Omove => true
- | Ointconst _ => true
- | Oaddrsymbol _ _ => true
- | Oaddrstack _ => true
- | _ => false
+Definition rlw_accepting (s: rlw_state) : bool :=
+ match s with
+ | RLW_S0 => false
+ | RLW_S1 => false
+ | RLW_S2 => true
+ | RLW_S3 => true
+ | RLW_S4 => true
+ | RLW_S5 => true
+ | RLW_S6 => true
+ | RLW_Sbad => false
end.
-(** Operations that depend on the memory state. *)
-
-Definition op_depends_on_memory (op: operation) : bool :=
- match op with
- | Ocmp (Ccompu _) => true
- | _ => false
+Fixpoint is_rlw_mask_rec (n: nat) (s: rlw_state) (x: Z) {struct n} : bool :=
+ match n with
+ | O =>
+ rlw_accepting s
+ | S m =>
+ let (b, y) := Int.Z_bin_decomp x in
+ is_rlw_mask_rec m (rlw_transition s b) y
end.
-Lemma op_depends_on_memory_correct:
- forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2,
- op_depends_on_memory op = false ->
- eval_operation ge sp op args m1 = eval_operation ge sp op args m2.
-Proof.
- intros until m2. destruct op; simpl; try congruence.
- destruct c; simpl; congruence.
-Qed.
+Definition is_rlw_mask (x: int) : bool :=
+ is_rlw_mask_rec Int.wordsize RLW_S0 (Int.unsigned x).
diff --git a/powerpc/PrintOp.ml b/powerpc/PrintOp.ml
index bfac9a9..3b5e98d 100644
--- a/powerpc/PrintOp.ml
+++ b/powerpc/PrintOp.ml
@@ -54,9 +54,7 @@ let print_operation reg pp = function
| Oaddrstack ofs, [] ->
fprintf pp "stack(%ld)" (camlint_of_coqint ofs)
| Ocast8signed, [r1] -> fprintf pp "int8signed(%a)" reg r1
- | Ocast8unsigned, [r1] -> fprintf pp "int8unsigned(%a)" reg r1
| Ocast16signed, [r1] -> fprintf pp "int16signed(%a)" reg r1
- | Ocast16unsigned, [r1] -> fprintf pp "int16unsigned(%a)" reg r1
| Oadd, [r1;r2] -> fprintf pp "%a + %a" reg r1 reg r2
| Oaddimm n, [r1] -> fprintf pp "%a + %ld" reg r1 (camlint_of_coqint n)
| Osub, [r1;r2] -> fprintf pp "%a - %a" reg r1 reg r2
diff --git a/powerpc/SelectOp.v b/powerpc/SelectOp.v
deleted file mode 100644
index b188993..0000000
--- a/powerpc/SelectOp.v
+++ /dev/null
@@ -1,1018 +0,0 @@
-(* *********************************************************************)
-(* *)
-(* The Compcert verified compiler *)
-(* *)
-(* Xavier Leroy, INRIA Paris-Rocquencourt *)
-(* *)
-(* Copyright Institut National de Recherche en Informatique et en *)
-(* Automatique. All rights reserved. This file is distributed *)
-(* under the terms of the INRIA Non-Commercial License Agreement. *)
-(* *)
-(* *********************************************************************)
-
-(** Instruction selection for operators *)
-
-(** The instruction selection pass recognizes opportunities for using
- combined arithmetic and logical operations and addressing modes
- offered by the target processor. For instance, the expression [x + 1]
- can take advantage of the "immediate add" instruction of the processor,
- and on the PowerPC, the expression [(x >> 6) & 0xFF] can be turned
- into a "rotate and mask" instruction.
-
- This file defines functions for building CminorSel expressions and
- statements, especially expressions consisting of operator
- applications. These functions examine their arguments to choose
- cheaper forms of operators whenever possible.
-
- For instance, [add e1 e2] will return a CminorSel expression semantically
- equivalent to [Eop Oadd (e1 ::: e2 ::: Enil)], but will use a
- [Oaddimm] operator if one of the arguments is an integer constant,
- or suppress the addition altogether if one of the arguments is the
- null integer. In passing, we perform operator reassociation
- ([(e + c1) * c2] becomes [(e * c2) + (c1 * c2)]) and a small amount
- of constant propagation.
-
- On top of the "smart constructor" functions defined below,
- module [Selection] implements the actual instruction selection pass.
-*)
-
-Require Import Coqlib.
-Require Import Maps.
-Require Import AST.
-Require Import Integers.
-Require Import Floats.
-Require Import Values.
-Require Import Memory.
-Require Import Globalenvs.
-Require Cminor.
-Require Import Op.
-Require Import CminorSel.
-
-Open Local Scope cminorsel_scope.
-
-(** ** Constants **)
-
-Definition addrsymbol (id: ident) (ofs: int) :=
- Eop (Oaddrsymbol id ofs) Enil.
-
-Definition addrstack (ofs: int) :=
- Eop (Oaddrstack ofs) Enil.
-
-(** ** Integer logical negation *)
-
-(** The natural way to write smart constructors is by pattern-matching
- on their arguments, recognizing cases where cheaper operators
- or combined operators are applicable. For instance, integer logical
- negation has three special cases (not-and, not-or and not-xor),
- along with a default case that uses not-or over its arguments and itself.
- This is written naively as follows:
-<<
-Definition notint (e: expr) :=
- match e with
- | Eop (Ointconst n) Enil => Eop (Ointconst (Int.not n)) Enil
- | Eop Oand (t1:::t2:::Enil) => Eop Onand (t1:::t2:::Enil)
- | Eop Oor (t1:::t2:::Enil) => Eop Onor (t1:::t2:::Enil)
- | Eop Oxor (t1:::t2:::Enil) => Eop Onxor (t1:::t2:::Enil)
- | _ => Elet e (Eop Onor (Eletvar O ::: Eletvar O ::: Enil))
- end.
->>
- However, Coq expands complex pattern-matchings like the above into
- elementary matchings over all constructors of an inductive type,
- resulting in much duplication of the final catch-all case.
- Such duplications generate huge executable code and duplicate
- cases in the correctness proofs.
-
- To limit this duplication, we use the following trick due to
- Yves Bertot. We first define a dependent inductive type that
- characterizes the expressions that match each of the 4 cases of interest.
-*)
-
-Inductive notint_cases: forall (e: expr), Type :=
- | notint_case1:
- forall n,
- notint_cases (Eop (Ointconst n) Enil)
- | notint_case2:
- forall t1 t2,
- notint_cases (Eop Oand (t1:::t2:::Enil))
- | notint_case3:
- forall t1 t2,
- notint_cases (Eop Oor (t1:::t2:::Enil))
- | notint_case4:
- forall t1 t2,
- notint_cases (Eop Oxor (t1:::t2:::Enil))
- | notint_default:
- forall (e: expr),
- notint_cases e.
-
-(** We then define a classification function that takes an expression
- and return the case in which it falls. Note that the catch-all case
- [notint_default] does not state that it is mutually exclusive with
- the first three, more specific cases. The classification function
- nonetheless chooses the specific cases in preference to the catch-all
- case. *)
-
-Definition notint_match (e: expr) :=
- match e as z1 return notint_cases z1 with
- | Eop (Ointconst n) Enil =>
- notint_case1 n
- | Eop Oand (t1:::t2:::Enil) =>
- notint_case2 t1 t2
- | Eop Oor (t1:::t2:::Enil) =>
- notint_case3 t1 t2
- | Eop Oxor (t1:::t2:::Enil) =>
- notint_case4 t1 t2
- | e =>
- notint_default e
- end.
-
-(** Finally, the [notint] function we need is defined by a 4-case match
- over the result of the classification function. Thus, no duplication
- of the right-hand sides of this match occur, and the proof has only
- 4 cases to consider (it proceeds by case over [notint_match e]).
- Since the default case is not obviously exclusive with the three
- specific cases, it is important that its right-hand side is
- semantically correct for all possible values of [e], which is the
- case here and for all other smart constructors. *)
-
-Definition notint (e: expr) :=
- match notint_match e with
- | notint_case1 n =>
- Eop (Ointconst (Int.not n)) Enil
- | notint_case2 t1 t2 =>
- Eop Onand (t1:::t2:::Enil)
- | notint_case3 t1 t2 =>
- Eop Onor (t1:::t2:::Enil)
- | notint_case4 t1 t2 =>
- Eop Onxor (t1:::t2:::Enil)
- | notint_default e =>
- Elet e (Eop Onor (Eletvar O ::: Eletvar O ::: Enil))
- end.
-
-(** This programming pattern will be applied systematically for the
- other smart constructors in this file. *)
-
-(** ** Boolean negation *)
-
-Definition notbool_base (e: expr) :=
- Eop (Ocmp (Ccompuimm Ceq Int.zero)) (e ::: Enil).
-
-Fixpoint notbool (e: expr) {struct e} : expr :=
- match e with
- | Eop (Ointconst n) Enil =>
- Eop (Ointconst (if Int.eq n Int.zero then Int.one else Int.zero)) Enil
- | Eop (Ocmp cond) args =>
- Eop (Ocmp (negate_condition cond)) args
- | Econdition e1 e2 e3 =>
- Econdition e1 (notbool e2) (notbool e3)
- | _ =>
- notbool_base e
- end.
-
-(** ** Integer addition and pointer addition *)
-
-(*
-Definition addimm (n: int) (e: expr) :=
- if Int.eq n Int.zero then e else
- match e with
- | Eop (Ointconst m) Enil => Eop (Ointconst(Int.add n m)) Enil
- | Eop (Oaddrsymbol s m) Enil => Eop (Oaddrsymbol s (Int.add n m)) Enil
- | Eop (Oaddrstack m) Enil => Eop (Oaddrstack (Int.add n m)) Enil
- | Eop (Oaddimm m) (t ::: Enil) => Eop (Oaddimm(Int.add n m)) (t ::: Enil)
- | _ => Eop (Oaddimm n) (e ::: Enil)
- end.
-*)
-
-(** Addition of an integer constant. *)
-
-Inductive addimm_cases: forall (e: expr), Type :=
- | addimm_case1:
- forall (m: int),
- addimm_cases (Eop (Ointconst m) Enil)
- | addimm_case2:
- forall (s: ident) (m: int),
- addimm_cases (Eop (Oaddrsymbol s m) Enil)
- | addimm_case3:
- forall (m: int),
- addimm_cases (Eop (Oaddrstack m) Enil)
- | addimm_case4:
- forall (m: int) (t: expr),
- addimm_cases (Eop (Oaddimm m) (t ::: Enil))
- | addimm_default:
- forall (e: expr),
- addimm_cases e.
-
-Definition addimm_match (e: expr) :=
- match e as z1 return addimm_cases z1 with
- | Eop (Ointconst m) Enil =>
- addimm_case1 m
- | Eop (Oaddrsymbol s m) Enil =>
- addimm_case2 s m
- | Eop (Oaddrstack m) Enil =>
- addimm_case3 m
- | Eop (Oaddimm m) (t ::: Enil) =>
- addimm_case4 m t
- | e =>
- addimm_default e
- end.
-
-Definition addimm (n: int) (e: expr) :=
- if Int.eq n Int.zero then e else
- match addimm_match e with
- | addimm_case1 m =>
- Eop (Ointconst(Int.add n m)) Enil
- | addimm_case2 s m =>
- Eop (Oaddrsymbol s (Int.add n m)) Enil
- | addimm_case3 m =>
- Eop (Oaddrstack (Int.add n m)) Enil
- | addimm_case4 m t =>
- Eop (Oaddimm(Int.add n m)) (t ::: Enil)
- | addimm_default e =>
- Eop (Oaddimm n) (e ::: Enil)
- end.
-
-(** Addition of two integer or pointer expressions. *)
-
-(*
-Definition add (e1: expr) (e2: expr) :=
- match e1, e2 with
- | Eop (Ointconst n1) Enil, t2 => addimm n1 t2
- | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) => addimm (Int.add n1 n2) (Eop Oadd (t1:::t2:::Enil))
- | Eop(Oaddimm n1) (t1:::Enil)), t2 => addimm n1 (Eop Oadd (t1:::t2:::Enil))
- | t1, Eop (Ointconst n2) Enil => addimm n2 t1
- | t1, Eop (Oaddimm n2) (t2:::Enil) => addimm n2 (Eop Oadd (t1:::t2:::Enil))
- | Eop (Oaddrsymbol s n1) Enil, Eop (Oaddimm n2) (t2:::Enil) => Eop Oadd (Eop (Oaddrsymbol s (Int.add n1 n2)) Enil ::: t2 ::: Enil)
- | Eop (Oaddrstack n1) Enil, Eop (Oaddimm n2) (t2:::Enil) => Eop Oadd (Eop (Oaddstack (Int.add n1 n2)) Enil ::: t2 ::: Enil)
- | _, _ => Eop Oadd (e1:::e2:::Enil)
- end.
-*)
-
-Inductive add_cases: forall (e1: expr) (e2: expr), Type :=
- | add_case1:
- forall (n1: int) (t2: expr),
- add_cases (Eop (Ointconst n1) Enil) (t2)
- | add_case2:
- forall (n1: int) (t1: expr) (n2: int) (t2: expr),
- add_cases (Eop (Oaddimm n1) (t1:::Enil)) (Eop (Oaddimm n2) (t2:::Enil))
- | add_case3:
- forall (n1: int) (t1: expr) (t2: expr),
- add_cases (Eop(Oaddimm n1) (t1:::Enil)) (t2)
- | add_case4:
- forall (t1: expr) (n2: int),
- add_cases (t1) (Eop (Ointconst n2) Enil)
- | add_case5:
- forall (t1: expr) (n2: int) (t2: expr),
- add_cases (t1) (Eop (Oaddimm n2) (t2:::Enil))
- | add_case6:
- forall s n1 n2 t2,
- add_cases (Eop (Oaddrsymbol s n1) Enil) (Eop (Oaddimm n2) (t2:::Enil))
- | add_case7:
- forall n1 n2 t2,
- add_cases (Eop (Oaddrstack n1) Enil) (Eop (Oaddimm n2) (t2:::Enil))
- | add_default:
- forall (e1: expr) (e2: expr),
- add_cases e1 e2.
-
-Definition add_match_aux (e1: expr) (e2: expr) :=
- match e2 as z2 return add_cases e1 z2 with
- | Eop (Ointconst n2) Enil =>
- add_case4 e1 n2
- | Eop (Oaddimm n2) (t2:::Enil) =>
- add_case5 e1 n2 t2
- | e2 =>
- add_default e1 e2
- end.
-
-Definition add_match (e1: expr) (e2: expr) :=
- match e1 as z1, e2 as z2 return add_cases z1 z2 with
- | Eop (Ointconst n1) Enil, t2 =>
- add_case1 n1 t2
- | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) =>
- add_case2 n1 t1 n2 t2
- | Eop(Oaddimm n1) (t1:::Enil), t2 =>
- add_case3 n1 t1 t2
- | Eop (Oaddrsymbol s n1) Enil, Eop (Oaddimm n2) (t2:::Enil) =>
- add_case6 s n1 n2 t2
- | Eop (Oaddrstack n1) Enil, Eop (Oaddimm n2) (t2:::Enil) =>
- add_case7 n1 n2 t2
- | e1, e2 =>
- add_match_aux e1 e2
- end.
