diff options
Diffstat (limited to 'flocq/Appli/Fappli_rnd_odd.v')
-rw-r--r-- | flocq/Appli/Fappli_rnd_odd.v | 979 |
1 files changed, 979 insertions, 0 deletions
diff --git a/flocq/Appli/Fappli_rnd_odd.v b/flocq/Appli/Fappli_rnd_odd.v new file mode 100644 index 0000000..b4a2c52 --- /dev/null +++ b/flocq/Appli/Fappli_rnd_odd.v @@ -0,0 +1,979 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2013 Sylvie Boldo +#<br /># +Copyright (C) 2010-2013 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * Rounding to odd and its properties, including the equivalence + between rnd_NE and double rounding with rnd_odd and then rnd_NE *) + + +Require Import Fcore. +Require Import Fcalc_ops. + +Definition Zrnd_odd x := match Req_EM_T x (Z2R (Zfloor x)) with + | left _ => Zfloor x + | right _ => match (Zeven (Zfloor x)) with + | true => Zceil x + | false => Zfloor x + end + end. + + + +Global Instance valid_rnd_odd : Valid_rnd Zrnd_odd. +Proof. +split. +(* . *) +intros x y Hxy. +assert (Zfloor x <= Zrnd_odd y)%Z. +(* .. *) +apply Zle_trans with (Zfloor y). +now apply Zfloor_le. +unfold Zrnd_odd; destruct (Req_EM_T y (Z2R (Zfloor y))). +now apply Zle_refl. +case (Zeven (Zfloor y)). +apply le_Z2R. +apply Rle_trans with y. +apply Zfloor_lb. +apply Zceil_ub. +now apply Zle_refl. +unfold Zrnd_odd at 1. +(* . *) +destruct (Req_EM_T x (Z2R (Zfloor x))) as [Hx|Hx]. +(* .. *) +apply H. +(* .. *) +case_eq (Zeven (Zfloor x)); intros Hx2. +2: apply H. +unfold Zrnd_odd; destruct (Req_EM_T y (Z2R (Zfloor y))) as [Hy|Hy]. +apply Zceil_glb. +now rewrite <- Hy. +case_eq (Zeven (Zfloor y)); intros Hy2. +now apply Zceil_le. +apply Zceil_glb. +assert (H0:(Zfloor x <= Zfloor y)%Z) by now apply Zfloor_le. +case (Zle_lt_or_eq _ _ H0); intros H1. +apply Rle_trans with (1:=Zceil_ub _). +rewrite Zceil_floor_neq. +apply Z2R_le; omega. +now apply sym_not_eq. +contradict Hy2. +rewrite <- H1, Hx2; discriminate. +(* . *) +intros n; unfold Zrnd_odd. +rewrite Zfloor_Z2R, Zceil_Z2R. +destruct (Req_EM_T (Z2R n) (Z2R n)); trivial. +case (Zeven n); trivial. +Qed. + + + +Lemma Zrnd_odd_Zodd: forall x, x <> (Z2R (Zfloor x)) -> + (Zeven (Zrnd_odd x)) = false. +Proof. +intros x Hx; unfold Zrnd_odd. +destruct (Req_EM_T x (Z2R (Zfloor x))) as [H|H]. +now contradict H. +case_eq (Zeven (Zfloor x)). +(* difficult case *) +intros H'. +rewrite Zceil_floor_neq. +rewrite Zeven_plus, H'. +reflexivity. +now apply sym_not_eq. +trivial. +Qed. + + + + +Section Fcore_rnd_odd. + +Variable beta : radix. + +Notation bpow e := (bpow beta e). + +Variable fexp : Z -> Z. + +Context { valid_exp : Valid_exp fexp }. +Context { exists_NE_ : Exists_NE beta fexp }. + +Notation format := (generic_format beta fexp). +Notation canonic := (canonic beta fexp). +Notation cexp := (canonic_exp beta fexp). + + +Definition Rnd_odd_pt (x f : R) := + format f /\ ((f = x)%R \/ + ((Rnd_DN_pt format x f \/ Rnd_UP_pt format x f) /\ + exists g : float beta, f = F2R g /\ canonic g /\ Zeven (Fnum g) = false)). + +Definition Rnd_odd (rnd : R -> R) := + forall x : R, Rnd_odd_pt x (rnd x). + + +Theorem Rnd_odd_pt_sym : forall x f : R, + Rnd_odd_pt (-x) (-f) -> Rnd_odd_pt x f. +Proof with auto with typeclass_instances. +intros x f (H1,H2). +split. +replace f with (-(-f))%R by ring. +now apply generic_format_opp. +destruct H2. +left. +replace f with (-(-f))%R by