diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Lattice.v | 12 | ||||
-rw-r--r-- | lib/Maps.v | 307 |
2 files changed, 256 insertions, 63 deletions
diff --git a/lib/Lattice.v b/lib/Lattice.v index fd05b34..c4b55e9 100644 --- a/lib/Lattice.v +++ b/lib/Lattice.v @@ -141,11 +141,15 @@ Lemma beq_correct: forall x y, beq x y = true -> eq x y. Proof. destruct x; destruct y; simpl; intro; try congruence. red; intro; simpl. - generalize (PTree.beq_correct L.eq L.beq L.beq_correct t0 t1 H p). - destruct (t0!p); destruct (t1!p); intuition. apply L.eq_refl. + rewrite PTree.beq_correct in H. generalize (H p). + destruct (t0!p); destruct (t1!p); intuition. + apply L.beq_correct; auto. + apply L.eq_refl. red; intro; simpl. - generalize (PTree.beq_correct L.eq L.beq L.beq_correct t0 t1 H p). - destruct (t0!p); destruct (t1!p); intuition. apply L.eq_refl. + rewrite PTree.beq_correct in H. generalize (H p). + destruct (t0!p); destruct (t1!p); intuition. + apply L.beq_correct; auto. + apply L.eq_refl. Qed. Definition ge (x y: t) : Prop := @@ -32,6 +32,7 @@ inefficient implementation of maps as functions is also provided. *) +Require Import Equivalence EquivDec. Require Import Coqlib. (* To avoid useless definitions of inductors in extracted code. *) @@ -83,15 +84,14 @@ Module Type TREE. (** Extensional equality between trees. *) Variable beq: forall (A: Type), (A -> A -> bool) -> t A -> t A -> bool. Hypothesis beq_correct: - forall (A: Type) (P: A -> A -> Prop) (cmp: A -> A -> bool), - (forall (x y: A), cmp x y = true -> P x y) -> - forall (t1 t2: t A), beq cmp t1 t2 = true -> - forall (x: elt), - match get x t1, get x t2 with - | None, None => True - | Some y1, Some y2 => P y1 y2 - | _, _ => False - end. + forall (A: Type) (eqA: A -> A -> bool) (t1 t2: t A), + beq eqA t1 t2 = true <-> + (forall (x: elt), + match get x t1, get x t2 with + | None, None => True + | Some y1, Some y2 => eqA y1 y2 = true + | _, _ => False + end). (** Applying a function to all data of a tree. *) Variable map: @@ -107,24 +107,16 @@ Module Type TREE. forall (A B: Type) (f: A -> B) (i: elt) (m: t A), get i (map1 f m) = option_map f (get i m). - (** Filtering data that match a given predicate. *) - Variable filter1: - forall (A: Type), (A -> bool) -> t A -> t A. - Hypothesis gfilter1: - forall (A: Type) (pred: A -> bool) (i: elt) (m: t A), - get i (filter1 pred m) = - match get i m with None => None | Some x => if pred x then Some x else None end. - (** Applying a function pairwise to all data of two trees. *) Variable combine: - forall (A: Type), (option A -> option A -> option A) -> t A -> t A -> t A. + forall (A B C: Type), (option A -> option B -> option C) -> t A -> t B -> t C. Hypothesis gcombine: - forall (A: Type) (f: option A -> option A -> option A), + forall (A B C: Type) (f: option A -> option B -> option C), f None None = None -> - forall (m1 m2: t A) (i: elt), + forall (m1: t A) (m2: t B) (i: elt), get i (combine f m1 m2) = f (get i m1) (get i m2). Hypothesis combine_commut: - forall (A: Type) (f g: option A -> option A -> option A), + forall (A B: Type) (f g: option A -> option A -> option B), (forall (i j: option A), f i j = g j i) -> forall (m1 m2: t A), combine f m1 m2 = combine g m2 m1. @@ -359,10 +351,9 @@ Module PTree <: TREE. intros. destruct (elt_eq i j). subst j. apply grs. apply gro; auto. Qed. - Section EXTENSIONAL_EQUALITY. + Section BOOLEAN_EQUALITY. Variable A: Type. - Variable eqA: A -> A -> Prop. Variable beqA: A -> A -> bool. Fixpoint bempty (m: t A) : bool := @@ -405,20 +396,19 @@ Module PTree <: TREE. intros; apply (H (xO x)). Qed. - Hypothesis beqA_correct: forall x y, beqA x y = true -> eqA x y. - - Definition exteq (m1 m2: t A) : Prop := - forall (x: elt), - match get x m1, get x m2 with - | None, None => True - | Some y1, Some y2 => eqA y1 y2 - | _, _ => False - end. - Lemma beq_correct: - forall m1 m2, beq m1 m2 = true -> exteq m1 m2. + forall m1 m2, + beq m1 m2 = true <-> + (forall (x: elt), + match get x m1, get x m2 with + | None, None => True + | Some y1, Some y2 => beqA y1 y2 = true + | _, _ => False + end). Proof. - induction m1; destruct m2; simpl. + intros; split. + - (* beq = true -> exteq *) + revert m1 m2. induction m1; destruct m2; simpl. intros; red; intros. change (@Leaf A) with (empty A). repeat rewrite gempty. auto. destruct o; intro. congruence. @@ -429,21 +419,14 @@ Module PTree <: TREE. rewrite bempty_correct. auto. assumption. destruct o; destruct o0; simpl; intro; try congruence. destruct (andb_prop _ _ H). destruct (andb_prop _ _ H0). - red; intros. destruct x; simpl. - apply IHm1_2; auto. apply IHm1_1; auto. - apply beqA_correct; auto. + destruct x; simpl. + apply IHm1_2; auto. apply IHm1_1; auto. auto. destruct (andb_prop _ _ H). red; intros. destruct x; simpl. apply IHm1_2; auto. apply IHm1_1; auto. auto. - Qed. - - Hypothesis beqA_complete: forall x y, eqA x y -> beqA x y = true. - - Lemma beq_complete: - forall m1 m2, exteq m1 m2 -> beq m1 m2 = true. - Proof. - induction m1; destruct m2; simpl; intros. + - (* exteq -> beq = true *) + revert m1 m2. induction m1; destruct m2; simpl; intros. auto. change (bempty (Node m2_1 o m2_2) = true). apply bempty_complete. intros. generalize (H x). rewrite gleaf. @@ -453,11 +436,11 @@ Module PTree <: TREE. destruct (get x (Node m1_1 o m1_2)); tauto. apply andb_true_intro. split. apply andb_true_intro. split. generalize (H xH); simpl. destruct o; destruct o0; auto. - apply IHm1_1. red; intros. apply (H (xO x)). - apply IHm1_2. red; intros. apply (H (xI x)). + apply IHm1_1. intros. apply (H (xO x)). + apply IHm1_2. intros. apply (H (xI x)). Qed. - End EXTENSIONAL_EQUALITY. + End BOOLEAN_EQUALITY. Fixpoint append (i j : positive) {struct i} : positive := match i with @@ -576,11 +559,11 @@ Module PTree <: TREE. Section COMBINE. - Variable A: Type. - Variable f: option A -> option A -> option A. + Variable A B C: Type. + Variable f: option A -> option B -> option C. Hypothesis f_none_none: f None None = None. - Fixpoint xcombine_l (m : t A) {struct m} : t A := + Fixpoint xcombine_l (m : t A) {struct m} : t C := match m with | Leaf => Leaf | Node l o r => Node' (xcombine_l l) (f o None) (xcombine_l r) @@ -595,14 +578,14 @@ Module PTree <: TREE. rewrite gnode'. destruct i; simpl; auto. Qed. - Fixpoint xcombine_r (m : t A) {struct m} : t A := + Fixpoint xcombine_r (m : t B) {struct m} : t C := match m with | Leaf => Leaf | Node l o r => Node' (xcombine_r l) (f None o) (xcombine_r r) end. Lemma xgcombine_r : - forall (m: t A) (i : positive), + forall (m: t B) (i : positive), get i (xcombine_r m) = f None (get i m). Proof. induction m; intros; simpl. @@ -610,7 +593,7 @@ Module PTree <: TREE. rewrite gnode'. destruct i; simpl; auto. Qed. - Fixpoint combine (m1 m2 : t A) {struct m1} : t A := + Fixpoint combine (m1: t A) (m2: t B) {struct m1} : t C := match m1 with | Leaf => xcombine_r m2 | Node l1 o1 r1 => @@ -621,7 +604,7 @@ Module PTree <: TREE. end. Theorem gcombine: - forall (m1 m2: t A) (i: positive), + forall (m1: t A) (m2: t B) (i: positive), get i (combine m1 m2) = f (get i m1) (get i m2). Proof. induction m1; intros; simpl. @@ -634,7 +617,7 @@ Module PTree <: TREE. End COMBINE. Lemma xcombine_lr : - forall (A : Type) (f g : option A -> option A -> option A) (m : t A), + forall (A B: Type) (f g : option A -> option A -> option B) (m : t A), (forall (i j : option A), f i j = g j i) -> xcombine_l f m = xcombine_r g m. Proof. @@ -645,12 +628,12 @@ Module PTree <: TREE. Qed. Theorem combine_commut: - forall (A: Type) (f g: option A -> option A -> option A), + forall (A B: Type) (f g: option A -> option A -> option B), (forall (i j: option A), f i j = g j i) -> forall (m1 m2: t A), combine f m1 m2 = combine g m2 m1. Proof. - intros A f g EQ1. + intros A B f g EQ1. assert (EQ2: forall (i j: option A), g i j = f j i). intros; auto. induction m1; intros; destruct m2; simpl; @@ -1499,6 +1482,212 @@ Qed. End MEASURE. +(** Forall and exists *) + +Section FORALL_EXISTS. + +Variable A: Type. + +Definition for_all (m: T.t A) (f: T.elt -> A -> bool) : bool := + T.fold (fun b x a => b && f x a) m true. + +Lemma for_all_correct: + forall m f, + for_all m f = true <-> (forall x a, T.get x m = Some a -> f x a = true). +Proof. + intros m0 f. + unfold for_all. apply fold_rec; intros. +- (* Extensionality *) + rewrite H0. split; intros. rewrite <- H in H2; auto. rewrite H in H2; auto. +- (* Base case *) + split; intros. rewrite T.gempty in H0; congruence. auto. +- (* Inductive case *) + split; intros. + destruct (andb_prop _ _ H2). rewrite T.gsspec in H3. destruct (T.elt_eq x k). + inv H3. auto. + apply H1; auto. + apply andb_true_intro. split. + rewrite H1. intros. apply H2. rewrite T.gso; auto. congruence. + apply H2. apply T.gss. +Qed. + +Definition exists_ (m: T.t A) (f: T.elt -> A -> bool) : bool := + T.fold (fun b x a => b || f x a) m false. + +Lemma exists_correct: + forall m f, + exists_ m f = true <-> (exists x a, T.get x m = Some a /\ f x a = true). +Proof. + intros m0 f. + unfold exists_. apply fold_rec; intros. +- (* Extensionality *) + rewrite H0. split; intros (x0 & a0 & P & Q); exists x0; exists a0; split; auto; congruence. +- (* Base case *) + split; intros. congruence. destruct H as (x & a & P & Q). rewrite T.gempty in P; congruence. +- (* Inductive case *) + split; intros. + destruct (orb_true_elim _ _ H2). + rewrite H1 in e. destruct e as (x1 & a1 & P & Q). + exists x1; exists a1; split; auto. rewrite T.gso; auto. congruence. + exists k; exists v; split; auto. apply T.gss. + destruct H2 as (x1 & a1 & P & Q). apply orb_true_intro. + rewrite T.gsspec in P. destruct (T.elt_eq x1 k). + inv P. right; auto. + left. apply H1. exists x1; exists a1; auto. +Qed. + +Remark exists_for_all: + forall m f, + exists_ m f = negb (for_all m (fun x a => negb (f x a))). +Proof. + intros. unfold exists_, for_all. rewrite ! T.fold_spec. + change false with (negb true). generalize (T.elements m) true. + induction l; simpl; intros. + auto. + rewrite <- IHl. f_equal. + destruct b; destruct (f (fst a) (snd a)); reflexivity. +Qed. + +Remark for_all_exists: + forall m f, + for_all m f = negb (exists_ m (fun x a => negb (f x a))). +Proof. + intros. unfold exists_, for_all. rewrite ! T.fold_spec. + change true with (negb false). generalize (T.elements m) false. + induction l; simpl; intros. + auto. + rewrite <- IHl. f_equal. + destruct b; destruct (f (fst a) (snd a)); reflexivity. +Qed. + +Lemma for_all_false: + forall m f, + for_all m f = false <-> (exists x a, T.get x m = Some a /\ f x a = false). +Proof. + intros. rewrite for_all_exists. + rewrite negb_false_iff. rewrite exists_correct. + split; intros (x & a & P & Q); exists x; exists a; split; auto. + rewrite negb_true_iff in Q. auto. + rewrite Q; auto. +Qed. + +Lemma exists_false: + forall m f, + exists_ m f = false <-> (forall x a, T.get x m = Some a -> f x a = false). +Proof. + intros. rewrite exists_for_all. + rewrite negb_false_iff. rewrite