-
-Definition add (e1: expr) (e2: expr) :=
- match add_match e1 e2 with
- | add_case1 n1 t2 =>
- addimm n1 t2
- | add_case2 n1 t1 n2 t2 =>
- addimm (Int.add n1 n2) (Eop Oadd (t1:::t2:::Enil))
- | add_case3 n1 t1 t2 =>
- addimm n1 (Eop Oadd (t1:::t2:::Enil))
- | add_case4 t1 n2 =>
- addimm n2 t1
- | add_case5 t1 n2 t2 =>
- addimm n2 (Eop Oadd (t1:::t2:::Enil))
- | add_case6 s n1 n2 t2 =>
- Eop Oadd (Eop (Oaddrsymbol s (Int.add n1 n2)) Enil ::: t2 ::: Enil)
- | add_case7 n1 n2 t2 =>
- Eop Oadd (Eop (Oaddrstack (Int.add n1 n2)) Enil ::: t2 ::: Enil)
- | add_default e1 e2 =>
- Eop Oadd (e1:::e2:::Enil)
- end.
-
-(** ** Integer and pointer subtraction *)
-
-(*
-Definition sub (e1: expr) (e2: expr) :=
- match e1, e2 with
- | t1, Eop (Ointconst n2) Enil => addimm (Int.neg n2) t1
- | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) => addimm
-(intsub n1 n2) (Eop Osub (t1:::t2:::Enil))
- | Eop (Oaddimm n1) (t1:::Enil), t2 => addimm n1 (Eop Osub (t1:::t2:::Rni
-l))
- | t1, Eop (Oaddimm n2) (t2:::Enil) => addimm (Int.neg n2) (Eop Osub (t1:::
-:t2:::Enil))
- | _, _ => Eop Osub (e1:::e2:::Enil)
- end.
-*)
-
-Inductive sub_cases: forall (e1: expr) (e2: expr), Type :=
- | sub_case1:
- forall (t1: expr) (n2: int),
- sub_cases (t1) (Eop (Ointconst n2) Enil)
- | sub_case2:
- forall (n1: int) (t1: expr) (n2: int) (t2: expr),
- sub_cases (Eop (Oaddimm n1) (t1:::Enil)) (Eop (Oaddimm n2) (t2:::Enil))
- | sub_case3:
- forall (n1: int) (t1: expr) (t2: expr),
- sub_cases (Eop (Oaddimm n1) (t1:::Enil)) (t2)
- | sub_case4:
- forall (t1: expr) (n2: int) (t2: expr),
- sub_cases (t1) (Eop (Oaddimm n2) (t2:::Enil))
- | sub_default:
- forall (e1: expr) (e2: expr),
- sub_cases e1 e2.
-
-Definition sub_match_aux (e1: expr) (e2: expr) :=
- match e1 as z1 return sub_cases z1 e2 with
- | Eop (Oaddimm n1) (t1:::Enil) =>
- sub_case3 n1 t1 e2
- | e1 =>
- sub_default e1 e2
- end.
-
-Definition sub_match (e1: expr) (e2: expr) :=
- match e2 as z2, e1 as z1 return sub_cases z1 z2 with
- | Eop (Ointconst n2) Enil, t1 =>
- sub_case1 t1 n2
- | Eop (Oaddimm n2) (t2:::Enil), Eop (Oaddimm n1) (t1:::Enil) =>
- sub_case2 n1 t1 n2 t2
- | Eop (Oaddimm n2) (t2:::Enil), t1 =>
- sub_case4 t1 n2 t2
- | e2, e1 =>
- sub_match_aux e1 e2
- end.
-
-Definition sub (e1: expr) (e2: expr) :=
- match sub_match e1 e2 with
- | sub_case1 t1 n2 =>
- addimm (Int.neg n2) t1
- | sub_case2 n1 t1 n2 t2 =>
- addimm (Int.sub n1 n2) (Eop Osub (t1:::t2:::Enil))
- | sub_case3 n1 t1 t2 =>
- addimm n1 (Eop Osub (t1:::t2:::Enil))
- | sub_case4 t1 n2 t2 =>
- addimm (Int.neg n2) (Eop Osub (t1:::t2:::Enil))
- | sub_default e1 e2 =>
- Eop Osub (e1:::e2:::Enil)
- end.
-
-(** ** Rotates and immediate shifts *)
-
-(** Recognition of integers that are acceptable as immediate operands
- to the [rlwim] PowerPC instruction. These integers are of the form
- [000011110000] or [111100001111], that is, a run of one bits
- surrounded by zero bits, or conversely. We recognize these integers by
- running the following automaton on the bits. The accepting states are
- 2, 3, 4, 5, and 6.
-<<
- 0 1 0
- / \ / \ / \
- \ / \ / \ /
- -0--> [1] --1--> [2] --0--> [3]
- /
- [0]
- \
- -1--> [4] --0--> [5] --1--> [6]
- / \ / \ / \
- \ / \ / \ /
- 1 0 1
->>
-*)
-
-Inductive rlw_state: Type :=
- | RLW_S0 : rlw_state
- | RLW_S1 : rlw_state
- | RLW_S2 : rlw_state
- | RLW_S3 : rlw_state
- | RLW_S4 : rlw_state
- | RLW_S5 : rlw_state
- | RLW_S6 : rlw_state
- | RLW_Sbad : rlw_state.
-
-Definition rlw_transition (s: rlw_state) (b: bool) : rlw_state :=
- match s, b with
- | RLW_S0, false => RLW_S1
- | RLW_S0, true => RLW_S4
- | RLW_S1, false => RLW_S1
- | RLW_S1, true => RLW_S2
- | RLW_S2, false => RLW_S3
- | RLW_S2, true => RLW_S2
- | RLW_S3, false => RLW_S3
- | RLW_S3, true => RLW_Sbad
- | RLW_S4, false => RLW_S5
- | RLW_S4, true => RLW_S4
- | RLW_S5, false => RLW_S5
- | RLW_S5, true => RLW_S6
- | RLW_S6, false => RLW_Sbad
- | RLW_S6, true => RLW_S6
- | RLW_Sbad, _ => RLW_Sbad
- end.
-
-Definition rlw_accepting (s: rlw_state) : bool :=
- match s with
- | RLW_S0 => false
- | RLW_S1 => false
- | RLW_S2 => true
- | RLW_S3 => true
- | RLW_S4 => true
- | RLW_S5 => true
- | RLW_S6 => true
- | RLW_Sbad => false
- end.
-
-Fixpoint is_rlw_mask_rec (n: nat) (s: rlw_state) (x: Z) {struct n} : bool :=
- match n with
- | O =>
- rlw_accepting s
- | S m =>
- let (b, y) := Int.Z_bin_decomp x in
- is_rlw_mask_rec m (rlw_transition s b) y
- end.
-
-Definition is_rlw_mask (x: int) : bool :=
- is_rlw_mask_rec Int.wordsize RLW_S0 (Int.unsigned x).
-
-(*
-Definition rolm (e1: expr) :=
- match e1 with
- | Eop (Ointconst n1) Enil =>
- Eop (Ointconst(Int.and (Int.rol n1 amount2) mask2)) Enil
- | Eop (Orolm amount1 mask1) (t1:::Enil) =>
- let amount := Int.and (Int.add amount1 amount2) Ox1Fl in
- let mask := Int.and (Int.rol mask1 amount2) mask2 in
- if Int.is_rlw_mask mask
- then Eop (Orolm amount mask) (t1:::Enil)
- else Eop (Orolm amount2 mask2) (e1:::Enil)
- | _ => Eop (Orolm amount2 mask2) (e1:::Enil)
- end
-*)
-
-Inductive rolm_cases: forall (e1: expr), Type :=
- | rolm_case1:
- forall (n1: int),
- rolm_cases (Eop (Ointconst n1) Enil)
- | rolm_case2:
- forall (amount1: int) (mask1: int) (t1: expr),
- rolm_cases (Eop (Orolm amount1 mask1) (t1:::Enil))
- | rolm_default:
- forall (e1: expr),
- rolm_cases e1.
-
-Definition rolm_match (e1: expr) :=
- match e1 as z1 return rolm_cases z1 with
- | Eop (Ointconst n1) Enil =>
- rolm_case1 n1
- | Eop (Orolm amount1 mask1) (t1:::Enil) =>
- rolm_case2 amount1 mask1 t1
- | e1 =>
- rolm_default e1
- end.
-
-Definition rolm (e1: expr) (amount2 mask2: int) :=
- match rolm_match e1 with
- | rolm_case1 n1 =>
- Eop (Ointconst(Int.and (Int.rol n1 amount2) mask2)) Enil
- | rolm_case2 amount1 mask1 t1 =>
- let amount := Int.modu (Int.add amount1 amount2) Int.iwordsize in
- let mask := Int.and (Int.rol mask1 amount2) mask2 in
- if is_rlw_mask mask
- then Eop (Orolm amount mask) (t1:::Enil)
- else Eop (Orolm amount2 mask2) (e1:::Enil)
- | rolm_default e1 =>
- Eop (Orolm amount2 mask2) (e1:::Enil)
- end.
-
-Definition shlimm (e1: expr) (n2: int) :=
- if Int.eq n2 Int.zero then
- e1
- else if Int.ltu n2 Int.iwordsize then
- rolm e1 n2 (Int.shl Int.mone n2)
- else
- Eop Oshl (e1:::Eop (Ointconst n2) Enil:::Enil).
-
-Definition shruimm (e1: expr) (n2: int) :=
- if Int.eq n2 Int.zero then
- e1
- else if Int.ltu n2 Int.iwordsize then
- rolm e1 (Int.sub Int.iwordsize n2) (Int.shru Int.mone n2)
- else
- Eop Oshru (e1:::Eop (Ointconst n2) Enil:::Enil).
-
-(** ** Integer multiply *)
-
-Definition mulimm_base (n1: int) (e2: expr) :=
- match Int.one_bits n1 with
- | i :: nil =>
- shlimm e2 i
- | i :: j :: nil =>
- Elet e2
- (Eop Oadd (shlimm (Eletvar 0) i :::
- shlimm (Eletvar 0) j ::: Enil))
- | _ =>
- Eop (Omulimm n1) (e2:::Enil)
- end.
-
-(*
-Definition mulimm (n1: int) (e2: expr) :=
- if Int.eq n1 Int.zero then
- Elet e2 (Eop (Ointconst Int.zero) Enil)
- else if Int.eq n1 Int.one then
- e2
- else match e2 with
- | Eop (Ointconst n2) Enil => Eop (Ointconst(intmul n1 n2)) Enil
- | Eop (Oaddimm n2) (t2:::Enil) => addimm (intmul n1 n2) (mulimm_base n1 t2)
- | _ => mulimm_base n1 e2
- end.
-*)
-
-Inductive mulimm_cases: forall (e2: expr), Type :=
- | mulimm_case1:
- forall (n2: int),
- mulimm_cases (Eop (Ointconst n2) Enil)
- | mulimm_case2:
- forall (n2: int) (t2: expr),
- mulimm_cases (Eop (Oaddimm n2) (t2:::Enil))
- | mulimm_default:
- forall (e2: expr),
- mulimm_cases e2.
-
-Definition mulimm_match (e2: expr) :=
- match e2 as z1 return mulimm_cases z1 with
- | Eop (Ointconst n2) Enil =>
- mulimm_case1 n2
- | Eop (Oaddimm n2) (t2:::Enil) =>
- mulimm_case2 n2 t2
- | e2 =>
- mulimm_default e2
- end.
-
-Definition mulimm (n1: int) (e2: expr) :=
- if Int.eq n1 Int.zero then
- Elet e2 (Eop (Ointconst Int.zero) Enil)
- else if Int.eq n1 Int.one then
- e2
- else match mulimm_match e2 with
- | mulimm_case1 n2 =>
- Eop (Ointconst(Int.mul n1 n2)) Enil
- | mulimm_case2 n2 t2 =>
- addimm (Int.mul n1 n2) (mulimm_base n1 t2)
- | mulimm_default e2 =>
- mulimm_base n1 e2
- end.
-
-(*
-Definition mul (e1: expr) (e2: expr) :=
- match e1, e2 with
- | Eop (Ointconst n1) Enil, t2 => mulimm n1 t2
- | t1, Eop (Ointconst n2) Enil => mulimm n2 t1
- | _, _ => Eop Omul (e1:::e2:::Enil)
- end.
-*)
-
-Inductive mul_cases: forall (e1: expr) (e2: expr), Type :=
- | mul_case1:
- forall (n1: int) (t2: expr),
- mul_cases (Eop (Ointconst n1) Enil) (t2)
- | mul_case2:
- forall (t1: expr) (n2: int),
- mul_cases (t1) (Eop (Ointconst n2) Enil)
- | mul_default:
- forall (e1: expr) (e2: expr),
- mul_cases e1 e2.
-
-Definition mul_match_aux (e1: expr) (e2: expr) :=
- match e2 as z2 return mul_cases e1 z2 with
- | Eop (Ointconst n2) Enil =>
- mul_case2 e1 n2
- | e2 =>
- mul_default e1 e2
- end.
-
-Definition mul_match (e1: expr) (e2: expr) :=
- match e1 as z1 return mul_cases z1 e2 with
- | Eop (Ointconst n1) Enil =>
- mul_case1 n1 e2
- | e1 =>
- mul_match_aux e1 e2
- end.
-
-Definition mul (e1: expr) (e2: expr) :=
- match mul_match e1 e2 with
- | mul_case1 n1 t2 =>
- mulimm n1 t2
- | mul_case2 t1 n2 =>
- mulimm n2 t1
- | mul_default e1 e2 =>
- Eop Omul (e1:::e2:::Enil)
- end.
-
-(** ** Bitwise and, or, xor *)
-
-Definition andimm (n1: int) (e2: expr) :=
- if is_rlw_mask n1
- then rolm e2 Int.zero n1
- else Eop (Oandimm n1) (e2:::Enil).
-
-Definition and (e1: expr) (e2: expr) :=
- match mul_match e1 e2 with
- | mul_case1 n1 t2 =>
- andimm n1 t2
- | mul_case2 t1 n2 =>
- andimm n2 t1
- | mul_default e1 e2 =>
- Eop Oand (e1:::e2:::Enil)
- end.
-
-Definition same_expr_pure (e1 e2: expr) :=
- match e1, e2 with
- | Evar v1, Evar v2 => if ident_eq v1 v2 then true else false
- | _, _ => false
- end.
-
-Inductive or_cases: forall (e1: expr) (e2: expr), Type :=
- | or_case1:
- forall (amount1: int) (mask1: int) (t1: expr)
- (amount2: int) (mask2: int) (t2: expr),
- or_cases (Eop (Orolm amount1 mask1) (t1:::Enil))
- (Eop (Orolm amount2 mask2) (t2:::Enil))
- | or_default:
- forall (e1: expr) (e2: expr),
- or_cases e1 e2.
-
-Definition or_match (e1: expr) (e2: expr) :=
- match e1 as z1, e2 as z2 return or_cases z1 z2 with
- | Eop (Orolm amount1 mask1) (t1:::Enil),
- Eop (Orolm amount2 mask2) (t2:::Enil) =>
- or_case1 amount1 mask1 t1 amount2 mask2 t2
- | e1, e2 =>
- or_default e1 e2
- end.
-
-Definition or (e1: expr) (e2: expr) :=
- match or_match e1 e2 with
- | or_case1 amount1 mask1 t1 amount2 mask2 t2 =>
- if Int.eq amount1 amount2
- && is_rlw_mask (Int.or mask1 mask2)
- && same_expr_pure t1 t2 then
- Eop (Orolm amount1 (Int.or mask1 mask2)) (t1:::Enil)
- else if Int.eq amount1 Int.zero
- && Int.eq mask1 (Int.not mask2) then
- Eop (Oroli amount2 mask2) (t1:::t2:::Enil)
- else if Int.eq amount2 Int.zero
- && Int.eq mask2 (Int.not mask1) then
- Eop (Oroli amount1 mask1) (t2:::t1:::Enil)
- else
- Eop Oor (e1:::e2:::Enil)
- | or_default e1 e2 =>
- Eop Oor (e1:::e2:::Enil)
- end.
