diff options
Diffstat (limited to 'common/Smallstep.v')
-rw-r--r-- | common/Smallstep.v | 303 |
1 files changed, 275 insertions, 28 deletions
diff --git a/common/Smallstep.v b/common/Smallstep.v index 63ab5ea..458e8c6 100644 --- a/common/Smallstep.v +++ b/common/Smallstep.v @@ -817,12 +817,15 @@ End COMPOSE_SIMULATIONS. (** * Receptiveness and determinacy *) +Definition single_events (L: semantics) : Prop := + forall s t s', Step L s t s' -> (length t <= 1)%nat. + Record receptive (L: semantics) : Prop := Receptive { sr_receptive: forall s t1 s1 t2, Step L s t1 s1 -> match_traces (globalenv L) t1 t2 -> exists s2, Step L s t2 s2; - sr_traces: forall s t s', - Step L s t s' -> (length t <= 1)%nat + sr_traces: + single_events L }. Record determinate (L: semantics) : Prop := @@ -830,8 +833,8 @@ Record determinate (L: semantics) : Prop := sd_determ: forall s t1 s1 t2 s2, Step L s t1 s1 -> Step L s t2 s2 -> match_traces (globalenv L) t1 t2 /\ (t1 = t2 -> s1 = s2); - sd_traces: forall s t s', - Step L s t s' -> (length t <= 1)%nat; + sd_traces: + single_events L; sd_initial_determ: forall s1 s2, initial_state L s1 -> initial_state L s2 -> s1 = s2; sd_final_nostep: forall s r, @@ -925,8 +928,6 @@ Record backward_simulation (L1 L2: semantics) : Type := exists i', exists s1', (Plus L1 s1 t s1' \/ (Star L1 s1 t s1' /\ bsim_order i' i)) /\ bsim_match_states i' s1' s2'; - bsim_traces: - forall s2 t s2', Step L2 s2 t s2' -> (length t <= 1)%nat; bsim_symbols_preserved: forall id, Genv.find_symbol (globalenv L2) id = Genv.find_symbol (globalenv L1) id }. @@ -960,9 +961,6 @@ Variable L2: semantics. Hypothesis symbols_preserved: forall id, Genv.find_symbol (globalenv L2) id = Genv.find_symbol (globalenv L1) id. -Hypothesis length_traces: - forall s2 t s2', Step L2 s2 t s2' -> (length t <= 1)%nat. - Variable match_states: state L1 -> state L2 -> Prop. Hypothesis initial_states_exist: @@ -1085,6 +1083,7 @@ Section COMPOSE_BACKWARD_SIMULATIONS. Variable L1: semantics. Variable L2: semantics. Variable L3: semantics. +Hypothesis L3_single_events: single_events L3. Variable S12: backward_simulation L1 L2. Variable S23: backward_simulation L2 L3. @@ -1117,7 +1116,7 @@ Proof. intros [ [i2' [s2' [PLUS2 MATCH2]]] | [i2' [ORD2 [EQ MATCH2]]]]. (* 1 L2 makes one or several transitions *) assert (EITHER: t = E0 \/ (length t = 1)%nat). - exploit bsim_traces; eauto. + exploit L3_single_events; eauto. destruct t; auto. destruct t; auto. simpl. intros. omegaContradiction. destruct EITHER. (* 1.1 these are silent transitions *) @@ -1202,8 +1201,6 @@ Proof. eapply (bsim_progress S23). eauto. eapply star_safe; eauto. eapply bsim_safe; eauto. (* simulation *) exact bb_simulation. -(* trace length *) - exact (bsim_traces S23). (* symbols *) intros. transitivity (Genv.find_symbol (globalenv L2) id); apply bsim_symbols_preserved; auto. Qed. @@ -1217,9 +1214,8 @@ Section FORWARD_TO_BACKWARD. Variable L1: semantics. Variable L2: semantics. Variable FS: forward_simulation L1 L2. - -Hypothesis receptive: receptive L1. -Hypothesis determinate: determinate L2. +Hypothesis L1_receptive: receptive L1. +Hypothesis L2_determinate: determinate L2. (** Exploiting forward simulation *) @@ -1391,7 +1387,7 @@ Proof. (* 1. At matching states *) exploit f2b_progress; eauto. intros TRANS; inv TRANS. (* 1.1 L1 can reach final state and L2 is at final state: impossible! *) - exploit (sd_final_nostep determinate); eauto. contradiction. + exploit (sd_final_nostep L2_determinate); eauto. contradiction. (* 1.2 L1 can make 0 or several steps; L2 can make 1 or several matching steps. *) inv H2. exploit f2b_determinacy_inv. eexact H5. eexact STEP2. @@ -1409,15 +1405,15 @@ Proof. right; split. auto. constructor. econstructor. eauto. auto. apply star_one; eauto. eauto. eauto. (* 1.2.2 L2 makes a non-silent transition, and so does L1 *) - exploit not_silent_length. eapply (sr_traces receptive); eauto. intros [EQ | EQ]. + exploit not_silent_length. eapply (sr_traces L1_receptive); eauto. intros [EQ | EQ]. congruence. subst t2. rewrite E0_right in H1. (* Use receptiveness to equate the traces *) - exploit (sr_receptive receptive); eauto. intros [s1''' STEP1]. + exploit (sr_receptive L1_receptive); eauto. intros [s1''' STEP1]. exploit fsim_simulation_not_E0. eexact