for_all_correct. + split; intros. apply H in H0. rewrite negb_true_iff in H0. auto. rewrite H; auto. +Qed. + +End FORALL_EXISTS. + +(** More about [beq] *) + +Section BOOLEAN_EQUALITY. + +Variable A: Type. +Variable beqA: A -> A -> bool. + +Theorem beq_false: + forall m1 m2, + T.beq beqA m1 m2 = false <-> + exists x, match T.get x m1, T.get x m2 with + | None, None => False + | Some a1, Some a2 => beqA a1 a2 = false + | _, _ => True + end. +Proof. + intros; split; intros. +- (* beq = false -> existence *) + set (p1 := fun x a1 => match T.get x m2 with None => false | Some a2 => beqA a1 a2 end). + set (p2 := fun x a2 => match T.get x m1 with None => false | Some a1 => beqA a1 a2 end). + destruct (for_all m1 p1) eqn:F1; [destruct (for_all m2 p2) eqn:F2 | idtac]. + + cut (T.beq beqA m1 m2 = true). congruence. + rewrite for_all_correct in *. rewrite T.beq_correct; intros. + destruct (T.get x m1) as [a1|] eqn:X1. + generalize (F1 _ _ X1). unfold p1. destruct (T.get x m2); congruence. + destruct (T.get x m2) as [a2|] eqn:X2; auto. + generalize (F2 _ _ X2). unfold p2. rewrite X1. congruence. + + rewrite for_all_false in F2. destruct F2 as (x & a & P & Q). + exists x. rewrite P. unfold p2 in Q. destruct (T.get x m1); auto. + + rewrite for_all_false in F1. destruct F1 as (x & a & P & Q). + exists x. rewrite P. unfold p1 in Q. destruct (T.get x m2); auto. +- (* existence -> beq = false *) + destruct H as [x P]. + destruct (T.beq beqA m1 m2) eqn:E; auto. + rewrite T.beq_correct in E. + generalize (E x). destruct (T.get x m1); destruct (T.get x m2); tauto || congruence. +Qed. + +End BOOLEAN_EQUALITY. + +(** Extensional equality between trees *) + +Section EXTENSIONAL_EQUALITY. + +Variable A: Type. +Variable eqA: A -> A -> Prop. +Hypothesis eqAeq: Equivalence eqA. + +Definition Equal (m1 m2: T.t A) : Prop := + forall x, match T.get x m1, T.get x m2 with + | None, None => True + | Some a1, Some a2 => a1 === a2 + | _, _ => False + end. + +Lemma Equal_refl: forall m, Equal m m. +Proof. + intros; red; intros. destruct (T.get x m); auto. reflexivity. +Qed. + +Lemma Equal_sym: forall m1 m2, Equal m1 m2 -> Equal m2 m1. +Proof. + intros; red; intros. generalize (H x). destruct (T.get x m1); destruct (T.get x m2); auto. intros; symmetry; auto. +Qed. + +Lemma Equal_trans: forall m1 m2 m3, Equal m1 m2 -> Equal m2 m3 -> Equal m1 m3. +Proof. + intros; red; intros. generalize (H x) (H0 x). + destruct (T.get x m1); destruct (T.get x m2); try tauto; + destruct (T.get x m3); try tauto. + intros. transitivity a0; auto. +Qed. + +Instance Equal_Equivalence : Equivalence Equal := { + Equivalence_Reflexive := Equal_refl; + Equivalence_Symmetric := Equal_sym; + Equivalence_Transitive := Equal_trans +}. + +Hypothesis eqAdec: EqDec A eqA. + +Program Definition Equal_dec (m1 m2: T.t A) : { m1 === m2 } + { m1 =/= m2 } := + match T.beq (fun a1 a2 => proj_sumbool (a1 == a2)) m1 m2 with + | true => left _ + | false => right _ + end. +Next Obligation. + rename Heq_anonymous into B. + symmetry in B. rewrite T.beq_correct in B. + red; intros. generalize (B x). + destruct (T.get x m1); destruct (T.get x m2); auto. + intros. eapply proj_sumbool_true; eauto. +Qed. +Next Obligation. + assert (T.beq (fun a1 a2 => proj_sumbool (a1 == a2)) m1 m2 = true). + apply T.beq_correct; intros. + generalize (H x). + destruct (T.get x m1); destruct (T.get x m2); try tauto. + intros. apply proj_sumbool_is_true; auto. + unfold equiv, complement in H0. congruence. +Qed. + +Instance Equal_EqDec : EqDec (T.t A) Equal := Equal_dec. + +End EXTENSIONAL_EQUALITY. + End Tree_Properties. Module PTree_Properties := Tree_Properties(PTree). |