-
-(** ** Integer division and modulus *)
-
-Definition divs (e1: expr) (e2: expr) := Eop Odiv (e1:::e2:::Enil).
-
-Definition mod_aux (divop: operation) (e1 e2: expr) :=
- Elet e1
- (Elet (lift e2)
- (Eop Osub (Eletvar 1 :::
- Eop Omul (Eop divop (Eletvar 1 ::: Eletvar 0 ::: Enil) :::
- Eletvar 0 :::
- Enil) :::
- Enil))).
-
-Definition mods := mod_aux Odiv.
-
-Inductive divu_cases: forall (e2: expr), Type :=
- | divu_case1:
- forall (n2: int),
- divu_cases (Eop (Ointconst n2) Enil)
- | divu_default:
- forall (e2: expr),
- divu_cases e2.
-
-Definition divu_match (e2: expr) :=
- match e2 as z1 return divu_cases z1 with
- | Eop (Ointconst n2) Enil =>
- divu_case1 n2
- | e2 =>
- divu_default e2
- end.
-
-Definition divu (e1: expr) (e2: expr) :=
- match divu_match e2 with
- | divu_case1 n2 =>
- match Int.is_power2 n2 with
- | Some l2 => shruimm e1 l2
- | None => Eop Odivu (e1:::e2:::Enil)
- end
- | divu_default e2 =>
- Eop Odivu (e1:::e2:::Enil)
- end.
-
-Definition modu (e1: expr) (e2: expr) :=
- match divu_match e2 with
- | divu_case1 n2 =>
- match Int.is_power2 n2 with
- | Some l2 => andimm (Int.sub n2 Int.one) e1
- | None => mod_aux Odivu e1 e2
- end
- | divu_default e2 =>
- mod_aux Odivu e1 e2
- end.
-
-(** ** General shifts *)
-
-Inductive shift_cases: forall (e1: expr), Type :=
- | shift_case1:
- forall (n2: int),
- shift_cases (Eop (Ointconst n2) Enil)
- | shift_default:
- forall (e1: expr),
- shift_cases e1.
-
-Definition shift_match (e1: expr) :=
- match e1 as z1 return shift_cases z1 with
- | Eop (Ointconst n2) Enil =>
- shift_case1 n2
- | e1 =>
- shift_default e1
- end.
-
-Definition shl (e1: expr) (e2: expr) :=
- match shift_match e2 with
- | shift_case1 n2 =>
- shlimm e1 n2
- | shift_default e2 =>
- Eop Oshl (e1:::e2:::Enil)
- end.
-
-Definition shru (e1: expr) (e2: expr) :=
- match shift_match e2 with
- | shift_case1 n2 =>
- shruimm e1 n2
- | shift_default e2 =>
- Eop Oshru (e1:::e2:::Enil)
- end.
-
-(** ** Floating-point arithmetic *)
-
-Parameter use_fused_mul : unit -> bool.
-
-(*
-Definition addf (e1: expr) (e2: expr) :=
- match e1, e2 with
- | Eop Omulf (t1:::t2:::Enil), t3 => Eop Omuladdf (t1:::t2:::t3:::Enil)
- | t1, Eop Omulf (t2:::t3:::Enil) => Elet t1 (Eop Omuladdf (t2:::t3:::Rvar 0:::Enil))
- | _, _ => Eop Oaddf (e1:::e2:::Enil)
- end.
-*)
-
-Inductive addf_cases: forall (e1: expr) (e2: expr), Type :=
- | addf_case1:
- forall (t1: expr) (t2: expr) (t3: expr),
- addf_cases (Eop Omulf (t1:::t2:::Enil)) (t3)
- | addf_case2:
- forall (t1: expr) (t2: expr) (t3: expr),
- addf_cases (t1) (Eop Omulf (t2:::t3:::Enil))
- | addf_default:
- forall (e1: expr) (e2: expr),
- addf_cases e1 e2.
-
-Definition addf_match_aux (e1: expr) (e2: expr) :=
- match e2 as z2 return addf_cases e1 z2 with
- | Eop Omulf (t2:::t3:::Enil) =>
- addf_case2 e1 t2 t3
- | e2 =>
- addf_default e1 e2
- end.
-
-Definition addf_match (e1: expr) (e2: expr) :=
- match e1 as z1 return addf_cases z1 e2 with
- | Eop Omulf (t1:::t2:::Enil) =>
- addf_case1 t1 t2 e2
- | e1 =>
- addf_match_aux e1 e2
- end.
-
-Definition addf (e1: expr) (e2: expr) :=
- if use_fused_mul tt then
- match addf_match e1 e2 with
- | addf_case1 t1 t2 t3 =>
- Eop Omuladdf (t1:::t2:::t3:::Enil)
- | addf_case2 t1 t2 t3 =>
- Eop Omuladdf (t2:::t3:::t1:::Enil)
- | addf_default e1 e2 =>
- Eop Oaddf (e1:::e2:::Enil)
- end
- else Eop Oaddf (e1:::e2:::Enil).
-
-(*
-Definition subf (e1: expr) (e2: expr) :=
- match e1, e2 with
- | Eop Omulfloat (t1:::t2:::Enil), t3 => Eop Omulsubf (t1:::t2:::t3:::Enil)
- | _, _ => Eop Osubf (e1:::e2:::Enil)
- end.
-*)
-
-Inductive subf_cases: forall (e1: expr) (e2: expr), Type :=
- | subf_case1:
- forall (t1: expr) (t2: expr) (t3: expr),
- subf_cases (Eop Omulf (t1:::t2:::Enil)) (t3)
- | subf_default:
- forall (e1: expr) (e2: expr),
- subf_cases e1 e2.
-
-Definition subf_match (e1: expr) (e2: expr) :=
- match e1 as z1 return subf_cases z1 e2 with
- | Eop Omulf (t1:::t2:::Enil) =>
- subf_case1 t1 t2 e2
- | e1 =>
- subf_default e1 e2
- end.
-
-Definition subf (e1: expr) (e2: expr) :=
- if use_fused_mul tt then
- match subf_match e1 e2 with
- | subf_case1 t1 t2 t3 =>
- Eop Omulsubf (t1:::t2:::t3:::Enil)
- | subf_default e1 e2 =>
- Eop Osubf (e1:::e2:::Enil)
- end
- else Eop Osubf (e1:::e2:::Enil).
-
-(** ** Comparisons *)
-
-Inductive comp_cases: forall (e1: expr) (e2: expr), Type :=
- | comp_case1:
- forall n1 t2,
- comp_cases (Eop (Ointconst n1) Enil) (t2)
- | comp_case2:
- forall t1 n2,
- comp_cases (t1) (Eop (Ointconst n2) Enil)
- | comp_default:
- forall (e1: expr) (e2: expr),
- comp_cases e1 e2.
-
-Definition comp_match (e1: expr) (e2: expr) :=
- match e1 as z1, e2 as z2 return comp_cases z1 z2 with
- | Eop (Ointconst n1) Enil, t2 =>
- comp_case1 n1 t2
- | t1, Eop (Ointconst n2) Enil =>
- comp_case2 t1 n2
- | e1, e2 =>
- comp_default e1 e2
- end.
-
-Definition comp (c: comparison) (e1: expr) (e2: expr) :=
- match comp_match e1 e2 with
- | comp_case1 n1 t2 =>
- Eop (Ocmp (Ccompimm (swap_comparison c) n1)) (t2 ::: Enil)
- | comp_case2 t1 n2 =>
- Eop (Ocmp (Ccompimm c n2)) (t1 ::: Enil)
- | comp_default e1 e2 =>
- Eop (Ocmp (Ccomp c)) (e1 ::: e2 ::: Enil)
- end.
-
-Definition compu (c: comparison) (e1: expr) (e2: expr) :=
- match comp_match e1 e2 with
- | comp_case1 n1 t2 =>
- Eop (Ocmp (Ccompuimm (swap_comparison c) n1)) (t2 ::: Enil)
- | comp_case2 t1 n2 =>
- Eop (Ocmp (Ccompuimm c n2)) (t1 ::: Enil)
- | comp_default e1 e2 =>
- Eop (Ocmp (Ccompu c)) (e1 ::: e2 ::: Enil)
- end.
-
-Definition compf (c: comparison) (e1: expr) (e2: expr) :=
- Eop (Ocmp (Ccompf c)) (e1 ::: e2 ::: Enil).
-
-(** ** Floating-point conversions *)
-
-Definition intoffloat (e: expr) := Eop Ointoffloat (e ::: Enil).
-
-Definition intuoffloat (e: expr) :=
- let f := Eop (Ofloatconst (Float.floatofintu Float.ox8000_0000)) Enil in
- Elet e
- (Econdition (CEcond (Ccompf Clt) (Eletvar O ::: f ::: Enil))
- (intoffloat (Eletvar O))
- (addimm Float.ox8000_0000 (intoffloat (subf (Eletvar O) f)))).
-
-Definition floatofintu (e: expr) :=
- subf (Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil ::: e ::: Enil))
- (Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Int.zero)) Enil).
-
-Definition floatofint (e: expr) :=
- subf (Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil
- ::: addimm Float.ox8000_0000 e ::: Enil))
- (Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Float.ox8000_0000)) Enil).
-
-(** ** Other operators, not optimized. *)
-
-Definition cast8unsigned (e: expr) := Eop Ocast8unsigned (e ::: Enil).
-Definition cast8signed (e: expr) := Eop Ocast8signed (e ::: Enil).
-Definition cast16unsigned (e: expr) := Eop Ocast16unsigned (e ::: Enil).
-Definition cast16signed (e: expr) := Eop Ocast16signed (e ::: Enil).
-Definition singleoffloat (e: expr) := Eop Osingleoffloat (e ::: Enil).
-Definition negint (e: expr) := Eop (Osubimm Int.zero) (e ::: Enil).
-Definition negf (e: expr) := Eop Onegf (e ::: Enil).
-Definition absf (e: expr) := Eop Oabsf (e ::: Enil).
-Definition xor (e1 e2: expr) := Eop Oxor (e1 ::: e2 ::: Enil).
-Definition shr (e1 e2: expr) := Eop Oshr (e1 ::: e2 ::: Enil).
-Definition mulf (e1 e2: expr) := Eop Omulf (e1 ::: e2 ::: Enil).
-Definition divf (e1 e2: expr) := Eop Odivf (e1 ::: e2 ::: Enil).
-
-(** ** Recognition of addressing modes for load and store operations *)
-
-(*
-Definition addressing (e: expr) :=
- match e with
- | Eop (Oaddrsymbol s n) Enil => (Aglobal s n, Enil)
- | Eop (Oaddrstack n) Enil => (Ainstack n, Enil)
- | Eop Oadd (Eop (Oaddrsymbol s n) Enil) e2 => (Abased(s, n), e2:::Enil)
- | Eop (Oaddimm n) (e1:::Enil) => (Aindexed n, e1:::Enil)
- | Eop Oadd (e1:::e2:::Enil) => (Aindexed2, e1:::e2:::Enil)
- | _ => (Aindexed Int.zero, e:::Enil)
- end.
-*)
-
-Inductive addressing_cases: forall (e: expr), Type :=
- | addressing_case1:
- forall (s: ident) (n: int),
- addressing_cases (Eop (Oaddrsymbol s n) Enil)
- | addressing_case2:
- forall (n: int),
- addressing_cases (Eop (Oaddrstack n) Enil)
- | addressing_case3:
- forall (s: ident) (n: int) (e2: expr),
- addressing_cases
- (Eop Oadd (Eop (Oaddrsymbol s n) Enil:::e2:::Enil))
- | addressing_case4:
- forall (n: int) (e1: expr),
- addressing_cases (Eop (Oaddimm n) (e1:::Enil))
- | addressing_case5:
- forall (e1: expr) (e2: expr),
- addressing_cases (Eop Oadd (e1:::e2:::Enil))
- | addressing_default:
- forall (e: expr),
- addressing_cases e.
-
-Definition addressing_match (e: expr) :=
- match e as z1 return addressing_cases z1 with
- | Eop (Oaddrsymbol s n) Enil =>
- addressing_case1 s n
- | Eop (Oaddrstack n) Enil =>
- addressing_case2 n
- | Eop Oadd (Eop (Oaddrsymbol s n) Enil:::e2:::Enil) =>
- addressing_case3 s n e2
- | Eop (Oaddimm n) (e1:::Enil) =>
- addressing_case4 n e1
- | Eop Oadd (e1:::e2:::Enil) =>
- addressing_case5 e1 e2
- | e =>
- addressing_default e
- end.
-
-Definition addressing (chunk: memory_chunk) (e: expr) :=
- match addressing_match e with
- | addressing_case1 s n =>
- (Aglobal s n, Enil)
- | addressing_case2 n =>
- (Ainstack n, Enil)
- | addressing_case3 s n e2 =>
- (Abased s n, e2:::Enil)
- | addressing_case4 n e1 =>
- (Aindexed n, e1:::Enil)
- | addressing_case5 e1 e2 =>
- (Aindexed2, e1:::e2:::Enil)
- | addressing_default e =>
- (Aindexed Int.zero, e:::Enil)
- end.
diff --git a/powerpc/SelectOp.vp b/powerpc/SelectOp.vp
new file mode 100644
index 0000000..40c9011
--- /dev/null
+++ b/powerpc/SelectOp.vp
@@ -0,0 +1,432 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Instruction selection for operators *)
+
+(** The instruction selection pass recognizes opportunities for using
+ combined arithmetic and logical operations and addressing modes
+ offered by the target processor. For instance, the expression [x + 1]
+ can take advantage of the "immediate add" instruction of the processor,
+ and on the PowerPC, the expression [(x >> 6) & 0xFF] can be turned
+ into a "rotate and mask" instruction.
+
+ This file defines functions for building CminorSel expressions and
+ statements, especially expressions consisting of operator
+ applications. These functions examine their arguments to choose
+ cheaper forms of operators whenever possible.
+
+ For instance, [add e1 e2] will return a CminorSel expression semantically
+ equivalent to [Eop Oadd (e1 ::: e2 ::: Enil)], but will use a
+ [Oaddimm] operator if one of the arguments is an integer constant,
+ or suppress the addition altogether if one of the arguments is the
+ null integer. In passing, we perform operator reassociation
+ ([(e + c1) * c2] becomes [(e * c2) + (c1 * c2)]) and a small amount
+ of constant propagation.
+
+ On top of the "smart constructor" functions defined below,
+ module [Selection] implements the actual instruction selection pass.
+*)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Memory.
+Require Import Globalenvs.
+Require Cminor.
+Require Import Op.
+Require Import CminorSel.
+
+Open Local Scope cminorsel_scope.
+
+(** ** Constants **)
+
+Definition addrsymbol (id: ident) (ofs: int) :=
+ Eop (Oaddrsymbol id ofs) Enil.
+
+Definition addrstack (ofs: int) :=
+ Eop (Oaddrstack ofs) Enil.