ring. +rewrite H; ring. +right. +destruct H as (H2,(g,(Hg1,(Hg2,Hg3)))). +split. +destruct H2. +right. +replace f with (-(-f))%R by ring. +replace x with (-(-x))%R by ring. +apply Rnd_DN_UP_pt_sym... +apply generic_format_opp. +left. +replace f with (-(-f))%R by ring. +replace x with (-(-x))%R by ring. +apply Rnd_UP_DN_pt_sym... +apply generic_format_opp. +exists (Float beta (-Fnum g) (Fexp g)). +split. +rewrite F2R_Zopp. +replace f with (-(-f))%R by ring. +rewrite Hg1; reflexivity. +split. +now apply canonic_opp. +simpl. +now rewrite Zeven_opp. +Qed. + + +Theorem round_odd_opp : + forall x, + (round beta fexp Zrnd_odd (-x) = (- round beta fexp Zrnd_odd x))%R. +Proof. +intros x; unfold round. +rewrite <- F2R_Zopp. +unfold F2R; simpl. +apply f_equal2; apply f_equal. +rewrite scaled_mantissa_opp. +generalize (scaled_mantissa beta fexp x); intros r. +unfold Zrnd_odd. +case (Req_EM_T (- r) (Z2R (Zfloor (- r)))). +case (Req_EM_T r (Z2R (Zfloor r))). +intros Y1 Y2. +apply eq_Z2R. +now rewrite Z2R_opp, <- Y1, <-Y2. +intros Y1 Y2. +absurd (r=Z2R (Zfloor r)); trivial. +pattern r at 2; replace r with (-(-r))%R by ring. +rewrite Y2, <- Z2R_opp. +rewrite Zfloor_Z2R. +rewrite Z2R_opp, <- Y2. +ring. +case (Req_EM_T r (Z2R (Zfloor r))). +intros Y1 Y2. +absurd (-r=Z2R (Zfloor (-r)))%R; trivial. +pattern r at 2; rewrite Y1. +rewrite <- Z2R_opp, Zfloor_Z2R. +now rewrite Z2R_opp, <- Y1. +intros Y1 Y2. +unfold Zceil; rewrite Ropp_involutive. +replace (Zeven (Zfloor (- r))) with (negb (Zeven (Zfloor r))). +case (Zeven (Zfloor r)); simpl; ring. +apply trans_eq with (Zeven (Zceil r)). +rewrite Zceil_floor_neq. +rewrite Zeven_plus. +simpl; reflexivity. +now apply sym_not_eq. +rewrite <- (Zeven_opp (Zfloor (- r))). +reflexivity. +apply canonic_exp_opp. +Qed. + + + +Theorem round_odd_pt : + forall x, + Rnd_odd_pt x (round beta fexp Zrnd_odd x). +Proof with auto with typeclass_instances. +cut (forall x : R, (0 < x)%R -> Rnd_odd_pt x (round beta fexp Zrnd_odd x)). +intros H x; case (Rle_or_lt 0 x). +intros H1; destruct H1. +now apply H. +rewrite <- H0. +rewrite round_0... +split. +apply generic_format_0. +now left. +intros Hx; apply Rnd_odd_pt_sym. +rewrite <- round_odd_opp. +apply H. +auto with real. +(* *) +intros x Hxp. +generalize (generic_format_round beta fexp Zrnd_odd x). +set (o:=round beta fexp Zrnd_odd x). +intros Ho. +split. +assumption. +(* *) +case (Req_dec o x); intros Hx. +now left. +right. +assert (o=round beta fexp Zfloor x \/ o=round beta fexp Zceil x). +unfold o, round, F2R;simpl. +case (Zrnd_DN_or_UP Zrnd_odd (scaled_mantissa beta fexp x))... +intros H; rewrite H; now left. +intros H; rewrite H; now right. +split. +destruct H; rewrite H. +left; apply round_DN_pt... +right; apply round_UP_pt... +(* *) +unfold o, Zrnd_odd, round. +case (Req_EM_T (scaled_mantissa beta fexp x) + (Z2R (Zfloor (scaled_mantissa beta fexp x)))). +intros T. +absurd (o=x); trivial. +apply round_generic... +unfold generic_format, F2R; simpl. +rewrite <- (scaled_mantissa_mult_bpow beta fexp) at 1. +apply f_equal2; trivial; rewrite T at 1. +apply f_equal, sym_eq, Ztrunc_floor. +apply Rmult_le_pos. +now left. +apply bpow_ge_0. +intros L. +case_eq (Zeven (Zfloor (scaled_mantissa beta fexp x))). +(* . *) +generalize (generic_format_round beta fexp Zceil x). +unfold generic_format. +set (f:=round