diff options
Diffstat (limited to 'powerpc')
-rw-r--r-- | powerpc/Asm.v | 6 | ||||
-rw-r--r-- | powerpc/Asmgen.v | 6 | ||||
-rw-r--r-- | powerpc/ConstpropOp.vp | 2 | ||||
-rw-r--r-- | powerpc/Op.v | 10 | ||||
-rw-r--r-- | powerpc/PrintAsm.ml | 4 | ||||
-rw-r--r-- | powerpc/SelectOp.vp | 32 | ||||
-rw-r--r-- | powerpc/SelectOpproof.v | 74 |
7 files changed, 63 insertions, 71 deletions
diff --git a/powerpc/Asm.v b/powerpc/Asm.v index bbe2d3e..e6e9d76 100644 --- a/powerpc/Asm.v +++ b/powerpc/Asm.v @@ -193,6 +193,8 @@ Inductive instruction : Type := | Pmtlr: ireg -> instruction (**r move ireg to LR *) | Pmulli: ireg -> ireg -> constant -> instruction (**r integer multiply immediate *) | Pmullw: ireg -> ireg -> ireg -> instruction (**r integer multiply *) + | Pmulhw: ireg -> ireg -> ireg -> instruction (**r multiply high signed *) + | Pmulhwu: ireg -> ireg -> ireg -> instruction (**r multiply high signed *) | Pnand: ireg -> ireg -> ireg -> instruction (**r bitwise not-and *) | Pnor: ireg -> ireg -> ireg -> instruction (**r bitwise not-or *) | Por: ireg -> ireg -> ireg -> instruction (**r bitwise or *) @@ -702,6 +704,10 @@ Definition exec_instr (c: code) (i: instruction) (rs: regset) (m: mem) : outcome Next (nextinstr (rs#rd <- (Val.mul rs#r1 (const_low cst)))) m | Pmullw rd r1 r2 => Next (nextinstr (rs#rd <- (Val.mul rs#r1 rs#r2))) m + | Pmulhw rd r1 r2 => + Next (nextinstr (rs#rd <- (Val.mulhs rs#r1 rs#r2))) m + | Pmulhwu rd r1 r2 => + Next (nextinstr (rs#rd <- (Val.mulhu rs#r1 rs#r2))) m | Pnand rd r1 r2 => Next (nextinstr (rs#rd <- (Val.notint (Val.and rs#r1 rs#r2)))) m | Pnor rd r1 r2 => diff --git a/powerpc/Asmgen.v b/powerpc/Asmgen.v index 2b6d80d..cc9a51c 100644 --- a/powerpc/Asmgen.v +++ b/powerpc/Asmgen.v @@ -371,6 +371,12 @@ Definition transl_op Pmulli r r1 (Cint n) :: k else loadimm GPR0 n (Pmullw r r1 GPR0 :: k)) + | Omulhs, a1 :: a2 :: nil => + do r1 <- ireg_of a1; do r2 <- ireg_of a2; do r <- ireg_of res; + OK (Pmulhw r r1 r2 :: k) + | Omulhu, a1 :: a2 :: nil => + do r1 <- ireg_of a1; do r2 <- ireg_of a2; do r <- ireg_of res; + OK (Pmulhwu r r1 r2 :: k) | Odiv, a1 :: a2 :: nil => do r1 <- ireg_of a1; do r2 <- ireg_of a2; do r <- ireg_of res; OK (Pdivw r r1 r2 :: k) diff --git a/powerpc/ConstpropOp.vp b/powerpc/ConstpropOp.vp index e7e4095..d0322c1 100644 --- a/powerpc/ConstpropOp.vp +++ b/powerpc/ConstpropOp.vp @@ -95,6 +95,8 @@ Nondetfunction eval_static_operation (op: operation) (vl: list approx) := | Osubimm n, I n1 :: nil => I (Int.sub n n1) | Omul, I n1 :: I n2 :: nil => I(Int.mul n1 n2) | Omulimm n, I n1 :: nil => I(Int.mul n1 n) + | Omulhs, I n1 :: I n2 :: nil => I(Int.mulhs n1 n2) + | Omulhu, I n1 :: I n2 :: nil => I(Int.mulhu n1 n2) | Odiv, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else if Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone then Unknown diff --git a/powerpc/Op.v b/powerpc/Op.v index 1952304..085a098 100644 --- a/powerpc/Op.v +++ b/powerpc/Op.v @@ -65,6 +65,8 @@ Inductive operation : Type := | Osubimm: int -> operation (**r [rd = n - r1] *) | Omul: operation (**r [rd = r1 * r2] *) | Omulimm: int -> operation (**r [rd = r1 * n] *) + | Omulhs: operation (**r [rd = high part of r1 * r2, signed] *) + | Omulhu: operation (**r [rd = high part of r1 * r2, unsigned] *) | Odiv: operation (**r [rd = r1 / r2] (signed) *) | Odivu: operation (**r [rd = r1 / r2] (unsigned) *) | Oand: operation (**r [rd = r1 & r2] *) @@ -185,6 +187,8 @@ Definition eval_operation | Osubimm n, v1::nil => Some (Val.sub (Vint n) v1) | Omul, v1::v2::nil => Some (Val.mul v1 v2) | Omulimm n, v1::nil => Some (Val.mul v1 (Vint n)) + | Omulhs, v1::v2::nil => Some (Val.mulhs v1 v2) + | Omulhu, v1::v2::nil => Some (Val.mulhu v1 v2) | Odiv, v1::v2::nil => Val.divs v1 v2 | Odivu, v1::v2::nil => Val.divu v1 v2 | Oand, v1::v2::nil => Some(Val.and v1 v2) @@ -276,6 +280,8 @@ Definition type_of_operation (op: operation) : list typ * typ := | Osubimm _ => (Tint :: nil, Tint) | Omul => (Tint :: Tint :: nil, Tint) | Omulimm _ => (Tint :: nil, Tint) + | Omulhs => (Tint :: Tint :: nil, Tint) + | Omulhu => (Tint :: Tint :: nil, Tint) | Odiv => (Tint :: Tint :: nil, Tint) | Odivu => (Tint :: Tint :: nil, Tint) | Oand => (Tint :: Tint :: nil, Tint) @@ -351,6 +357,8 @@ Proof with (try exact I). destruct v0... destruct v0; destruct v1... destruct v0... + destruct v0; destruct v1... + destruct v0; destruct v1... destruct v0; destruct v1; simpl in *; inv H0. destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2... @@ -759,6 +767,8 @@ Proof. inv H4; auto. inv H4; inv H2; simpl; auto. inv H4; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; inv H2; simpl; auto. inv H4; inv H3; simpl in H1; inv H1. simpl. destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2. TrivialExists. diff --git a/powerpc/PrintAsm.ml b/powerpc/PrintAsm.ml index 879d755..08438df 100644 --- a/powerpc/PrintAsm.ml +++ b/powerpc/PrintAsm.ml @@ -818,6 +818,10 @@ let print_instruction oc tbl pc fallthrough = function fprintf oc " mulli %a, %a, %a\n" ireg r1 ireg r2 constant c | Pmullw(r1, r2, r3) -> fprintf oc " mullw %a, %a, %a\n" ireg r1 ireg r2 ireg r3 + | Pmulhw(r1, r2, r3) -> + fprintf oc " mulhw %a, %a, %a\n" ireg r1 ireg r2 ireg r3 + | Pmulhwu(r1, r2, r3) -> + fprintf oc " mulhwu %a, %a, %a\n" ireg r1 ireg r2 ireg r3 | Pnand(r1, r2, r3) -> fprintf oc " nand %a, %a, %a\n" ireg r1 ireg r2 ireg r3 | Pnor(r1, r2, r3) -> diff --git a/powerpc/SelectOp.vp b/powerpc/SelectOp.vp index 7b15ccc..bc9b677 100644 --- a/powerpc/SelectOp.vp +++ b/powerpc/SelectOp.vp @@ -290,8 +290,6 @@ Nondetfunction xor (e1: expr) (e2: expr) := (** ** Integer division and modulus *) -Definition divs (e1: expr) (e2: expr) := Eop Odiv (e1:::e2:::Enil). - Definition mod_aux (divop: operation) (e1 e2: expr) := Elet e1 (Elet (lift e2) @@ -301,31 +299,13 @@ Definition mod_aux (divop: operation) (e1 e2: expr) := Enil) ::: Enil))). -Definition mods := mod_aux Odiv. - -Definition divuimm (e: expr) (n: int) := - match Int.is_power2 n with - | Some l => shruimm e l - | None => Eop Odivu (e ::: Eop (Ointconst n) Enil ::: Enil) - end. - -Nondetfunction divu (e1: expr) (e2: expr) := - match e2 with - | Eop (Ointconst n2) Enil => divuimm e1 n2 - | _ => Eop Odivu (e1:::e2:::Enil) - end. - -Definition moduimm (e: expr) (n: int) := - match Int.is_power2 n with - | Some l => andimm (Int.sub n Int.one) e - | None => mod_aux Odivu e (Eop (Ointconst n) Enil) - end. +Definition divs_base (e1: expr) (e2: expr) := Eop Odiv (e1:::e2:::Enil). +Definition mods_base := mod_aux Odiv. +Definition divu_base (e1: expr) (e2: expr) := Eop Odivu (e1:::e2:::Enil). +Definition modu_base := mod_aux Odivu. -Nondetfunction modu (e1: expr) (e2: expr) := - match e2 with - | Eop (Ointconst n2) Enil => moduimm e1 n2 - | _ => mod_aux Odivu e1 e2 - end. +Definition shrximm (e1: expr) (n2: int) := + if Int.eq n2 Int.zero then e1 else Eop (Oshrximm n2) (e1:::Enil). (** ** General shifts *) diff --git a/powerpc/SelectOpproof.v b/powerpc/SelectOpproof.v index 5a0a903..177d64a 100644 --- a/powerpc/SelectOpproof.v +++ b/powerpc/SelectOpproof.v @@ -465,14 +465,14 @@ Proof. TrivialExists. Qed. -Theorem eval_divs: +Theorem