+
+(** ** Integer logical negation *)
+
+Nondetfunction notint (e: expr) :=
+ match e with
+ | Eop (Ointconst n) Enil => Eop (Ointconst (Int.not n)) Enil
+ | Eop Oand (t1:::t2:::Enil) => Eop Onand (t1:::t2:::Enil)
+ | Eop Oor (t1:::t2:::Enil) => Eop Onor (t1:::t2:::Enil)
+ | Eop Oxor (t1:::t2:::Enil) => Eop Onxor (t1:::t2:::Enil)
+ | _ => Elet e (Eop Onor (Eletvar O ::: Eletvar O ::: Enil))
+ end.
+
+(** ** Boolean negation *)
+
+Fixpoint notbool (e: expr) {struct e} : expr :=
+ let default := Eop (Ocmp (Ccompuimm Ceq Int.zero)) (e ::: Enil) in
+ match e with
+ | Eop (Ointconst n) Enil =>
+ Eop (Ointconst (if Int.eq n Int.zero then Int.one else Int.zero)) Enil
+ | Eop (Ocmp cond) args =>
+ Eop (Ocmp (negate_condition cond)) args
+ | Econdition e1 e2 e3 =>
+ Econdition e1 (notbool e2) (notbool e3)
+ | _ =>
+ default
+ end.
+
+(** ** Integer addition and pointer addition *)
+
+Nondetfunction addimm (n: int) (e: expr) :=
+ if Int.eq n Int.zero then e else
+ match e with
+ | Eop (Ointconst m) Enil => Eop (Ointconst(Int.add n m)) Enil
+ | Eop (Oaddrsymbol s m) Enil => Eop (Oaddrsymbol s (Int.add n m)) Enil
+ | Eop (Oaddrstack m) Enil => Eop (Oaddrstack (Int.add n m)) Enil
+ | Eop (Oaddimm m) (t ::: Enil) => Eop (Oaddimm(Int.add n m)) (t ::: Enil)
+ | _ => Eop (Oaddimm n) (e ::: Enil)
+ end.
+
+Nondetfunction add (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop (Ointconst n1) Enil, t2 =>
+ addimm n1 t2
+ | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) =>
+ addimm (Int.add n1 n2) (Eop Oadd (t1:::t2:::Enil))
+ | Eop (Oaddimm n1) (t1:::Enil), t2 =>
+ addimm n1 (Eop Oadd (t1:::t2:::Enil))
+ | Eop (Oaddrsymbol s n1) Enil, Eop (Oaddimm n2) (t2:::Enil) =>
+ Eop Oadd (Eop (Oaddrsymbol s (Int.add n1 n2)) Enil ::: t2 ::: Enil)
+ | Eop (Oaddrstack n1) Enil, Eop (Oaddimm n2) (t2:::Enil) =>
+ Eop Oadd (Eop (Oaddrstack (Int.add n1 n2)) Enil ::: t2 ::: Enil)
+ | t1, Eop (Ointconst n2) Enil =>
+ addimm n2 t1
+ | t1, Eop (Oaddimm n2) (t2:::Enil) =>
+ addimm n2 (Eop Oadd (t1:::t2:::Enil))
+ | _, _ =>
+ Eop Oadd (e1:::e2:::Enil)
+ end.
+
+(** ** Integer and pointer subtraction *)
+
+Nondetfunction sub (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | t1, Eop (Ointconst n2) Enil =>
+ addimm (Int.neg n2) t1
+ | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) =>
+ addimm (Int.sub n1 n2) (Eop Osub (t1:::t2:::Enil))
+ | Eop (Oaddimm n1) (t1:::Enil), t2 =>
+ addimm n1 (Eop Osub (t1:::t2:::Enil))
+ | t1, Eop (Oaddimm n2) (t2:::Enil) =>
+ addimm (Int.neg n2) (Eop Osub (t1:::t2:::Enil))
+ | _, _ =>
+ Eop Osub (e1:::e2:::Enil)
+ end.
+
+Definition negint (e: expr) := Eop (Osubimm Int.zero) (e ::: Enil).
+
+(** ** Rotates and immediate shifts *)
+
+Nondetfunction rolm (e1: expr) (amount2: int) (mask2: int) :=
+ match e1 with
+ | Eop (Ointconst n1) Enil =>
+ Eop (Ointconst(Int.and (Int.rol n1 amount2) mask2)) Enil
+ | Eop (Orolm amount1 mask1) (t1:::Enil) =>
+ Eop (Orolm (Int.modu (Int.add amount1 amount2) Int.iwordsize)
+ (Int.and (Int.rol mask1 amount2) mask2))
+ (t1:::Enil)
+ | Eop (Oandimm mask1) (t1:::Enil) =>
+ Eop (Orolm (Int.modu amount2 Int.iwordsize)
+ (Int.and (Int.rol mask1 amount2) mask2))
+ (t1:::Enil)
+ | _ =>
+ Eop (Orolm amount2 mask2) (e1:::Enil)
+ end.
+
+Definition shlimm (e1: expr) (n2: int) :=
+ if Int.eq n2 Int.zero then
+ e1
+ else if Int.ltu n2 Int.iwordsize then
+ rolm e1 n2 (Int.shl Int.mone n2)
+ else
+ Eop Oshl (e1:::Eop (Ointconst n2) Enil:::Enil).
+
+Definition shrimm (e1: expr) (n2: int) :=
+ if Int.eq n2 Int.zero then
+ e1
+ else
+ Eop (Oshrimm n2) (e1:::Enil).
+
+Definition shruimm (e1: expr) (n2: int) :=
+ if Int.eq n2 Int.zero then
+ e1
+ else if Int.ltu n2 Int.iwordsize then
+ rolm e1 (Int.sub Int.iwordsize n2) (Int.shru Int.mone n2)
+ else
+ Eop Oshru (e1:::Eop (Ointconst n2) Enil:::Enil).
+
+(** ** Integer multiply *)
+
+Definition mulimm_base (n1: int) (e2: expr) :=
+ match Int.one_bits n1 with
+ | i :: nil =>
+ shlimm e2 i
+ | i :: j :: nil =>
+ Elet e2
+ (Eop Oadd (shlimm (Eletvar 0) i :::
+ shlimm (Eletvar 0) j ::: Enil))
+ | _ =>
+ Eop (Omulimm n1) (e2:::Enil)
+ end.
+
+Nondetfunction mulimm (n1: int) (e2: expr) :=
+ if Int.eq n1 Int.zero then Eop (Ointconst Int.zero) Enil
+ else if Int.eq n1 Int.one then e2
+ else match e2 with
+ | Eop (Ointconst n2) Enil => Eop (Ointconst(Int.mul n1 n2)) Enil
+ | Eop (Oaddimm n2) (t2:::Enil) => addimm (Int.mul n1 n2) (mulimm_base n1 t2)
+ | _ => mulimm_base n1 e2
+ end.
+
+Nondetfunction mul (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop (Ointconst n1) Enil, t2 => mulimm n1 t2
+ | t1, Eop (Ointconst n2) Enil => mulimm n2 t1
+ | _, _ => Eop Omul (e1:::e2:::Enil)
+ end.
+
+(** ** Bitwise and, or, xor *)
+
+Nondetfunction andimm (n1: int) (e2: expr) :=
+ match e2 with
+ | Eop (Ointconst n2) Enil =>
+ Eop (Ointconst (Int.and n1 n2)) Enil
+ | Eop (Oandimm n2) (t2:::Enil) =>
+ Eop (Oandimm (Int.and n1 n2)) (t2:::Enil)
+ | Eop (Orolm amount2 mask2) (t2:::Enil) =>
+ Eop (Orolm amount2 (Int.and n1 mask2)) (t2:::Enil)
+ | Eop (Oshrimm amount) (t2:::Enil) =>
+ if Int.eq (Int.shru (Int.shl n1 amount) amount) n1
+ && Int.ltu amount Int.iwordsize
+ then rolm t2 (Int.sub Int.iwordsize amount)
+ (Int.and (Int.shru Int.mone amount) n1)
+ else Eop (Oandimm n1) (e2:::Enil)
+ | _ =>
+ Eop (Oandimm n1) (e2:::Enil)
+ end.
+
+Nondetfunction and (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop (Ointconst n1) Enil, t2 => andimm n1 t2
+ | t1, Eop (Ointconst n2) Enil => andimm n2 t1
+ | _, _ => Eop Oand (e1:::e2:::Enil)
+ end.
+
+Definition same_expr_pure (e1 e2: expr) :=
+ match e1, e2 with
+ | Evar v1, Evar v2 => if ident_eq v1 v2 then true else false
+ | _, _ => false
+ end.
+
+Nondetfunction orimm (n1: int) (e2: expr) :=
+ match e2 with
+ | Eop (Ointconst n2) Enil => Eop (Ointconst (Int.or n1 n2)) Enil
+ | Eop (Oorimm n2) (t2:::Enil) => Eop (Oorimm (Int.or n1 n2)) (t2:::Enil)
+ | _ => Eop (Oorimm n1) (e2:::Enil)
+ end.
+
+Nondetfunction or (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop (Orolm amount1 mask1) (t1:::Enil), Eop (Orolm amount2 mask2) (t2:::Enil) =>
+ if Int.eq amount1 amount2 && same_expr_pure t1 t2
+ then Eop (Orolm amount1 (Int.or mask1 mask2)) (t1:::Enil)
+ else Eop Oor (e1:::e2:::Enil)
+ | Eop (Oandimm mask1) (t1:::Enil), Eop (Orolm amount2 mask2) (t2:::Enil) =>
+ if Int.eq mask1 (Int.not mask2) && is_rlw_mask mask2
+ then Eop (Oroli amount2 mask2) (t1:::t2:::Enil)
+ else Eop Oor (e1:::e2:::Enil)
+ | Eop (Orolm amount1 mask1) (t1:::Enil), Eop (Oandimm mask2) (t2:::Enil) =>
+ if Int.eq mask2 (Int.not mask1) && is_rlw_mask mask1
+ then Eop (Oroli amount1 mask1) (t2:::t1:::Enil)
+ else Eop Oor (e1:::e2:::Enil)
+ | Eop (Ointconst n1) Enil, t2 => orimm n1 t2
+ | t1, Eop (Ointconst n2) Enil => orimm n2 t1
+ | _, _ => Eop Oor (e1:::e2:::Enil)
+ end.
+
+Nondetfunction xorimm (n1: int) (e2: expr) :=
+ match e2 with
+ | Eop (Ointconst n2) Enil => Eop (Ointconst (Int.xor n1 n2)) Enil
+ | Eop (Oxorimm n2) (t2:::Enil) => Eop (Oxorimm (Int.xor n1 n2)) (t2:::Enil)
+ | _ => Eop (Oxorimm n1) (e2:::Enil)
+ end.
+
+Nondetfunction xor (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop (Ointconst n1) Enil, t2 => xorimm n1 t2
+ | t1, Eop (Ointconst n2) Enil => xorimm n2 t1
+ | _, _ => Eop Oxor (e1:::e2:::Enil)
+ end.
+
+(** ** Integer division and modulus *)
+
+Definition divs (e1: expr) (e2: expr) := Eop Odiv (e1:::e2:::Enil).
+
+Definition mod_aux (divop: operation) (e1 e2: expr) :=
+ Elet e1
+ (Elet (lift e2)
+ (Eop Osub (Eletvar 1 :::
+ Eop Omul (Eop divop (Eletvar 1 ::: Eletvar 0 ::: Enil) :::
+ Eletvar 0 :::
+ Enil) :::
+ Enil))).
+
+Definition mods := mod_aux Odiv.
+
+Definition divuimm (e: expr) (n: int) :=
+ match Int.is_power2 n with
+ | Some l => shruimm e l
+ | None => Eop Odivu (e ::: Eop (Ointconst n) Enil ::: Enil)
+ end.
+
+Nondetfunction divu (e1: expr) (e2: expr) :=
+ match e2 with
+ | Eop (Ointconst n2) Enil => divuimm e1 n2
+ | _ => Eop Odivu (e1:::e2:::Enil)
+ end.
+
+Definition moduimm (e: expr) (n: int) :=
+ match Int.is_power2 n with
+ | Some l => andimm (Int.sub n Int.one) e
+ | None => mod_aux Odivu e (Eop (Ointconst n) Enil)
+ end.
+
+Nondetfunction modu (e1: expr) (e2: expr) :=
+ match e2 with
+ | Eop (Ointconst n2) Enil => moduimm e1 n2
+ | _ => mod_aux Odivu e1 e2
+ end.
+
+(** ** General shifts *)
+
+Nondetfunction shl (e1: expr) (e2: expr) :=
+ match e2 with
+ | Eop (Ointconst n2) Enil => shlimm e1 n2
+ | _ => Eop Oshl (e1:::e2:::Enil)
+ end.
+
+Nondetfunction shr (e1: expr) (e2: expr) :=
+ match e2 with
+ | Eop (Ointconst n2) Enil => shrimm e1 n2
+ | _ => Eop Oshr (e1:::e2:::Enil)
+ end.
+
+Nondetfunction shru (e1: expr) (e2: expr) :=
+ match e2 with
+ | Eop (Ointconst n2) Enil => shruimm e1 n2
+ | _ => Eop Oshru (e1:::e2:::Enil)
+ end.
+
+(** ** Floating-point arithmetic *)
+
+Definition negf (e: expr) := Eop Onegf (e ::: Enil).
+Definition absf (e: expr) := Eop Oabsf (e ::: Enil).
+
+Parameter use_fused_mul : unit -> bool.
+
+Nondetfunction addf (e1: expr) (e2: expr) :=
+ if negb(use_fused_mul tt) then Eop Oaddf (e1:::e2:::Enil) else
+ match e1, e2 with
+ | Eop Omulf (t1:::t2:::Enil), t3 => Eop Omuladdf (t1:::t2:::t3:::Enil)
+ | t1, Eop Omulf (t2:::t3:::Enil) => Eop Omuladdf (t2:::t3:::t1:::Enil)
+ | _, _ => Eop Oaddf (e1:::e2:::Enil)
+ end.
+
+Nondetfunction subf (e1: expr) (e2: expr) :=
+ if negb(use_fused_mul tt) then Eop Osubf (e1:::e2:::Enil) else
+ match e1 with
+ | Eop Omulf (t1:::t2:::Enil) => Eop Omulsubf (t1:::t2:::e2:::Enil)
+ | _ => Eop Osubf (e1:::e2:::Enil)
+ end.
+
+Definition mulf (e1 e2: expr) := Eop Omulf (e1 ::: e2 ::: Enil).
+Definition divf (e1 e2: expr) := Eop Odivf (e1 ::: e2 ::: Enil).
+
+(** ** Comparisons *)
+
+Nondetfunction comp (c: comparison) (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop (Ointconst n1) Enil, t2 =>
+ Eop (Ocmp (Ccompimm (swap_comparison c) n1)) (t2 ::: Enil)
+ | t1, Eop (Ointconst n2) Enil =>
+ Eop (Ocmp (Ccompimm c n2)) (t1 ::: Enil)
+ | _, _ =>
+ Eop (Ocmp (Ccomp c)) (e1 ::: e2 ::: Enil)
+ end.
+
+Nondetfunction compu (c: comparison) (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop (Ointconst n1) Enil, t2 =>
+ Eop (Ocmp (Ccompuimm (swap_comparison c) n1)) (t2 ::: Enil)
+ | t1, Eop (Ointconst n2) Enil =>
+ Eop (Ocmp (Ccompuimm c n2)) (t1 ::: Enil)
+ | _, _ =>
+ Eop (Ocmp (Ccompu c)) (e1 ::: e2 ::: Enil)
+ end.
+
+Definition compf (c: comparison) (e1: expr) (e2: expr) :=
+ Eop (Ocmp (Ccompf c)) (e1 ::: e2 ::: Enil).