beta fexp Zceil x). +set (ef := canonic_exp beta fexp f). +set (mf := Ztrunc (scaled_mantissa beta fexp f)). +exists (Float beta mf ef). +unfold Fcore_generic_fmt.canonic. +rewrite <- H0. +repeat split; try assumption. +apply trans_eq with (negb (Zeven (Zfloor (scaled_mantissa beta fexp x)))). +2: rewrite H1; reflexivity. +apply trans_eq with (negb (Zeven (Fnum + (Float beta (Zfloor (scaled_mantissa beta fexp x)) (cexp x))))). +2: reflexivity. +case (Rle_lt_or_eq_dec 0 (round beta fexp Zfloor x)). +rewrite <- round_0 with beta fexp Zfloor... +apply round_le... +now left. +intros Y. +generalize (DN_UP_parity_generic beta fexp)... +unfold DN_UP_parity_prop. +intros T; apply T with x; clear T. +unfold generic_format. +rewrite <- (scaled_mantissa_mult_bpow beta fexp x) at 1. +unfold F2R; simpl. +apply Rmult_neq_compat_r. +apply Rgt_not_eq, bpow_gt_0. +rewrite Ztrunc_floor. +assumption. +apply Rmult_le_pos. +now left. +apply bpow_ge_0. +unfold Fcore_generic_fmt.canonic. +simpl. +apply sym_eq, canonic_exp_DN... +unfold Fcore_generic_fmt.canonic. +rewrite <- H0; reflexivity. +reflexivity. +apply trans_eq with (round beta fexp Ztrunc (round beta fexp Zceil x)). +reflexivity. +apply round_generic... +intros Y. +replace (Fnum {| Fnum := Zfloor (scaled_mantissa beta fexp x); Fexp := cexp x |}) + with (Fnum (Float beta 0 (fexp (ln_beta beta 0)))). +generalize (DN_UP_parity_generic beta fexp)... +unfold DN_UP_parity_prop. +intros T; apply T with x; clear T. +unfold generic_format. +rewrite <- (scaled_mantissa_mult_bpow beta fexp x) at 1. +unfold F2R; simpl. +apply Rmult_neq_compat_r. +apply Rgt_not_eq, bpow_gt_0. +rewrite Ztrunc_floor. +assumption. +apply Rmult_le_pos. +now left. +apply bpow_ge_0. +apply canonic_0. +unfold Fcore_generic_fmt.canonic. +rewrite <- H0; reflexivity. +rewrite <- Y; unfold F2R; simpl; ring. +apply trans_eq with (round beta fexp Ztrunc (round beta fexp Zceil x)). +reflexivity. +apply round_generic... +simpl. +apply eq_Z2R, Rmult_eq_reg_r with (bpow (cexp x)). +unfold round, F2R in Y; simpl in Y; rewrite <- Y. +simpl; ring. +apply Rgt_not_eq, bpow_gt_0. +(* . *) +intros Y. +case (Rle_lt_or_eq_dec 0 (round beta fexp Zfloor x)). +rewrite <- round_0 with beta fexp Zfloor... +apply round_le... +now left. +intros Hrx. +set (ef := canonic_exp beta fexp x). +set (mf := Zfloor (scaled_mantissa beta fexp x)). +exists (Float beta mf ef). +unfold Fcore_generic_fmt.canonic. +repeat split; try assumption. +simpl. +apply trans_eq with (cexp (round beta fexp Zfloor x )). +apply sym_eq, canonic_exp_DN... +reflexivity. +intros Hrx; contradict Y. +replace (Zfloor (scaled_mantissa beta fexp x)) with 0%Z. +simpl; discriminate. +apply eq_Z2R, Rmult_eq_reg_r with (bpow (cexp x)). +unfold round, F2R in Hrx; simpl in Hrx; rewrite <- Hrx. +simpl; ring. +apply Rgt_not_eq, bpow_gt_0. +Qed. + +End Fcore_rnd_odd. + +Section Odd_prop_aux. + +Variable beta : radix. +Hypothesis Even_beta: Zeven (radix_val beta)=true. + +Notation bpow e := (bpow beta e). + +Variable fexp : Z -> Z. +Variable fexpe : Z -> Z. + +Context { valid_exp : Valid_exp fexp }. +Context { exists_NE_ : Exists_NE beta fexp }. (* for underflow reason *) +Context { valid_expe : Valid_exp fexpe }. +Context { exists_NE_e : Exists_NE beta fexpe }. (* for defining rounding to odd *) + +Hypothesis fexpe_fexp: forall