eval_divs_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.divs x y = Some z -> - exists v, eval_expr ge sp e m le (divs a b) v /\ Val.lessdef z v. + exists v, eval_expr ge sp e m le (divs_base a b) v /\ Val.lessdef z v. Proof. - intros. unfold divs. exists z; split. EvalOp. auto. + intros. unfold divs_base. exists z; split. EvalOp. auto. Qed. Lemma eval_mod_aux: @@ -501,73 +501,57 @@ Proof. reflexivity. Qed. -Theorem eval_mods: +Theorem eval_mods_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.mods x y = Some z -> - exists v, eval_expr ge sp e m le (mods a b) v /\ Val.lessdef z v. + exists v, eval_expr ge sp e m le (mods_base a b) v /\ Val.lessdef z v. Proof. - intros; unfold mods. + intros; unfold mods_base. exploit Val.mods_divs; eauto. intros [v [A B]]. subst. econstructor; split; eauto. apply eval_mod_aux with (semdivop := Val.divs); auto. Qed. -Theorem eval_divuimm: - forall le n a x z, - eval_expr ge sp e m le a x -> - Val.divu x (Vint n) = Some z -> - exists v, eval_expr ge sp e m le (divuimm a n) v /\ Val.lessdef z v. -Proof. - intros; unfold divuimm. - destruct (Int.is_power2 n) eqn:?. - replace z with (Val.shru x (Vint i)). apply eval_shruimm; auto. - eapply Val.divu_pow2; eauto. - TrivialExists. - econstructor. eauto. econstructor. EvalOp. simpl; eauto. constructor. auto. -Qed. - -Theorem eval_divu: - forall le a x b y z, +Theorem eval_divu_base: + forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.divu x y = Some z -> - exists v, eval_expr ge sp e m le (divu a b) v /\ Val.lessdef z v. + exists v, eval_expr ge sp e m le (divu_base a b) v /\ Val.lessdef z v. Proof. - intros until z. unfold divu; destruct (divu_match b); intros; InvEval. - eapply eval_divuimm; eauto. - TrivialExists. + intros. unfold divu_base. exists z; split. EvalOp. auto. Qed. -Theorem eval_moduimm: - forall le n a x z, +Theorem eval_modu_base: + forall le a b x y z, eval_expr ge sp e m le a x -> - Val.modu x (Vint n) = Some z -> - exists v, eval_expr ge sp e m le (moduimm a n) v /\ Val.lessdef z v. + eval_expr ge sp e m le b y -> + Val.modu x y = Some z -> + exists v, eval_expr ge sp e m le (modu_base a b) v /\ Val.lessdef z v. Proof. - intros; unfold moduimm. - destruct (Int.is_power2 n) eqn:?. - replace z with (Val.and x (Vint (Int.sub n Int.one))). apply eval_andimm; auto. - eapply Val.modu_pow2; eauto. + intros; unfold modu_base. exploit Val.modu_divu; eauto. intros [v [A B]]. subst. econstructor; split; eauto. apply eval_mod_aux with (semdivop := Val.divu); auto. - EvalOp. Qed. -Theorem eval_modu: - forall le a x b y z, +Theorem eval_shrximm: + forall le a n x z, eval_expr ge sp e m le a x -> - eval_expr ge sp e m le b y -> - Val.modu x y = Some z -> - exists v, eval_expr ge sp e m le (modu a b) v /\ Val.lessdef z v. + Val.shrx x (Vint n) = Some z -> + exists v, eval_expr ge sp e m le (shrximm a n) v /\ Val.lessdef z v. Proof. - intros until y; unfold modu; case (modu_match b); intros; InvEval. - eapply eval_moduimm; eauto. - exploit Val.modu_divu; eauto. intros [v [A B]]. - subst. econstructor; split; eauto. - apply eval_mod_aux with (semdivop := Val.divu); auto. + intros. unfold shrximm. + predSpec Int.eq Int.eq_spec n Int.zero. + subst n. exists x; split; auto. + destruct x; simpl in H0; try discriminate. + destruct (Int.ltu Int.zero (Int.repr 31)); inv H0. + replace (Int.shrx i Int.zero) with i. auto. + unfold Int.shrx, Int.divs. rewrite Int.shl_zero. + change (Int.signed Int.one) with 1. rewrite Z.quot_1_r. rewrite Int.repr_signed; auto. + econstructor; split. EvalOp. auto. Qed. Theorem eval_shl: binary_constructor_sound shl Val.shl. |