+
+(** ** Integer conversions *)
+
+Definition cast8unsigned (e: expr) := andimm (Int.repr 255) e.
+
+Definition cast8signed (e: expr) := Eop Ocast8signed (e ::: Enil).
+
+Definition cast16unsigned (e: expr) := andimm (Int.repr 65535) e.
+
+Definition cast16signed (e: expr) := Eop Ocast16signed (e ::: Enil).
+
+(** ** Floating-point conversions *)
+
+Definition intoffloat (e: expr) := Eop Ointoffloat (e ::: Enil).
+
+Definition intuoffloat (e: expr) :=
+ let f := Eop (Ofloatconst (Float.floatofintu Float.ox8000_0000)) Enil in
+ Elet e
+ (Econdition (CEcond (Ccompf Clt) (Eletvar O ::: f ::: Enil))
+ (intoffloat (Eletvar O))
+ (addimm Float.ox8000_0000 (intoffloat (subf (Eletvar O) f)))).
+
+Definition floatofintu (e: expr) :=
+ subf (Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil ::: e ::: Enil))
+ (Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Int.zero)) Enil).
+
+Definition floatofint (e: expr) :=
+ subf (Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil
+ ::: addimm Float.ox8000_0000 e ::: Enil))
+ (Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Float.ox8000_0000)) Enil).
+
+Definition singleoffloat (e: expr) := Eop Osingleoffloat (e ::: Enil).
+
+(** ** Recognition of addressing modes for load and store operations *)
+
+Nondetfunction addressing (chunk: memory_chunk) (e: expr) :=
+ match e with
+ | Eop (Oaddrsymbol s n) Enil => (Aglobal s n, Enil)
+ | Eop (Oaddrstack n) Enil => (Ainstack n, Enil)
+ | Eop Oadd (Eop (Oaddrsymbol s n) Enil ::: e2 ::: Enil) => (Abased s n, e2:::Enil)
+ | Eop (Oaddimm n) (e1:::Enil) => (Aindexed n, e1:::Enil)
+ | Eop Oadd (e1:::e2:::Enil) => (Aindexed2, e1:::e2:::Enil)
+ | _ => (Aindexed Int.zero, e:::Enil)
+ end.
+
diff --git a/powerpc/SelectOpproof.v b/powerpc/SelectOpproof.v
index b23e5a5..8ad9807 100644
--- a/powerpc/SelectOpproof.v
+++ b/powerpc/SelectOpproof.v
@@ -44,8 +44,6 @@ Variable m: mem.
Ltac EvalOp := eapply eval_Eop; eauto with evalexpr.
-Ltac TrivialOp cstr := unfold cstr; intros; EvalOp.
-
Ltac InvEval1 :=
match goal with
| [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] =>
@@ -78,14 +76,19 @@ Ltac InvEval2 :=
Ltac InvEval := InvEval1; InvEval2; InvEval2.
+Ltac TrivialExists :=
+ match goal with
+ | [ |- exists v, _ /\ Val.lessdef ?a v ] => exists a; split; [EvalOp | auto]
+ end.
+
(** * Correctness of the smart constructors *)
(** We now show that the code generated by "smart constructor" functions
such as [SelectOp.notint] behaves as expected. Continuing the
[notint] example, we show that if the expression [e]
- evaluates to some integer value [Vint n], then [SelectOp.notint e]
- evaluates to a value [Vint (Int.not n)] which is indeed the integer
- negation of the value of [e].
+ evaluates to some value [v], then [SelectOp.notint e]
+ evaluates to a value [v'] which is either [Val.notint v] or more defined
+ than [Val.notint v].
All proofs follow a common pattern:
- Reasoning by case over the result of the classification functions
@@ -95,405 +98,286 @@ Ltac InvEval := InvEval1; InvEval2; InvEval2.
- Inversion of the evaluations of the arguments, exploiting the additional
information thus gathered.
- Equational reasoning over the arithmetic operations performed,
- using the lemmas from the [Int] and [Float] modules.
+ using the lemmas from the [Int], [Float] and [Value] modules.
- Construction of an evaluation derivation for the expression returned
by the smart constructor.
*)
+Definition unary_constructor_sound (cstr: expr -> expr) (sem: val -> val) : Prop :=
+ forall le a x,
+ eval_expr ge sp e m le a x ->
+ exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef (sem x) v.
+
+Definition binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> val) : Prop :=
+ forall le a x b y,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef (sem x y) v.
+
Theorem eval_addrsymbol:
- forall le id ofs b,
- Genv.find_symbol ge id = Some b ->
- eval_expr ge sp e m le (addrsymbol id ofs) (Vptr b ofs).
+ forall le id ofs,
+ exists v, eval_expr ge sp e m le (addrsymbol id ofs) v /\ Val.lessdef (symbol_address ge id ofs) v.
Proof.
- intros. unfold addrsymbol. econstructor. constructor.
- simpl. rewrite H. auto.
+ intros. unfold addrsymbol. econstructor; split.
+ EvalOp. simpl; eauto.
+ auto.
Qed.
Theorem eval_addrstack:
- forall le ofs b n,
- sp = Vptr b n ->
- eval_expr ge sp e m le (addrstack ofs) (Vptr b (Int.add n ofs)).
+ forall le ofs,
+ exists v, eval_expr ge sp e m le (addrstack ofs) v /\ Val.lessdef (Val.add sp (Vint ofs)) v.
Proof.
- intros. unfold addrstack. econstructor. constructor.
- simpl. unfold offset_sp. rewrite H. auto.
+ intros. unfold addrstack. econstructor; split.
+ EvalOp. simpl; eauto.
+ auto.
Qed.
-Theorem eval_notint:
- forall le a x,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le (notint a) (Vint (Int.not x)).
-Proof.
- unfold notint; intros until x; case (notint_match a); intros; InvEval.
- EvalOp.
- EvalOp. simpl. congruence.
- EvalOp. simpl. congruence.
- EvalOp. simpl. congruence.
+Theorem eval_notint: unary_constructor_sound notint Val.notint.
+Proof.
+ unfold notint; red; intros until x; case (notint_match a); intros; InvEval.
+ TrivialExists.
+ subst. TrivialExists.
+ subst. TrivialExists.
+ subst. TrivialExists.
+ econstructor; split; eauto.
eapply eval_Elet. eexact H.
eapply eval_Eop.
eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity.
eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity.
apply eval_Enil.
- simpl. rewrite Int.or_idem. auto.
-Qed.
-
-Lemma eval_notbool_base:
- forall le a v b,
- eval_expr ge sp e m le a v ->
- Val.bool_of_val v b ->
- eval_expr ge sp e m le (notbool_base a) (Val.of_bool (negb b)).
-Proof.
- TrivialOp notbool_base. simpl.
- inv H0.
- rewrite Int.eq_false; auto.
- rewrite Int.eq_true; auto.
- reflexivity.
-Qed.
-
-Hint Resolve Val.bool_of_true_val Val.bool_of_false_val
- Val.bool_of_true_val_inv Val.bool_of_false_val_inv: valboolof.
-
-Theorem eval_notbool:
- forall le a v b,
- eval_expr ge sp e m le a v ->
- Val.bool_of_val v b ->
- eval_expr ge sp e m le (notbool a) (Val.of_bool (negb b)).
-Proof.
- induction a; simpl; intros; try (eapply eval_notbool_base; eauto).
- destruct o; try (eapply eval_notbool_base; eauto).
-
- destruct e0. InvEval.
- inv H0. rewrite Int.eq_false; auto.
- simpl; eauto with evalexpr.
- rewrite Int.eq_true; simpl; eauto with evalexpr.
- eapply eval_notbool_base; eauto.
-
- inv H. eapply eval_Eop; eauto.
- simpl. assert (eval_condition c vl m = Some b).
- generalize H6. simpl.
- case (eval_condition c vl m); intros.
- destruct b0; inv H1; inversion H0; auto; congruence.
- congruence.
- rewrite (Op.eval_negate_condition _ _ _ H).
- destruct b; reflexivity.
-
- inv H. eapply eval_Econdition; eauto.
- destruct v1; eauto.
+ simpl. destruct x; simpl; auto. rewrite Int.or_idem. auto.
+Qed.
+
+Theorem eval_notbool: unary_constructor_sound notbool Val.notbool.
+Proof.
+ assert (DFL:
+ forall le a x,
+ eval_expr ge sp e m le a x ->
+ exists v, eval_expr ge sp e m le (Eop (Ocmp (Ccompuimm Ceq Int.zero)) (a ::: Enil)) v
+ /\ Val.lessdef (Val.notbool x) v).
+ intros. TrivialExists. simpl. destruct x; simpl; auto.
+
+ red. induction a; simpl; intros; eauto. destruct o; eauto.
+(* intconst *)
+ destruct e0; eauto. InvEval. TrivialExists. simpl. destruct (Int.eq i Int.zero); auto.
+(* cmp *)
+ inv H. simpl in H5.
+ destruct (eval_condition c vl m) as []_eqn.
+ TrivialExists. simpl. rewrite (eval_negate_condition _ _ _ Heqo). destruct b; inv H5; auto.
+ inv H5. simpl.
+ destruct (eval_condition (negate_condition c) vl m) as []_eqn.
+ destruct b; [exists Vtrue | exists Vfalse]; split; auto; EvalOp; simpl. rewrite Heqo0; auto. rewrite Heqo0; auto.
+ exists Vundef; split; auto; EvalOp; simpl. rewrite Heqo0; auto.
+(* condition *)
+ inv H. destruct v1.
+ exploit IHa1; eauto. intros [v [A B]]. exists v; split; auto. eapply eval_Econdition; eauto.
+ exploit IHa2; eauto. intros [v [A B]]. exists v; split; auto. eapply eval_Econdition; eauto.
Qed.
Theorem eval_addimm:
- forall le n a x,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le (addimm n a) (Vint (Int.add x n)).
-Proof.
- unfold addimm; intros until x.
- generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro.
- subst n. rewrite Int.add_zero. auto.
- case (addimm_match a); intros; InvEval; EvalOp; simpl.
+ forall n, unary_constructor_sound (addimm n) (fun x => Val.add x (Vint n)).
+Proof.
+ red; unfold addimm; intros until x.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ subst n. intros. exists x; split; auto.
+ destruct x; simpl; auto. rewrite Int.add_zero. auto. rewrite Int.add_zero. auto.
+ case (addimm_match a); intros; InvEval; simpl; TrivialExists; simpl.
rewrite Int.add_commut. auto.
- destruct (Genv.find_symbol ge s); discriminate.
- destruct sp; simpl in H1; discriminate.
- subst x. rewrite Int.add_assoc. decEq; decEq; decEq. apply Int.add_commut.
+ unfold symbol_address. destruct (Genv.find_symbol ge s); simpl; auto. rewrite Int.add_commut; auto.
+ rewrite Val.add_assoc. rewrite Int.add_commut. auto.
+ subst x. rewrite Val.add_assoc. rewrite Int.add_commut. auto.
Qed.
-Theorem eval_addimm_ptr:
- forall le n a b ofs,
- eval_expr ge sp e m le a (Vptr b ofs) ->
- eval_expr ge sp e m le (addimm n a) (Vptr b (Int.add ofs n)).
-Proof.
- unfold addimm; intros until ofs.
- generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro.
- subst n. rewrite Int.add_zero. auto.
- case (addimm_match a); intros; InvEval; EvalOp; simpl.
- destruct (Genv.find_symbol ge s).
- rewrite Int.add_commut. congruence.
- discriminate.
- destruct sp; simpl in H1; try discriminate.
- inv H1. simpl. decEq. decEq.
- rewrite Int.add_assoc. decEq. apply Int.add_commut.
- subst. rewrite (Int.add_commut n m0). rewrite Int.add_assoc. auto.
-Qed.
-
-Theorem eval_add:
- forall le a b x y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- eval_expr ge sp e m le (add a b) (Vint (Int.add x y)).
+Theorem eval_add: binary_constructor_sound add Val.add.
Proof.
- intros until y.
+ red; intros until y.
unfold add; case (add_match a b); intros; InvEval.
- rewrite Int.add_commut. apply eval_addimm. auto.
- replace (Int.add x y) with (Int.add (Int.add i0 i) (Int.add n1 n2)).
- apply eval_addimm. EvalOp.
- subst x; subst y.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_permut.
- replace (Int.add x y) with (Int.add (Int.add i y) n1).
- apply eval_addimm. EvalOp.
- subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- apply eval_addimm. auto.
- replace (Int.add x y) with (Int.add (Int.add x i) n2).
- apply eval_addimm. EvalOp.
- subst y. rewrite Int.add_assoc. auto.
- destruct (Genv.find_symbol ge s); inv H0.
- destruct sp; simpl in H0; inv H0.
- EvalOp.
-Qed.
-
-Theorem eval_add_ptr:
- forall le a b p x y,
- eval_expr ge sp e m le a (Vptr p x) ->
- eval_expr ge sp e m le b (Vint y) ->
- eval_expr ge sp e m le (add a b) (Vptr p (Int.add x y)).
-Proof.
- intros until y. unfold add; case (add_match a b); intros; InvEval.
- replace (Int.add x y) with (Int.add (Int.add i0 i) (Int.add n1 n2)).
- apply eval_addimm_ptr. subst b0. EvalOp.
- subst x; subst y.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_permut.
- replace (Int.add x y) with (Int.add (Int.add i y) n1).
- apply eval_addimm_ptr. subst b0. EvalOp.
- subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- apply eval_addimm_ptr. auto.
- replace (Int.add x y) with (Int.add (Int.add x i) n2).
- apply eval_addimm_ptr. EvalOp.
- subst y. rewrite Int.add_assoc. auto.
- revert H0. case_eq (Genv.find_symbol ge s); intros; inv H1.
- EvalOp. constructor. EvalOp. simpl. rewrite H0; eauto.
- constructor. eauto. constructor.
- simpl. decEq. decEq. rewrite Int.add_assoc. decEq. apply Int.add_commut.
- destruct sp; simpl in H0; inv H0.
- EvalOp. constructor. EvalOp. simpl. eauto. constructor. eauto. constructor.
- simpl. decEq. decEq. repeat rewrite Int.add_assoc.
- decEq. decEq. apply Int.add_commut.
- EvalOp.
-Qed.
-
-Theorem eval_add_ptr_2:
- forall le a b x p y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vptr p y) ->
- eval_expr ge sp e m le (add a b) (Vptr p (Int.add y x)).
-Proof.
- intros until y. unfold add; case (add_match a b); intros; InvEval.
- apply eval_addimm_ptr. auto.
- replace (Int.add y x) with (Int.add (Int.add i i0) (Int.add n1 n2)).
- apply eval_addimm_ptr. subst b0. EvalOp.
- subst x; subst y.
- repeat rewrite Int.add_assoc. decEq.
- rewrite (Int.add_commut n1 n2). apply Int.add_permut.
- replace (Int.add y x) with (Int.add (Int.add y i) n1).
- apply eval_addimm_ptr. EvalOp.
- subst x. repeat rewrite Int.add_assoc. auto.
- replace (Int.add y x) with (Int.add (Int.add i x) n2).
- apply eval_addimm_ptr. EvalOp. subst b0; reflexivity.
- subst y. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- destruct (Genv.find_symbol ge s); inv H0.
- destruct sp; simpl in H0; inv H0.
- EvalOp.
-Qed.
-
-Theorem eval_sub:
- forall le a b x y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- eval_expr ge sp e m le (sub a b) (Vint (Int.sub x y)).
-Proof.
- intros until y.
+ rewrite Val.add_commut. apply eval_addimm; auto.
+ subst.