e, (fexpe e <= fexp e -2)%Z. + + +Lemma generic_format_fexpe_fexp: forall x, + generic_format beta fexp x -> generic_format beta fexpe x. +Proof. +intros x Hx. +apply generic_inclusion_ln_beta with fexp; trivial; intros Hx2. +generalize (fexpe_fexp (ln_beta beta x)). +omega. +Qed. + + + +Lemma exists_even_fexp_lt: forall (c:Z->Z), forall (x:R), + (exists f:float beta, F2R f = x /\ (c (ln_beta beta x) < Fexp f)%Z) -> + exists f:float beta, F2R f =x /\ canonic beta c f /\ Zeven (Fnum f) = true. +Proof with auto with typeclass_instances. +intros c x (g,(Hg1,Hg2)). +exists (Float beta + (Fnum g*Z.pow (radix_val beta) (Fexp g - c (ln_beta beta x))) + (c (ln_beta beta x))). +assert (F2R (Float beta + (Fnum g*Z.pow (radix_val beta) (Fexp g - c (ln_beta beta x))) + (c (ln_beta beta x))) = x). +unfold F2R; simpl. +rewrite Z2R_mult, Z2R_Zpower. +rewrite Rmult_assoc, <- bpow_plus. +rewrite <- Hg1; unfold F2R. +apply f_equal, f_equal. +ring. +omega. +split; trivial. +split. +unfold canonic, canonic_exp. +now rewrite H. +simpl. +rewrite Zeven_mult. +rewrite Zeven_Zpower. +rewrite Even_beta. +apply Bool.orb_true_intro. +now right. +omega. +Qed. + + +Variable choice:Z->bool. +Variable x:R. + + +Variable d u: float beta. +Hypothesis Hd: Rnd_DN_pt (generic_format beta fexp) x (F2R d). +Hypothesis Cd: canonic beta fexp d. +Hypothesis Hu: Rnd_UP_pt (generic_format beta fexp) x (F2R u). +Hypothesis Cu: canonic beta fexp u. + +Hypothesis xPos: (0 < x)%R. + + +Let m:= ((F2R d+F2R u)/2)%R. + + +Lemma d_eq: F2R d= round beta fexp Zfloor x. +Proof with auto with typeclass_instances. +apply Rnd_DN_pt_unicity with (generic_format beta fexp) x... +apply round_DN_pt... +Qed. + + +Lemma u_eq: F2R u= round beta fexp Zceil x. +Proof with auto with typeclass_instances. +apply Rnd_UP_pt_unicity with (generic_format beta fexp) x... +apply round_UP_pt... +Qed. + + +Lemma d_ge_0: (0 <= F2R d)%R. +Proof with auto with typeclass_instances. +rewrite d_eq; apply round_ge_generic... +apply generic_format_0. +now left. +Qed. + + + +Lemma ln_beta_d: (0< F2R d)%R -> + (ln_beta beta (F2R d) = ln_beta beta x :>Z). +Proof with auto with typeclass_instances. +intros Y. +rewrite d_eq; apply ln_beta_round_DN... +now rewrite <- d_eq. +Qed. + + +Lemma Fexp_d: (0 < F2R d)%R -> Fexp d =fexp (ln_beta beta x). +Proof with auto with typeclass_instances. +intros Y. +now rewrite Cd, <- ln_beta_d. +Qed. + + + +Lemma format_bpow_x: (0 < F2R d)%R + -> generic_format beta fexp (bpow (ln_beta beta x)). +Proof with auto with typeclass_instances. +intros Y. +apply generic_format_bpow. +apply valid_exp. +rewrite <- Fexp_d; trivial. +apply Zlt_le_trans with (ln_beta beta (F2R d))%Z. +rewrite Cd; apply ln_beta_generic_gt... +now apply Rgt_not_eq. +apply Hd. +apply ln_beta_le; trivial. +apply Hd. +Qed. + + +Lemma format_bpow_d: (0 < F2R d)%R -> + generic_format beta fexp (bpow (ln_beta beta (F2R d))). +Proof with auto with typeclass_instances. +intros Y; apply generic_format_bpow. +apply valid_exp. +apply ln_beta_generic_gt... +now apply Rgt_not_eq. +now apply generic_format_canonic. +Qed. + + +Lemma d_le_m: (F2R d <= m)%R. +apply Rmult_le_reg_l with 2%R. +auto with real. +apply Rplus_le_reg_l with (-F2R d)%R. +apply Rle_trans with (F2R d). +right; ring. +apply Rle_trans with (F2R u). +apply Rle_trans with x. +apply Hd. +apply Hu. +right; unfold m; field. +Qed. + +Lemma m_le_u: (m <= F2R u)%R. +apply Rmult_le_reg_l with 2%R. +auto with real. +apply Rplus_le_reg_l with (-F2R u)%R. +apply Rle_trans with (F2R d). +right; unfold m; field. +apply Rle_trans with (F2R u). +apply Rle_trans with x. +apply Hd. +apply Hu. +right; ring. +Qed. + +Lemma ln_beta_m: (0 < F2R d)%R -> (ln_beta beta m =ln_beta beta (F2R d) :>Z). +Proof with auto with typeclass_instances. +intros dPos; apply ln_beta_unique_pos. +split. +apply Rle_trans with (F2R d). +destruct (ln_beta beta (F2R d)) as (e,He). +simpl. +rewrite Rabs_right in He. +apply He. +now apply Rgt_not_eq. +apply Rle_ge; now left. +apply d_le_m. +case m_le_u; intros H. +apply Rlt_le_trans with (1:=H). +rewrite u_eq. +apply round_le_generic... +apply generic_format_bpow. +apply valid_exp. +apply ln_beta_generic_gt... +now apply Rgt_not_eq. +now apply generic_format_canonic. +case (Rle_or_lt x (bpow (ln_beta beta (F2R d)))); trivial; intros Z. +absurd ((bpow (ln_beta beta (F2R d)) <= (F2R d)))%R. +apply Rlt_not_le. +destruct (ln_beta beta (F2R d)) as (e,He). +simpl in *; rewrite Rabs_right in He. +apply He. +now apply Rgt_not_eq. +apply Rle_ge; now left. +apply Rle_trans with (round beta fexp Zfloor x). +2: right; apply sym_eq, d_eq. +apply round_ge_generic... +apply generic_format_bpow. +apply valid_exp. +apply ln_beta_generic_gt... +now apply Rgt_not_eq. +now apply generic_format_canonic. +now left. +replace m with (F2R d). +destruct (ln_beta beta (F2R d)) as (e,He). +simpl in *; rewrite Rabs_right in He. +apply He. +now apply Rgt_not_eq. +apply Rle_ge; now left. +assert (F2R d = F2R u). +apply Rmult_eq_reg_l with (/2)%R. +apply Rplus_eq_reg_l with (/2*F2R u)%R. +apply trans_eq with m. +unfold m, Rdiv; ring. +rewrite H; field. +auto with real. +apply Rgt_not_eq, Rlt_gt; auto with real. +unfold m; rewrite <- H0; field. +Qed. + + +Lemma ln_beta_m_0: (0 = F2R d)%R + -> (ln_beta beta m =ln_beta beta (F2R u)-1:>Z)%Z. +Proof with auto with typeclass_instances. +intros Y. +apply ln_beta_unique_pos. +unfold m; rewrite <- Y, Rplus_0_l. +rewrite u_eq. +destruct (ln_beta beta x) as (e,He). +rewrite Rabs_right in He. +rewrite round_UP_small_pos with (ex:=e). +rewrite ln_beta_bpow. +ring_simplify (fexp e + 1 - 1)%Z. +split. +unfold Zminus; rewrite bpow_plus. +unfold Rdiv; apply Rmult_le_compat_l. +apply bpow_ge_0. +simpl; unfold Z.pow_pos; simpl. +rewrite Zmult_1_r; apply Rinv_le. +auto with real. +apply (Z2R_le 2). +specialize (radix_gt_1 beta). +omega. +apply Rlt_le_trans with (bpow (fexp e)*1)%R. +2: right; ring. +unfold Rdiv; apply Rmult_lt_compat_l. +apply bpow_gt_0. +rewrite <- Rinv_1 at 3. +apply Rinv_lt; auto with real. +now apply He, Rgt_not_eq. +apply exp_small_round_0_pos with beta (Zfloor) x... +now apply He, Rgt_not_eq. +now rewrite <- d_eq, Y. +now left. +Qed. + + + + + +Lemma u'_eq: (0 < F2R d)%R -> exists f:float beta, F2R f = F2R u /\ (Fexp f = Fexp d)%Z. +Proof with auto with typeclass_instances. +intros Y. +rewrite u_eq; unfold round. +eexists; repeat split. +simpl; now rewrite Fexp_d. +Qed. + + + + +Lemma m_eq: (0 < F2R d)%R -> exists f:float beta, + F2R f = m /\ (Fexp f = fexp (ln_beta beta x) -1)%Z. +Proof with auto with typeclass_instances. +intros Y. +specialize (Zeven_ex (radix_val beta)); rewrite Even_beta. +intros (b, Hb); rewrite