+ replace (Val.add (Val.add v1 (Vint n1)) (Val.add v0 (Vint n2)))
+ with (Val.add (Val.add v1 v0) (Val.add (Vint n1) (Vint n2))).
+ apply eval_addimm. EvalOp.
+ repeat rewrite Val.add_assoc. decEq. apply Val.add_permut.
+ subst.
+ replace (Val.add (Val.add v1 (Vint n1)) y)
+ with (Val.add (Val.add v1 y) (Vint n1)).
+ apply eval_addimm. EvalOp.
+ repeat rewrite Val.add_assoc. decEq. apply Val.add_commut.
+ subst. TrivialExists.
+ econstructor. EvalOp. simpl. reflexivity. econstructor. eauto. constructor.
+ simpl. rewrite (Val.add_commut v1). rewrite <- Val.add_assoc. decEq; decEq.
+ unfold symbol_address. destruct (Genv.find_symbol ge s); auto.
+ subst. TrivialExists.
+ econstructor. EvalOp. simpl. reflexivity. econstructor. eauto. constructor.
+ simpl. repeat rewrite Val.add_assoc. decEq; decEq.
+ rewrite Val.add_commut. rewrite Val.add_permut. auto.
+ apply eval_addimm; auto.
+ subst. rewrite <- Val.add_assoc. apply eval_addimm. EvalOp.
+ TrivialExists.
+Qed.
+
+Theorem eval_sub: binary_constructor_sound sub Val.sub.
+Proof.
+ red; intros until y.
unfold sub; case (sub_match a b); intros; InvEval.
- rewrite Int.sub_add_opp.
- apply eval_addimm. assumption.
- replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)).
- apply eval_addimm. EvalOp.
- subst x; subst y.
- repeat rewrite Int.sub_add_opp.
- repeat rewrite Int.add_assoc. decEq.
- rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
- replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
- apply eval_addimm. EvalOp.
- subst x. rewrite Int.sub_add_l. auto.
- replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
- apply eval_addimm. EvalOp.
- subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
- EvalOp.
+ rewrite Val.sub_add_opp. apply eval_addimm; auto.
+ subst. rewrite Val.sub_add_l. rewrite Val.sub_add_r.
+ rewrite Val.add_assoc. simpl. rewrite Int.add_commut. rewrite <- Int.sub_add_opp.
+ apply eval_addimm; EvalOp.
+ subst. rewrite Val.sub_add_l. apply eval_addimm; EvalOp.
+ subst. rewrite Val.sub_add_r. apply eval_addimm; EvalOp.
+ TrivialExists.
Qed.
-Theorem eval_sub_ptr_int:
- forall le a b p x y,
- eval_expr ge sp e m le a (Vptr p x) ->
- eval_expr ge sp e m le b (Vint y) ->
- eval_expr ge sp e m le (sub a b) (Vptr p (Int.sub x y)).
+Theorem eval_negint: unary_constructor_sound negint (fun v => Val.sub Vzero v).
Proof.
- intros until y.
- unfold sub; case (sub_match a b); intros; InvEval.
- rewrite Int.sub_add_opp.
- apply eval_addimm_ptr. assumption.
- subst b0. replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)).
- apply eval_addimm_ptr. EvalOp.
- subst x; subst y.
- repeat rewrite Int.sub_add_opp.
- repeat rewrite Int.add_assoc. decEq.
- rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
- subst b0. replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
- apply eval_addimm_ptr. EvalOp.
- subst x. rewrite Int.sub_add_l. auto.
- replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
- apply eval_addimm_ptr. EvalOp.
- subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
- EvalOp.
+ red; intros. unfold negint. TrivialExists.
Qed.
-Theorem eval_sub_ptr_ptr:
- forall le a b p x y,
- eval_expr ge sp e m le a (Vptr p x) ->
- eval_expr ge sp e m le b (Vptr p y) ->
- eval_expr ge sp e m le (sub a b) (Vint (Int.sub x y)).
+Lemma eval_rolm:
+ forall amount mask,
+ unary_constructor_sound (fun a => rolm a amount mask)
+ (fun x => Val.rolm x amount mask).
Proof.
- intros until y.
- unfold sub; case (sub_match a b); intros; InvEval.
- replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)).
- apply eval_addimm. EvalOp.
- simpl; unfold eq_block. subst b0; subst b1; rewrite zeq_true. auto.
- subst x; subst y.
- repeat rewrite Int.sub_add_opp.
- repeat rewrite Int.add_assoc. decEq.
- rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
- subst b0. replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
- apply eval_addimm. EvalOp.
- simpl. unfold eq_block. rewrite zeq_true. auto.
- subst x. rewrite Int.sub_add_l. auto.
- subst b0. replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
- apply eval_addimm. EvalOp.
- simpl. unfold eq_block. rewrite zeq_true. auto.
- subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
- EvalOp. simpl. unfold eq_block. rewrite zeq_true. auto.
+ red; intros until x. unfold rolm; case (rolm_match a); intros; InvEval.
+ TrivialExists.
+ subst. rewrite Val.rolm_rolm. TrivialExists.
+ subst. rewrite <- Val.rolm_zero. rewrite Val.rolm_rolm.
+ rewrite (Int.add_commut Int.zero). rewrite Int.add_zero. TrivialExists.
+ TrivialExists.
Qed.
-Lemma eval_rolm:
- forall le a amount mask x,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le (rolm a amount mask) (Vint (Int.rolm x amount mask)).
-Proof.
- intros until x. unfold rolm; case (rolm_match a); intros; InvEval.
- eauto with evalexpr.
- case (is_rlw_mask (Int.and (Int.rol mask1 amount) mask)).
- EvalOp. simpl. subst x.
- decEq. decEq.
- symmetry. apply Int.rolm_rolm. apply int_wordsize_divides_modulus.
- EvalOp. econstructor. EvalOp. simpl. rewrite H. reflexivity. constructor. auto.
- EvalOp.
+Theorem eval_shlimm:
+ forall n, unary_constructor_sound (fun a => shlimm a n)
+ (fun x => Val.shl x (Vint n)).
+Proof.
+ red; intros. unfold shlimm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shl_zero; auto.
+ destruct (Int.ltu n Int.iwordsize) as []_eqn.
+ rewrite Val.shl_rolm; auto. apply eval_rolm; auto.
+ TrivialExists. econstructor. eauto. econstructor. EvalOp. simpl; eauto. constructor. auto.
Qed.
-Theorem eval_shlimm:
- forall le a n x,
- eval_expr ge sp e m le a (Vint x) ->
- Int.ltu n Int.iwordsize = true ->
- eval_expr ge sp e m le (shlimm a n) (Vint (Int.shl x n)).
+Theorem eval_shrimm:
+ forall n, unary_constructor_sound (fun a => shrimm a n)
+ (fun x => Val.shr x (Vint n)).
Proof.
- intros. unfold shlimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
- subst n. rewrite Int.shl_zero. auto.
- rewrite H0.
- replace (Int.shl x n) with (Int.rolm x n (Int.shl Int.mone n)).
- apply eval_rolm. auto. symmetry. apply Int.shl_rolm. exact H0.
+ red; intros. unfold shrimm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shr_zero; auto.
+ TrivialExists.
Qed.
Theorem eval_shruimm:
- forall le a n x,
- eval_expr ge sp e m le a (Vint x) ->
- Int.ltu n Int.iwordsize = true ->
- eval_expr ge sp e m le (shruimm a n) (Vint (Int.shru x n)).
+ forall n, unary_constructor_sound (fun a => shruimm a n)
+ (fun x => Val.shru x (Vint n)).
Proof.
- intros. unfold shruimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
- subst n. rewrite Int.shru_zero. auto.
- rewrite H0.
- replace (Int.shru x n) with (Int.rolm x (Int.sub Int.iwordsize n) (Int.shru Int.mone n)).
- apply eval_rolm. auto. symmetry. apply Int.shru_rolm. exact H0.
+ red; intros. unfold shruimm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shru_zero; auto.
+ destruct (Int.ltu n Int.iwordsize) as []_eqn.
+ rewrite Val.shru_rolm; auto. apply eval_rolm; auto.
+ TrivialExists. econstructor. eauto. econstructor. EvalOp. simpl; eauto. constructor. auto.
Qed.
Lemma eval_mulimm_base:
- forall le a n x,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le (mulimm_base n a) (Vint (Int.mul x n)).
+ forall n, unary_constructor_sound (mulimm_base n) (fun x => Val.mul x (Vint n)).
Proof.
- intros; unfold mulimm_base.
+ intros; red; intros; unfold mulimm_base.
generalize (Int.one_bits_decomp n).
generalize (Int.one_bits_range n).
- change (Z_of_nat Int.wordsize) with 32.
destruct (Int.one_bits n).
- intros. EvalOp.
+ intros. TrivialExists.
destruct l.
intros. rewrite H1. simpl.
- rewrite Int.add_zero. rewrite <- Int.shl_mul.
- apply eval_shlimm. auto. auto with coqlib.
+ rewrite Int.add_zero.
+ replace (Vint (Int.shl Int.one i)) with (Val.shl Vone (Vint i)). rewrite Val.shl_mul.
+ apply eval_shlimm. auto. simpl. rewrite H0; auto with coqlib.
destruct l.
- intros. apply eval_Elet with (Vint x). auto.
- rewrite H1. simpl. rewrite Int.add_zero.
- rewrite Int.mul_add_distr_r.
- rewrite <- Int.shl_mul.
- rewrite <- Int.shl_mul.
- EvalOp. eapply eval_Econs.
- apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity.
- auto with coqlib.
- eapply eval_Econs.
- apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity.
- auto with coqlib.
- auto with evalexpr.
- reflexivity.
- intros. EvalOp.
+ intros. rewrite H1. simpl.
+ exploit (eval_shlimm i (x :: le) (Eletvar 0) x). constructor; auto. intros [v1 [A1 B1]].
+ exploit (eval_shlimm i0 (x :: le) (Eletvar 0) x). constructor; auto. intros [v2 [A2 B2]].
+ exists (Val.add v1 v2); split.
+ econstructor. eauto. EvalOp.
+ rewrite Int.add_zero.
+ replace (Vint (Int.add (Int.shl Int.one i) (Int.shl Int.one i0)))
+ with (Val.add (Val.shl Vone (Vint i)) (Val.shl Vone (Vint i0))).
+ rewrite Val.mul_add_distr_r.
+ repeat rewrite Val.shl_mul. apply Val.add_lessdef; auto.
+ simpl. repeat rewrite H0; auto with coqlib.
+ intros. TrivialExists.
Qed.
Theorem eval_mulimm:
- forall le a n x,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le (mulimm n a) (Vint (Int.mul x n)).
-Proof.
- intros until x; unfold mulimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
- subst n. rewrite Int.mul_zero.
- intro. eapply eval_Elet; eauto with evalexpr.
- generalize (Int.eq_spec n Int.one); case (Int.eq n Int.one); intro.
- subst n. rewrite Int.mul_one. auto.
+ forall n, unary_constructor_sound (mulimm n) (fun x => Val.mul x (Vint n)).
+Proof.
+ intros; red; intros until x; unfold mulimm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros. exists (Vint Int.zero); split. EvalOp.
+ destruct x; simpl; auto. subst n. rewrite Int.mul_zero. auto.
+ predSpec Int.eq Int.eq_spec n Int.one.
+ intros. exists x; split; auto.
+ destruct x; simpl; auto. subst n. rewrite Int.mul_one. auto.
case (mulimm_match a); intros; InvEval.
- EvalOp. rewrite Int.mul_commut. reflexivity.
- replace (Int.mul x n) with (Int.add (Int.mul i n) (Int.mul n n2)).
- apply eval_addimm. apply eval_mulimm_base. auto.
- subst x. rewrite Int.mul_add_distr_l. decEq. apply Int.mul_commut.
- apply eval_mulimm_base. assumption.
+ TrivialExists. simpl. rewrite Int.mul_commut; auto.
+ subst. rewrite Val.mul_add_distr_l.
+ exploit eval_mulimm_base; eauto. instantiate (1 := n). intros [v' [A1 B1]].
+ exploit (eval_addimm (Int.mul n n2) le (mulimm_base n t2) v'). auto. intros [v'' [A2 B2]].
+ exists v''; split; auto. eapply Val.lessdef_trans. eapply Val.add_lessdef; eauto.
+ rewrite Val.mul_commut; auto.
+ apply eval_mulimm_base; auto.
Qed.
-Theorem eval_mul:
- forall le a b x y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- eval_expr ge sp e m le (mul a b) (Vint (Int.mul x y)).
+Theorem eval_mul: binary_constructor_sound mul Val.mul.
Proof.
- intros until y.
+ red; intros until y.
unfold mul; case (mul_match a b); intros; InvEval.
- rewrite Int.mul_commut. apply eval_mulimm. auto.
+ rewrite Val.mul_commut. apply eval_mulimm. auto.
apply eval_mulimm. auto.
- EvalOp.
+ TrivialExists.
Qed.
Theorem eval_andimm:
- forall le n a x,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le (andimm n a) (Vint (Int.and x n)).
-Proof.
- intros. unfold andimm. case (is_rlw_mask n).
- rewrite <- Int.rolm_zero. apply eval_rolm; auto.
- EvalOp.
+ forall n, unary_constructor_sound (andimm n) (fun x => Val.and x (Vint n)).
+Proof.
+ intros; red; intros until x. unfold andimm. case (andimm_match a); intros.
+ InvEval. TrivialExists. simpl. rewrite Int.and_commut; auto.
+ InvEval. subst. rewrite Val.and_assoc. simpl. rewrite Int.and_commut. TrivialExists.
+ InvEval. subst. TrivialExists. simpl.
+ destruct v1; auto. simpl. unfold Int.rolm. rewrite Int.and_assoc.
+ decEq. decEq. decEq. apply Int.and_commut.
+ destruct (Int.eq (Int.shru (Int.shl n amount) amount) n &&
+ Int.ltu amount Int.iwordsize) as []_eqn.
+ InvEval. destruct (andb_prop _ _ Heqb).
+ generalize (Int.eq_spec (Int.shru (Int.shl n amount) amount) n). rewrite H0; intros.
+ replace (Val.and x (Vint n))
+ with (Val.rolm v1 (Int.sub Int.iwordsize amount) (Int.and (Int.shru Int.mone amount) n)).
+ apply eval_rolm; auto.
+ subst x. destruct v1; simpl; auto. rewrite H1; simpl. decEq.
+ transitivity (Int.and (Int.shru i amount) n).
+ rewrite (Int.shru_rolm i); auto. unfold Int.rolm. rewrite Int.and_assoc; auto.
+ symmetry. apply Int.shr_and_shru_and. auto.
+ TrivialExists.
+ TrivialExists.
+Qed.
+
+Theorem eval_and: binary_constructor_sound and Val.and.
+Proof.
+ red; intros until y; unfold and; case (and_match a b); intros; InvEval.
+ rewrite Val.and_commut. apply eval_andimm; auto.
+ apply eval_andimm; auto.
+ TrivialExists.
Qed.
-Theorem eval_and:
- forall le a x b y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- eval_expr ge sp e m le (and a b) (Vint (Int.and x y)).
+Theorem eval_orimm:
+ forall n, unary_constructor_sound (orimm n) (fun x => Val.or x (Vint n)).
Proof.
- intros until y; unfold and; case (mul_match a b); intros; InvEval.
- rewrite Int.and_commut. apply eval_andimm; auto.
- apply eval_andimm; auto.
- EvalOp.
+ intros; red; intros until x.