Zplus_0_r in Hb. +destruct u'_eq as (u', (Hu'1,Hu'2)); trivial. +exists (Fmult beta (Float beta b (-1)) (Fplus beta d u'))%R. +split. +rewrite F2R_mult, F2R_plus, Hu'1. +unfold m; rewrite Rmult_comm. +unfold Rdiv; apply f_equal. +unfold F2R; simpl; unfold Z.pow_pos; simpl. +rewrite Zmult_1_r, Hb, Z2R_mult. +simpl; field. +apply Rgt_not_eq, Rmult_lt_reg_l with (Z2R 2). +simpl; auto with real. +rewrite Rmult_0_r, <-Z2R_mult, <-Hb. +apply radix_pos. +apply trans_eq with (-1+Fexp (Fplus beta d u'))%Z. +unfold Fmult. +destruct (Fplus beta d u'); reflexivity. +rewrite Zplus_comm; unfold Zminus; apply f_equal2. +2: reflexivity. +rewrite Fexp_Fplus. +rewrite Z.min_l. +now rewrite Fexp_d. +rewrite Hu'2; omega. +Qed. + +Lemma m_eq_0: (0 = F2R d)%R -> exists f:float beta, + F2R f = m /\ (Fexp f = fexp (ln_beta beta (F2R u)) -1)%Z. +Proof with auto with typeclass_instances. +intros Y. +specialize (Zeven_ex (radix_val beta)); rewrite Even_beta. +intros (b, Hb); rewrite Zplus_0_r in Hb. +exists (Fmult beta (Float beta b (-1)) u)%R. +split. +rewrite F2R_mult; unfold m; rewrite <- Y, Rplus_0_l. +rewrite Rmult_comm. +unfold Rdiv; apply f_equal. +unfold F2R; simpl; unfold Z.pow_pos; simpl. +rewrite Zmult_1_r, Hb, Z2R_mult. +simpl; field. +apply Rgt_not_eq, Rmult_lt_reg_l with (Z2R 2). +simpl; auto with real. +rewrite Rmult_0_r, <-Z2R_mult, <-Hb. +apply radix_pos. +apply trans_eq with (-1+Fexp u)%Z. +unfold Fmult. +destruct u; reflexivity. +rewrite Zplus_comm, Cu; unfold Zminus; now apply f_equal2. +Qed. + +Lemma fexp_m_eq_0: (0 = F2R d)%R -> + (fexp (ln_beta beta (F2R u)-1) < fexp (ln_beta beta (F2R u))+1)%Z. +Proof with auto with typeclass_instances. +intros Y. +assert ((fexp (ln_beta beta (F2R u) - 1) <= fexp (ln_beta beta (F2R u))))%Z. +2: omega. +destruct (ln_beta beta x) as (e,He). +rewrite Rabs_right in He. +2: now left. +assert (e <= fexp e)%Z. +apply exp_small_round_0_pos with beta (Zfloor) x... +now apply He, Rgt_not_eq. +now rewrite <- d_eq, Y. +rewrite u_eq, round_UP_small_pos with (ex:=e); trivial. +2: now apply He, Rgt_not_eq. +rewrite ln_beta_bpow. +ring_simplify (fexp e + 1 - 1)%Z. +replace (fexp (fexp e)) with (fexp e). +case exists_NE_; intros V. +contradict V; rewrite Even_beta; discriminate. +rewrite (proj2 (V e)); omega. +apply sym_eq, valid_exp; omega. +Qed. + +Lemma Fm: generic_format beta fexpe m. +case (d_ge_0); intros Y. +(* *) +destruct m_eq as (g,(Hg1,Hg2)); trivial. +apply generic_format_F2R' with g. +now apply sym_eq. +intros H; unfold canonic_exp; rewrite Hg2. +rewrite ln_beta_m; trivial. +rewrite <- Fexp_d; trivial. +rewrite Cd. +unfold canonic_exp. +generalize (fexpe_fexp (ln_beta beta (F2R d))). +omega. +(* *) +destruct m_eq_0 as (g,(Hg1,Hg2)); trivial. +apply generic_format_F2R' with g. +assumption. +intros H; unfold canonic_exp; rewrite Hg2. +rewrite ln_beta_m_0; try assumption. +apply Zle_trans with (1:=fexpe_fexp _). +assert (fexp (ln_beta beta (F2R u)-1) < fexp (ln_beta beta (F2R u))+1)%Z;[idtac|omega]. +now apply fexp_m_eq_0. +Qed. + + + +Lemma Zm: + exists g : float beta, F2R g = m /\ canonic beta fexpe g /\ Zeven (Fnum g) = true. +Proof with auto with typeclass_instances. +case (d_ge_0); intros Y. +(* *) +destruct m_eq as (g,(Hg1,Hg2)); trivial. +apply exists_even_fexp_lt. +exists g; split; trivial. +rewrite Hg2. +rewrite