+ unfold orimm. destruct (orimm_match a); intros; InvEval.
+ TrivialExists. simpl. rewrite Int.or_commut; auto.
+ subst. rewrite Val.or_assoc. simpl. rewrite Int.or_commut. TrivialExists.
+ TrivialExists.
Qed.
Remark eval_same_expr:
@@ -511,59 +395,71 @@ Proof.
discriminate.
Qed.
-Lemma eval_or:
- forall le a x b y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- eval_expr ge sp e m le (or a b) (Vint (Int.or x y)).
-Proof.
- intros until y; unfold or; case (or_match a b); intros; InvEval.
- caseEq (Int.eq amount1 amount2
- && is_rlw_mask (Int.or mask1 mask2)
- && same_expr_pure t1 t2); intro.
- destruct (andb_prop _ _ H1). destruct (andb_prop _ _ H4).
- generalize (Int.eq_spec amount1 amount2). rewrite H6. intro. subst amount2.
- exploit eval_same_expr; eauto. intros [EQ1 EQ2]. inv EQ1. inv EQ2.
- simpl. EvalOp. simpl. rewrite Int.or_rolm. auto.
- caseEq (Int.eq amount1 Int.zero && Int.eq mask1 (Int.not mask2)); intro.
- destruct (andb_prop _ _ H4).
- generalize (Int.eq_spec amount1 Int.zero). rewrite H5. intro.
- generalize (Int.eq_spec mask1 (Int.not mask2)). rewrite H6. intro.
- subst. rewrite Int.rolm_zero. EvalOp.
- caseEq (Int.eq amount2 Int.zero && Int.eq mask2 (Int.not mask1)); intro.
- destruct (andb_prop _ _ H5).
- generalize (Int.eq_spec amount2 Int.zero). rewrite H6. intro.
- generalize (Int.eq_spec mask2 (Int.not mask1)). rewrite H7. intro.
- subst. rewrite Int.rolm_zero. rewrite Int.or_commut. EvalOp.
- simpl. apply eval_Eop with (Vint x :: Vint y :: nil).
- econstructor. EvalOp. simpl. congruence.
- econstructor. EvalOp. simpl. congruence. constructor. auto.
- EvalOp.
+Theorem eval_or: binary_constructor_sound or Val.or.
+Proof.
+ red; intros until y; unfold or; case (or_match a b); intros.
+(* rolm - rolm *)
+ destruct (Int.eq amount1 amount2 && same_expr_pure t1 t2) as []_eqn.
+ destruct (andb_prop _ _ Heqb0).
+ generalize (Int.eq_spec amount1 amount2). rewrite H1. intro. subst amount2.
+ InvEval. exploit eval_same_expr; eauto. intros [EQ1 EQ2]. subst.
+ rewrite Val.or_rolm. TrivialExists.
+ TrivialExists.
+(* andimm - rolm *)
+ destruct (Int.eq mask1 (Int.not mask2) && is_rlw_mask mask2) as []_eqn.
+ destruct (andb_prop _ _ Heqb0).
+ generalize (Int.eq_spec mask1 (Int.not mask2)); rewrite H1; intros.
+ InvEval. subst. TrivialExists.
+ TrivialExists.
+(* rolm - andimm *)
+ destruct (Int.eq mask2 (Int.not mask1) && is_rlw_mask mask1) as []_eqn.
+ destruct (andb_prop _ _ Heqb0).
+ generalize (Int.eq_spec mask2 (Int.not mask1)); rewrite H1; intros.
+ InvEval. subst. rewrite Val.or_commut. TrivialExists.
+ TrivialExists.
+(* intconst *)
+ InvEval. rewrite Val.or_commut. apply eval_orimm; auto.
+ InvEval. apply eval_orimm; auto.
+(* default *)
+ TrivialExists.
+Qed.
+
+Theorem eval_xorimm:
+ forall n, unary_constructor_sound (xorimm n) (fun x => Val.xor x (Vint n)).
+Proof.
+ intros; red; intros until x.
+ unfold xorimm. destruct (xorimm_match a); intros; InvEval.
+ TrivialExists. simpl. rewrite Int.xor_commut; auto.
+ subst. rewrite Val.xor_assoc. simpl. rewrite Int.xor_commut. TrivialExists.
+ TrivialExists.
+Qed.
+
+Theorem eval_xor: binary_constructor_sound xor Val.xor.
+Proof.
+ red; intros until y; unfold xor; case (xor_match a b); intros; InvEval.
+ rewrite Val.xor_commut. apply eval_xorimm; auto.
+ apply eval_xorimm; auto.
+ TrivialExists.
Qed.
Theorem eval_divs:
- forall le a b x y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp e m le (divs a b) (Vint (Int.divs x y)).
+ forall le a b x y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.divs x y = Some z ->
+ exists v, eval_expr ge sp e m le (divs a b) v /\ Val.lessdef z v.
Proof.
- TrivialOp divs. simpl.
- predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto.
+ intros. unfold divs. exists z; split. EvalOp. auto.
Qed.
Lemma eval_mod_aux:
forall divop semdivop,
- (forall sp x y m,
- y <> Int.zero ->
- eval_operation ge sp divop (Vint x :: Vint y :: nil) m =
- Some (Vint (semdivop x y))) ->
- forall le a b x y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp e m le (mod_aux divop a b)
- (Vint (Int.sub x (Int.mul (semdivop x y) y))).
+ (forall sp x y m, eval_operation ge sp divop (x :: y :: nil) m = semdivop x y) ->
+ forall le a b x y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ semdivop x y = Some z ->
+ eval_expr ge sp e m le (mod_aux divop a b) (Val.sub x (Val.mul z y)).
Proof.
intros; unfold mod_aux.
eapply eval_Elet. eexact H0. eapply eval_Elet.
@@ -575,7 +471,7 @@ Proof.
eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
apply eval_Enil.
- apply H. assumption.
+ rewrite H. eauto.
eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
apply eval_Enil.
simpl; reflexivity. apply eval_Enil.
@@ -583,374 +479,273 @@ Proof.
Qed.
Theorem eval_mods:
- forall le a b x y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp e m le (mods a b) (Vint (Int.mods x y)).
+ forall le a b x y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.mods x y = Some z ->
+ exists v, eval_expr ge sp e m le (mods a b) v /\ Val.lessdef z v.
Proof.
intros; unfold mods.
- rewrite Int.mods_divs.
- eapply eval_mod_aux; eauto.
- intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
- contradiction. auto.
+ exploit Val.mods_divs; eauto. intros [v [A B]].
+ subst. econstructor; split; eauto.
+ apply eval_mod_aux with (semdivop := Val.divs); auto.
Qed.
-Lemma eval_divu_base:
- forall le a x b y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp e m le (Eop Odivu (a ::: b ::: Enil)) (Vint (Int.divu x y)).
+Theorem eval_divuimm:
+ forall le n a x z,
+ eval_expr ge sp e m le a x ->
+ Val.divu x (Vint n) = Some z ->
+ exists v, eval_expr ge sp e m le (divuimm a n) v /\ Val.lessdef z v.
Proof.
- intros. EvalOp. simpl.
- predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto.
+ intros; unfold divuimm.
+ destruct (Int.is_power2 n) as []_eqn.
+ replace z with (Val.shru x (Vint i)). apply eval_shruimm; auto.
+ eapply Val.divu_pow2; eauto.
+ TrivialExists.
+ econstructor. eauto. econstructor. EvalOp. simpl; eauto. constructor. auto.
Qed.
Theorem eval_divu:
- forall le a x b y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp e m le (divu a b) (Vint (Int.divu x y)).
-Proof.
- intros until y.
- unfold divu; case (divu_match b); intros; InvEval.
- caseEq (Int.is_power2 y).
- intros. rewrite (Int.divu_pow2 x y i H0).
- apply eval_shruimm. auto.
- apply Int.is_power2_range with y. auto.
- intros. apply eval_divu_base. auto. EvalOp. auto.
- eapply eval_divu_base; eauto.
+ forall le a x b y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.divu x y = Some z ->
+ exists v, eval_expr ge sp e m le (divu a b) v /\ Val.lessdef z v.
+Proof.
+ intros until z. unfold divu; destruct (divu_match b); intros; InvEval.
+ eapply eval_divuimm; eauto.
+ TrivialExists.
+Qed.
+
+Theorem eval_moduimm:
+ forall le n a x z,
+ eval_expr ge sp e m le a x ->
+ Val.modu x (Vint n) = Some z ->
+ exists v, eval_expr ge sp e m le (moduimm a n) v /\ Val.lessdef z v.
+Proof.
+ intros; unfold moduimm.
+ destruct (Int.is_power2 n) as []_eqn.
+ replace z with (Val.and x (Vint (Int.sub n Int.one))). apply eval_andimm; auto.
+ eapply Val.modu_pow2; eauto.
+ exploit Val.modu_divu; eauto. intros [v [A B]].
+ subst. econstructor; split; eauto.
+ apply eval_mod_aux with (semdivop := Val.divu); auto.
+ EvalOp.
Qed.
Theorem eval_modu:
- forall le a x b y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp e m le (modu a b) (Vint (Int.modu x y)).
+ forall le a x b y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.modu x y = Some z ->
+ exists v, eval_expr ge sp e m le (modu a b) v /\ Val.lessdef z v.
Proof.
- intros until y; unfold modu; case (divu_match b); intros; InvEval.
- caseEq (Int.is_power2 y).
- intros. rewrite (Int.modu_and x y i H0). apply eval_andimm. auto.
- intro. rewrite Int.modu_divu. eapply eval_mod_aux.
- intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
- contradiction. auto.
- auto. EvalOp. auto. auto.
- rewrite Int.modu_divu. eapply eval_mod_aux.
- intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
- contradiction. auto. auto. auto. auto. auto.
+ intros until y; unfold modu; case (modu_match b); intros; InvEval.
+ eapply eval_moduimm; eauto.
+ exploit Val.modu_divu; eauto. intros [v [A B]].
+ subst. econstructor; split; eauto.
+ apply eval_mod_aux with (semdivop := Val.divu); auto.
Qed.
-
-Theorem eval_shl:
- forall le a x b y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- Int.ltu y Int.iwordsize = true ->
- eval_expr ge sp e m le (shl a b) (Vint (Int.shl x y)).
+Theorem eval_shl: binary_constructor_sound shl Val.shl.
Proof.
- intros until y; unfold shl; case (shift_match b); intros.
+ red; intros until y; unfold shl; case (shl_match b); intros.
InvEval. apply eval_shlimm; auto.
- EvalOp. simpl. rewrite H1. auto.
+ TrivialExists.
Qed.
-Theorem eval_shru:
- forall le a x b y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- Int.ltu y Int.iwordsize = true ->
- eval_expr ge sp e m le (shru a b) (Vint (Int.shru x y)).
+Theorem eval_shr: binary_constructor_sound shr Val.shr.
+Proof.
+ red; intros until y; unfold shr; case (shr_match b); intros.
+ InvEval. apply eval_shrimm; auto.
+ TrivialExists.
+Qed.
+
+Theorem eval_shru: binary_constructor_sound shru Val.shru.
Proof.
- intros until y; unfold shru; case (shift_match b); intros.
+ red; intros until y; unfold shru; case (shru_match b); intros.
InvEval. apply eval_shruimm; auto.
- EvalOp. simpl. rewrite H1. auto.
+ TrivialExists.
Qed.
-Theorem eval_addf:
- forall le a x b y,
- eval_expr ge sp e m le a (Vfloat x) ->
- eval_expr ge sp e m le b (Vfloat y) ->
- eval_expr ge sp e m le (addf a b) (Vfloat (Float.add x y)).
+Theorem eval_negf: unary_constructor_sound negf Val.negf.
Proof.
- intros until y; unfold addf.
- destruct (use_fused_mul tt).
+ red; intros. TrivialExists.
+Qed.
+
+Theorem eval_absf: unary_constructor_sound absf Val.absf.
+Proof.
+ red; intros. TrivialExists.
+Qed.
+
+Theorem eval_addf: binary_constructor_sound addf Val.addf.
+Proof.
+ red; intros until y; unfold addf.
+ destruct (use_fused_mul tt); simpl.
case (addf_match a b); intros; InvEval.
- EvalOp. simpl. congruence.
- EvalOp. simpl. rewrite Float.addf_commut. congruence.
- EvalOp.
- intros. EvalOp.
+ TrivialExists. simpl. congruence.
+ TrivialExists. simpl. rewrite Val.addf_commut. congruence.
+ intros. TrivialExists.
+ intros. TrivialExists.
Qed.
-Theorem eval_subf:
- forall le a x b y,
- eval_expr ge sp e m le a (Vfloat x) ->
- eval_expr ge sp e m le b (Vfloat y) ->
- eval_expr ge sp e m le (subf a b) (Vfloat (Float.sub x y)).
-Proof.
- intros until y; unfold subf.
- destruct (use_fused_mul tt).
- case (subf_match a b); intros.
- InvEval. EvalOp. simpl. congruence.
- EvalOp.
- intros. EvalOp.
+Theorem eval_subf: binary_constructor_sound subf Val.subf.
+Proof.
+ red; intros until y; unfold subf.
+ destruct (use_fused_mul tt); simpl.
+ case (subf_match a); intros; InvEval.
+ TrivialExists. simpl. congruence.
+ TrivialExists.
+ intros. TrivialExists.
Qed.
-Theorem eval_cast8signed:
- forall le a v,
- eval_expr ge sp e m le a v ->
- eval_expr ge sp e m le (cast8signed a) (Val.sign_ext 8 v).
-Proof. TrivialOp cast8signed. Qed.
+Theorem eval_mulf: binary_constructor_sound mulf Val.mulf.
+Proof.
+ red; intros; TrivialExists.
+Qed.
-Theorem eval_cast8unsigned:
- forall le a v,
- eval_expr ge sp e m le a v ->
- eval_expr ge sp e m le (cast8unsigned a) (Val.zero_ext 8 v).
-Proof. TrivialOp cast8unsigned. Qed.
+Theorem eval_divf: binary_constructor_sound divf Val.divf.
+Proof.
+ red; intros; TrivialExists.
+Qed.
-Theorem eval_cast16signed:
- forall le a v,
- eval_expr ge sp e m le a v ->
- eval_expr ge sp e m le (cast16signed a) (Val.sign_ext 16 v).
-Proof. TrivialOp cast16signed. Qed.
+Theorem eval_comp:
+ forall c, binary_constructor_sound (comp c) (Val.cmp c).
+Proof.
+ intros; red; intros until y. unfold comp; case (comp_match a b); intros; InvEval.
+ TrivialExists. simpl. rewrite Val.swap_cmp_bool. auto.
+ TrivialExists.
+ TrivialExists.
+Qed.
-Theorem eval_cast16unsigned:
- forall le a v,
- eval_expr ge sp e m le a v ->
- eval_expr ge sp e m le (cast16unsigned a) (Val.zero_ext 16 v).
-Proof. TrivialOp cast16unsigned. Qed.
+Theorem eval_compu:
+ forall c, binary_constructor_sound (compu c) (Val.cmpu (Mem.valid_pointer m) c).
+Proof.
+ intros; red; intros until y. unfold compu; case (compu_match a b); intros; InvEval.
+ TrivialExists. simpl. rewrite Val.swap_cmpu_bool. auto.
+ TrivialExists.
+ TrivialExists.
+Qed.
-Theorem eval_singleoffloat:
- forall le a v,
- eval_expr ge sp e m le a v ->
- eval_expr ge sp e m le (singleoffloat a) (Val.singleoffloat v).
-Proof. TrivialOp singleoffloat. Qed.
+Theorem eval_compf:
+ forall c, binary_constructor_sound (compf c) (Val.cmpf c).
+Proof.
+ intros; red; intros. unfold compf. TrivialExists.
+Qed.
-Theorem eval_comp:
- forall le c a x b y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- eval_expr ge sp e m le (comp c a b) (Val.of_bool(Int.cmp c x y)).
-Proof.
- intros until y.
- unfold comp; case (comp_match a b); intros; InvEval.
- EvalOp. simpl. rewrite Int.swap_cmp. destruct (Int.cmp c x y); reflexivity.
- EvalOp. simpl. destruct (Int.cmp c x y); reflexivity.
- EvalOp. simpl. destruct (Int.cmp c x y); reflexivity.
-Qed.
-
-Theorem eval_compu_int:
- forall le c a x b y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- eval_expr ge sp e m le (compu c a b) (Val.of_bool(Int.cmpu c x y)).
-Proof.
- intros until y.
- unfold compu; case (comp_match a b); intros; InvEval.
- EvalOp. simpl. rewrite Int.swap_cmpu. destruct (Int.cmpu c x y); reflexivity.
- EvalOp. simpl. destruct (Int.cmpu c x y); reflexivity.
- EvalOp. simpl. destruct (Int.cmpu c x y); reflexivity.
-Qed.
-
-Remark eval_compare_null_transf:
- forall c x v,
- Cminor.eval_compare_null c x = Some v ->
- match eval_compare_null c x with
- | Some true => Some Vtrue
- | Some false => Some Vfalse
- | None => None (A:=val)
- end = Some v.
-Proof.
- unfold Cminor.eval_compare_null, eval_compare_null; intros.
- destruct (Int.eq x Int.zero); try discriminate.
- destruct c; try discriminate; auto.
-Qed.
-
-Theorem eval_compu_ptr_int:
- forall le c a x1 x2 b y v,
- eval_expr ge sp e m le a (Vptr x1 x2) ->
- eval_expr ge sp e m le b (Vint y) ->
- Cminor.eval_compare_null c y = Some v ->
- eval_expr ge sp e m le (compu c a b) v.
-Proof.
- intros until v.
- unfold compu; case (comp_match a b); intros; InvEval.
- EvalOp. simpl. apply eval_compare_null_transf; auto.
- EvalOp. simpl. apply eval_compare_null_transf; auto.
-Qed.
-
-Remark eval_compare_null_swap:
- forall c x,
- Cminor.eval_compare_null (swap_comparison c) x =
- Cminor.eval_compare_null c x.
-Proof.
- intros. unfold Cminor.eval_compare_null.
- destruct (Int.eq x Int.zero). destruct c; auto. auto.
-Qed.
-
-Theorem eval_compu_int_ptr:
- forall le c a x b y1 y2 v,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vptr y1 y2) ->
- Cminor.eval_compare_null c x = Some v ->
- eval_expr ge sp e m le (compu c a b) v.
-Proof.
- intros until v.
- unfold compu; case (comp_match a b); intros; InvEval.
- EvalOp. simpl. apply eval_compare_null_transf.
- rewrite eval_compare_null_swap; auto.
- EvalOp. simpl. apply eval_compare_null_transf. auto.
-Qed.
-
-Theorem eval_compu_ptr_ptr:
- forall le c a x1 x2 b y1 y2,
- eval_expr ge sp e m le a (Vptr x1 x2) ->
- eval_expr ge sp e m le b (Vptr y1 y2) ->
- Mem.valid_pointer m x1 (Int.unsigned x2)
- && Mem.valid_pointer m y1 (Int.unsigned y2) = true ->
- x1 = y1 ->
- eval_expr ge sp e m le (compu c a b) (Val.of_bool(Int.cmpu c x2 y2)).
-Proof.
- intros until y2.
- unfold compu; case (comp_match a b); intros; InvEval.
- EvalOp. simpl. rewrite H1. subst y1. rewrite dec_eq_true.
- destruct (Int.cmpu c x2 y2); reflexivity.
-Qed.
-
-Theorem eval_compu_ptr_ptr_2:
- forall le c a x1 x2 b y1 y2 v,
- eval_expr ge sp e m le a (Vptr x1 x2) ->
- eval_expr ge sp e m le b (Vptr y1 y2) ->
- Mem.valid_pointer m x1 (Int.unsigned x2)
- && Mem.valid_pointer m y1 (Int.unsigned y2) = true ->
- x1 <> y1 ->
- Cminor.eval_compare_mismatch c = Some v ->
- eval_expr ge sp e m le (compu c a b) v.
-Proof.
- intros until y2.
- unfold compu; case (comp_match a b); intros; InvEval.
- EvalOp. simpl. rewrite H1. rewrite dec_eq_false; auto.
- destruct c; simpl in H3; inv H3; auto.
+
+Theorem eval_cast8signed: unary_constructor_sound cast8signed (Val.sign_ext 8).
+Proof.
+ red; intros. unfold cast8signed. TrivialExists.
Qed.
-Theorem eval_compf:
- forall le c a x b y,
- eval_expr ge sp e m le a (Vfloat x) ->
- eval_expr ge sp e m le b (Vfloat y) ->
- eval_expr ge sp e m le (compf c a b) (Val.of_bool(Float.cmp c x y)).
+Theorem eval_cast8unsigned: unary_constructor_sound cast8unsigned (Val.zero_ext 8).
Proof.
- intros. unfold compf. EvalOp. simpl.
- destruct (Float.cmp c x y); reflexivity.
+ red; intros. unfold cast8unsigned.
+ rewrite Val.zero_ext_and. apply eval_andimm; auto. compute; auto.
Qed.
-Theorem eval_negint:
- forall le a x,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le (negint a) (Vint (Int.neg x)).
-Proof. intros; unfold negint; EvalOp. Qed.
+Theorem eval_cast16signed: unary_constructor_sound cast16signed (Val.sign_ext 16).
+Proof.
+ red; intros. unfold cast16signed. TrivialExists.
+Qed.
-Theorem eval_negf:
- forall le a x,
- eval_expr ge sp e m le a (Vfloat x) ->
- eval_expr ge sp e m le (negf a) (Vfloat (Float.neg x)).
-Proof. intros; unfold negf; EvalOp. Qed.
+Theorem eval_cast16unsigned: unary_constructor_sound cast16unsigned (Val.zero_ext 16).
+Proof.
+ red; intros. unfold cast16unsigned.
+ rewrite Val.zero_ext_and. apply eval_andimm; auto. compute; auto.
+Qed.
-Theorem eval_absf:
- forall le a x,
- eval_expr ge sp e m le a (Vfloat x) ->
- eval_expr ge sp e m le (absf a) (Vfloat (Float.abs x)).
-Proof. intros; unfold absf; EvalOp. Qed.
+Theorem eval_singleoffloat: unary_constructor_sound singleoffloat Val.singleoffloat.
+Proof.
+ red; intros. unfold singleoffloat. TrivialExists.
+Qed.
Theorem eval_intoffloat:
- forall le a x n,
- eval_expr ge sp e m le a (Vfloat x) ->
- Float.intoffloat x = Some n ->
- eval_expr ge sp e m le (intoffloat a) (Vint n).
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.intoffloat x = Some y ->
+ exists v, eval_expr ge sp e m le (intoffloat a) v /\ Val.lessdef y v.
Proof.
- intros; unfold intoffloat; EvalOp. simpl. rewrite H0; auto.
+ intros; unfold intoffloat. TrivialExists.
Qed.
Theorem eval_intuoffloat:
- forall le a x n,
- eval_expr ge sp e m le a (Vfloat x) ->
- Float.intuoffloat x = Some n ->
- eval_expr ge sp e m le (intuoffloat a) (Vint n).
-Proof.
- intros. unfold intuoffloat.
- econstructor. eauto.
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.intuoffloat x = Some y ->
+ exists v, eval_expr ge sp e m le (intuoffloat a) v /\ Val.lessdef y v.
+Proof.
+ intros. destruct x; simpl in H0; try discriminate.
+ destruct (Float.intuoffloat f) as [n|]_eqn; simpl in H0; inv H0.
+ exists (Vint n); split; auto. unfold intuoffloat.
set (im := Int.repr Int.half_modulus).
set (fm := Float.floatofintu im).
- assert (eval_expr ge sp e m (Vfloat x :: le) (Eletvar O) (Vfloat x)).
+ assert (eval_expr ge sp e m (Vfloat f :: le) (Eletvar O) (Vfloat f)).
constructor. auto.
- apply eval_Econdition with (v1 := Float.cmp Clt x fm).
+ econstructor. eauto.
+ apply eval_Econdition with (v1 := Float.cmp Clt f fm).
econstructor. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
simpl. auto.
- caseEq (Float.cmp Clt x fm); intros.
+ destruct (Float.cmp Clt f fm) as []_eqn.
exploit Float.intuoffloat_intoffloat_1; eauto. intro EQ.
EvalOp. simpl. rewrite EQ; auto.
exploit Float.intuoffloat_intoffloat_2; eauto. intro EQ.
- replace n with (Int.add (Int.sub n Float.ox8000_0000) Float.ox8000_0000).
- apply eval_addimm. eapply eval_intoffloat; eauto.
- apply eval_subf; auto. EvalOp.
- rewrite Int.sub_add_opp. rewrite Int.add_assoc. apply Int.add_zero.
+ set (t1 := Eop (Ofloatconst (Float.floatofintu Float.ox8000_0000)) Enil).
+ set (t2 := subf (Eletvar 0) t1).
+ set (t3 := intoffloat t2).
+ exploit (eval_subf (Vfloat f :: le) (Eletvar 0) (Vfloat f) t1).
+ auto. unfold t1; EvalOp. simpl; eauto.
+ fold t2. intros [v2 [A2 B2]]. simpl in B2. inv B2.
+ exploit (eval_addimm Float.ox8000_0000 (Vfloat f :: le) t3).
+ unfold t3. unfold intoffloat. EvalOp. simpl. rewrite EQ. simpl. eauto.
+ intros [v4 [A4 B4]]. simpl in B4. inv B4.
+ rewrite Int.sub_add_opp in A4. rewrite Int.add_assoc in A4.
+ rewrite (Int.add_commut (Int.neg Float.ox8000_0000)) in A4.
+ rewrite Int.add_neg_zero in A4.
+ rewrite Int.add_zero in A4.
+ auto.
Qed.
Theorem eval_floatofint:
- forall le a x,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le (floatofint a) (Vfloat (Float.floatofint x)).
-Proof.
- intros. unfold floatofint. rewrite Float.floatofint_from_words.
- apply eval_subf.
- EvalOp. constructor. EvalOp. simpl; eauto.
- constructor. apply eval_addimm. eauto. constructor.
- simpl. auto.
- EvalOp.
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.floatofint x = Some y ->
+ exists v, eval_expr ge sp e m le (floatofint a) v /\ Val.lessdef y v.
+Proof.
+ intros. destruct x; simpl in H0; inv H0.
+ exists (Vfloat (Float.floatofint i)); split; auto.
+ unfold floatofint.
+ set (t1 := addimm Float.ox8000_0000 a).
+ set (t2 := Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil ::: t1 ::: Enil)).
+ set (t3 := Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Float.ox8000_0000)) Enil).
+ exploit (eval_addimm Float.ox8000_0000 le a). eauto. fold t1.
+ intros [v1 [A1 B1]]. simpl in B1. inv B1.
+ exploit (eval_subf le t2).
+ unfold t2. EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor.
+ unfold eval_operation. eauto.
+ instantiate (2 := t3). unfold t3. EvalOp. simpl; eauto.
+ intros [v2 [A2 B2]]. simpl in B2. inv B2. rewrite Float.floatofint_from_words. auto.
Qed.
Theorem eval_floatofintu:
- forall le a x,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le (floatofintu a) (Vfloat (Float.floatofintu x)).
-Proof.
- intros. unfold floatofintu. rewrite Float.floatofintu_from_words.
- apply eval_subf.
- EvalOp. constructor. EvalOp. simpl; eauto.
- constructor. eauto. constructor.
- simpl. auto.
- EvalOp.
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.floatofintu x = Some y ->
+ exists v, eval_expr ge sp e m le (floatofintu a) v /\ Val.lessdef y v.
+Proof.
+ intros. destruct x; simpl in H0; inv H0.
+ exists (Vfloat (Float.floatofintu i)); split; auto.
+ unfold floatofintu.
+ set (t2 := Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil ::: a ::: Enil)).
+ set (t3 := Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Int.zero)) Enil).
+ exploit (eval_subf le t2).
+ unfold t2. EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor.
+ unfold eval_operation. eauto.
+ instantiate (2 := t3). unfold t3. EvalOp. simpl; eauto.
+ intros [v2 [A2 B2]]. simpl in B2. inv B2. rewrite Float.floatofintu_from_words. auto.
Qed.
-Theorem eval_xor:
- forall le a x b y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- eval_expr ge sp e m le (xor a b) (Vint (Int.xor x y)).
-Proof. intros; unfold xor; EvalOp. Qed.
-
-Theorem eval_shr:
- forall le a x b y,
- eval_expr ge sp e m le a (Vint x) ->
- eval_expr ge sp e m le b (Vint y) ->
- Int.ltu y Int.iwordsize = true ->
- eval_expr ge sp e m le (shr a b) (Vint (Int.shr x y)).
-Proof. intros; unfold shr; EvalOp. simpl. rewrite H1. auto. Qed.
-
-Theorem eval_mulf:
- forall le a x b y,
- eval_expr ge sp e m le a (Vfloat x) ->
- eval_expr ge sp e m le b (Vfloat y) ->
- eval_expr ge sp e m le (mulf a b) (Vfloat (Float.mul x y)).
-Proof. intros; unfold mulf; EvalOp. Qed.
-
-Theorem eval_divf:
- forall le a x b y,
- eval_expr ge sp e m le a (Vfloat x) ->
- eval_expr ge sp e m le b (Vfloat y) ->
- eval_expr ge sp e m le (divf a b) (Vfloat (Float.div x y)).
-Proof. intros; unfold divf; EvalOp. Qed.
-
Theorem eval_addressing:
forall le chunk a v b ofs,
eval_expr ge sp e m le a v ->
@@ -964,18 +759,11 @@ Proof.
intros until v. unfold addressing; case (addressing_match a); intros; InvEval.
exists (@nil val). split. eauto with evalexpr. simpl. auto.
exists (@nil val). split. eauto with evalexpr. simpl. auto.
- destruct (Genv.find_symbol ge s); congruence.
- exists (Vint i0 :: nil). split. eauto with evalexpr.
- simpl. destruct (Genv.find_symbol ge s). congruence. discriminate.
- exists (Vptr b0 i :: nil). split. eauto with evalexpr.
- simpl. congruence.
- exists (Vint i :: Vptr b0 i0 :: nil).
- split. eauto with evalexpr. simpl.
- congruence.
- exists (Vptr b0 i :: Vint i0 :: nil).
- split. eauto with evalexpr. simpl. congruence.
- exists (v :: nil). split. eauto with evalexpr.
- subst v. simpl. rewrite Int.add_zero. auto.
+ exists (v0 :: nil). split. eauto with evalexpr. simpl. congruence.
+ exists (v1 :: nil). split. eauto with evalexpr. simpl. congruence.
+ exists (v1 :: v0 :: nil). split. eauto with evalexpr. simpl. congruence.
+ exists (v :: nil). split. eauto with evalexpr. subst v. simpl.
+ rewrite Int.add_zero. auto.
Qed.
End CMCONSTR.