ln_beta_m; trivial. +rewrite <- Fexp_d; trivial. +rewrite Cd. +unfold canonic_exp. +generalize (fexpe_fexp (ln_beta beta (F2R d))). +omega. +(* *) +destruct m_eq_0 as (g,(Hg1,Hg2)); trivial. +apply exists_even_fexp_lt. +exists g; split; trivial. +rewrite Hg2. +rewrite ln_beta_m_0; trivial. +apply Zle_lt_trans with (1:=fexpe_fexp _). +assert (fexp (ln_beta beta (F2R u)-1) < fexp (ln_beta beta (F2R u))+1)%Z;[idtac|omega]. +now apply fexp_m_eq_0. +Qed. + + +Lemma DN_odd_d_aux: forall z, (F2R d<= z< F2R u)%R -> + Rnd_DN_pt (generic_format beta fexp) z (F2R d). +Proof with auto with typeclass_instances. +intros z Hz1. +replace (F2R d) with (round beta fexp Zfloor z). +apply round_DN_pt... +case (Rnd_DN_UP_pt_split _ _ _ _ Hd Hu (round beta fexp Zfloor z)). +apply generic_format_round... +intros Y; apply Rle_antisym; trivial. +apply round_DN_pt... +apply Hd. +apply Hz1. +intros Y; absurd (z < z)%R. +auto with real. +apply Rlt_le_trans with (1:=proj2 Hz1), Rle_trans with (1:=Y). +apply round_DN_pt... +Qed. + +Lemma UP_odd_d_aux: forall z, (F2R d< z <= F2R u)%R -> + Rnd_UP_pt (generic_format beta fexp) z (F2R u). +Proof with auto with typeclass_instances. +intros z Hz1. +replace (F2R u) with (round beta fexp Zceil z). +apply round_UP_pt... +case (Rnd_DN_UP_pt_split _ _ _ _ Hd Hu (round beta fexp Zceil z)). +apply generic_format_round... +intros Y; absurd (z < z)%R. +auto with real. +apply Rle_lt_trans with (2:=proj1 Hz1), Rle_trans with (2:=Y). +apply round_UP_pt... +intros Y; apply Rle_antisym; trivial. +apply round_UP_pt... +apply Hu. +apply Hz1. +Qed. + + +Theorem round_odd_prop_pos: + round beta fexp (Znearest choice) (round beta fexpe Zrnd_odd x) = + round beta fexp (Znearest choice) x. +Proof with auto with typeclass_instances. +set (o:=round beta fexpe Zrnd_odd x). +case (generic_format_EM beta fexp x); intros Hx. +replace o with x; trivial. +unfold o; apply sym_eq, round_generic... +now apply generic_format_fexpe_fexp. +assert (K1:(F2R d <= o)%R). +apply round_ge_generic... +apply generic_format_fexpe_fexp, Hd. +apply Hd. +assert (K2:(o <= F2R u)%R). +apply round_le_generic... +apply generic_format_fexpe_fexp, Hu. +apply Hu. +assert (P:(x <> m -> o=m -> (forall P:Prop, P))). +intros Y1 Y2. +assert (H:(Rnd_odd_pt beta fexpe x o)). +apply round_odd_pt... +destruct H as (_,H); destruct H. +absurd (x=m)%R; try trivial. +now rewrite <- Y2, H. +destruct H as (_,(k,(Hk1,(Hk2,Hk3)))). +destruct Zm as (k',(Hk'1,(Hk'2,Hk'3))). +absurd (true=false). +discriminate. +rewrite <- Hk3, <- Hk'3. +apply f_equal, f_equal. +apply canonic_unicity with fexpe... +now rewrite Hk'1, <- Y2. +assert (generic_format beta fexp o -> (forall P:Prop, P)). +intros Y. +assert (H:(Rnd_odd_pt beta fexpe x o)). +apply round_odd_pt... +destruct H as (_,H); destruct H. +absurd (generic_format beta fexp x); trivial. +now rewrite <- H. +destruct H as (_,(k,(Hk1,(Hk2,Hk3)))). +destruct (exists_even_fexp_lt fexpe o) as (k',(Hk'1,(Hk'2,Hk'3))). +eexists; split. +apply sym_eq, Y. +simpl; unfold canonic_exp. +apply Zle_lt_trans with (1:=fexpe_fexp _). +omega. +absurd (true=false). +discriminate. +rewrite <- Hk3, <- Hk'3. +apply f_equal, f_equal. +apply canonic_unicity with fexpe... +now rewrite Hk'1, <- Hk1. +case K1; clear K1; intros K1. +2: apply H; rewrite <- K1; apply Hd. +case K2; clear K2; intros K2. +2: apply H; rewrite K2; apply Hu. +case (Rle_or_lt x m); intros Y;[destruct Y|idtac]. +(* . *) +apply trans_eq with (F2R d). +apply round_N_DN_betw with (F2R u)... +apply DN_odd_d_aux; split; try left; assumption. +apply UP_odd_d_aux; split; try left; assumption. +split. +apply round_ge_generic... +apply generic_format_fexpe_fexp, Hd. +apply Hd. +assert (o <= (F2R d + F2R u) / 2)%R. +apply round_le_generic... +apply Fm. +now left. +destruct H1; trivial. +apply P. +now apply Rlt_not_eq. +trivial. +apply sym_eq, round_N_DN_betw with (F2R u)... +split. +apply Hd. +exact H0. +(* . *) +replace o with x. +reflexivity. +apply sym_eq, round_generic... +rewrite H0; apply Fm. +(* . *) +apply trans_eq with (F2R u). +apply round_N_UP_betw with (F2R d)... +apply DN_odd_d_aux; split; try left; assumption. +apply UP_odd_d_aux; split; try left; assumption. +split. +assert ((F2R d + F2R u) / 2 <= o)%R. +apply round_ge_generic... +apply Fm. +now left. +destruct H0; trivial. +apply P. +now apply Rgt_not_eq. +rewrite <- H0; trivial. +apply round_le_generic... +apply generic_format_fexpe_fexp, Hu. +apply Hu. +apply sym_eq, round_N_UP_betw with (F2R d)... +split. +exact Y. +apply Hu. +Qed. + + +End Odd_prop_aux. + +Section Odd_prop. + +Variable beta : radix. +Hypothesis Even_beta: Zeven (radix_val beta)=true. + +Variable fexp : Z -> Z. +Variable fexpe : Z -> Z. +Variable choice:Z->bool. + +Context { valid_exp : Valid_exp fexp }. +Context { exists_NE_ : Exists_NE beta fexp }. (* for underflow reason *) +Context { valid_expe : Valid_exp fexpe }. +Context { exists_NE_e : Exists_NE beta fexpe }. (* for defining rounding to odd *) + +Hypothesis fexpe_fexp: forall e, (fexpe e <= fexp e -2)%Z. + + +Theorem canonizer: forall f, generic_format beta fexp f + -> exists g : float beta, f = F2R g /\ canonic beta fexp g. +Proof with auto with typeclass_instances. +intros f Hf. +exists (Float beta (Ztrunc (scaled_mantissa beta fexp f)) (canonic_exp beta fexp f)). +assert (L:(f = F2R (Float beta (Ztrunc (scaled_mantissa beta fexp f)) (canonic_exp beta fexp f)))). +apply trans_eq with (round beta fexp Ztrunc f). +apply sym_eq, round_generic... +reflexivity. +split; trivial. +unfold canonic; rewrite <- L. +reflexivity. +Qed. + + + + +Theorem round_odd_prop: forall x, + round beta fexp (Znearest choice) (round beta fexpe Zrnd_odd x) = + round beta fexp (Znearest choice) x. +Proof with auto with typeclass_instances. +intros x. +case (total_order_T x 0); intros H; [case H; clear H; intros H | idtac]. +rewrite <- (Ropp_involutive x). +rewrite round_odd_opp. +rewrite 2!round_N_opp. +apply f_equal. +destruct (canonizer (round beta fexp Zfloor (-x))) as (d,(Hd1,Hd2)). +apply generic_format_round... +destruct (canonizer (round beta fexp Zceil (-x))) as (u,(Hu1,Hu2)). +apply generic_format_round... +apply round_odd_prop_pos with d u... +rewrite <- Hd1; apply round_DN_pt... +rewrite <- Hu1; apply round_UP_pt... +auto with real. +(* . *) +rewrite H; repeat rewrite round_0... +(* . *) +destruct (canonizer (round beta fexp Zfloor x)) as (d,(Hd1,Hd2)). +apply generic_format_round... +destruct (canonizer (round beta fexp Zceil x)) as (u,(Hu1,Hu2)). +apply generic_format_round... +apply round_odd_prop_pos with d u... +rewrite <- Hd1; apply round_DN_pt... +rewrite <- Hu1; apply round_UP_pt... +Qed. + + +End Odd_prop. |