STEP1. auto. eauto. intros [i''' [s2''' [P Q]]]. inv P. (* Exploit determinacy *) - exploit not_silent_length. eapply (sr_traces receptive); eauto. intros [EQ | EQ]. + exploit not_silent_length. eapply (sr_traces L1_receptive); eauto. intros [EQ | EQ]. subst t0. simpl in *. exploit sd_determ_1. eauto. eexact STEP2. eexact H2. intros. elim NOT2. inv H8. auto. subst t2. rewrite E0_right in *. @@ -1436,17 +1432,17 @@ Proof. right; split. apply star_refl. constructor. omega. econstructor; eauto. eapply star_right; eauto. (* 2.2 L2 make a non-silent transition *) - exploit not_silent_length. eapply (sr_traces receptive); eauto. intros [EQ | EQ]. + exploit not_silent_length. eapply (sr_traces L1_receptive); eauto. intros [EQ | EQ]. congruence. subst. rewrite E0_right in *. (* Use receptiveness to equate the traces *) - exploit (sr_receptive receptive); eauto. intros [s1''' STEP1]. + exploit (sr_receptive L1_receptive); eauto. intros [s1''' STEP1]. exploit fsim_simulation_not_E0. eexact STEP1. auto. eauto. intros [i''' [s2''' [P Q]]]. (* Exploit determinacy *) exploit f2b_determinacy_star. eauto. eexact STEP2. auto. apply plus_star; eauto. intro R. inv R. congruence. - exploit not_silent_length. eapply (sr_traces receptive); eauto. intros [EQ | EQ]. + exploit not_silent_length. eapply (sr_traces L1_receptive); eauto. intros [EQ | EQ]. subst. simpl in *. exploit sd_determ_1. eauto. eexact STEP2. eexact H2. intros. elim NOT2. inv H7; auto. subst. rewrite E0_right in *. @@ -1482,11 +1478,11 @@ Proof. (* final states *) intros. inv H. exploit f2b_progress; eauto. intros TRANS; inv TRANS. - assert (r0 = r) by (eapply (sd_final_determ determinate); eauto). subst r0. + assert (r0 = r) by (eapply (sd_final_determ L2_determinate); eauto). subst r0. exists s1'; auto. - inv H4. exploit (sd_final_nostep determinate); eauto. contradiction. - inv H5. congruence. exploit (sd_final_nostep determinate); eauto. contradiction. - inv H2. exploit (sd_final_nostep determinate); eauto. contradiction. + inv H4. exploit (sd_final_nostep L2_determinate); eauto. contradiction. + inv H5. congruence. exploit (sd_final_nostep L2_determinate); eauto. contradiction. + inv H2. exploit (sd_final_nostep L2_determinate); eauto. contradiction. (* progress *) intros. inv H. exploit f2b_progress; eauto. intros TRANS; inv TRANS. @@ -1496,14 +1492,265 @@ Proof. inv H1. right; econstructor; econstructor; eauto. (* simulation *) exact f2b_simulation_step. -(* trace length *) - exact (sd_traces determinate). (* symbols preserved *) exact (fsim_symbols_preserved FS). Qed. End FORWARD_TO_BACKWARD. +(** * Transforming a semantics into a single-event, equivalent semantics *) + +Definition well_behaved_traces (L: semantics) : Prop := + forall s t s', Step L s t s' -> + match t with nil => True | ev :: t' => output_trace t' end. + +Section ATOMIC. + +Variable L: semantics. + +Hypothesis Lwb: well_behaved_traces L. + +Inductive atomic_step (ge: Genv.t (funtype L) (vartype L)): (trace * state L) -> trace -> (trace * state L) -> Prop := + | atomic_step_silent: forall s s', + Step L s E0 s' -> + atomic_step ge (E0, s) E0 (E0, s') + | atomic_step_start: forall s ev t s', + Step L s (ev :: t) s' -> + atomic_step ge (E0, s) (ev :: nil) (t, s') + | atomic_step_continue: forall ev t s, + output_trace (ev :: t) -> + atomic_step ge (ev :: t, s) (ev :: nil) (t, s). + +Definition atomic : semantics := {| + state := (trace * state L)%type; + funtype := funtype L; + vartype := vartype L; + step := atomic_step; + initial_state := fun s => initial_state L (snd s) /\ fst s = E0; + final_state := fun s r => final_state L (snd s) r /\ fst s = E0; + globalenv := globalenv L +|}. + +End ATOMIC. + +(** A forward simulation from a semantics [L1] to a single-event semantics [L2] + can be "factored" into a forward simulation from [atomic L1] to [L2]. *) + +Section FACTOR_FORWARD_SIMULATION. + +Variable L1: semantics. +Variable L2: semantics. +Variable sim: forward_simulation L1 L2. +Hypothesis L2single: single_events L2. + +Inductive ffs_match: fsim_index sim -> (trace * state L1) -> state L2 -> Prop := + | ffs_match_at: forall i s1 s2, + sim i s1 s2 -> + ffs_match i (E0, s1) s2 + | ffs_match_buffer: forall i ev t s1 s2 s2', + Star L2 s2 (ev :: t) s2' -> sim i s1 s2' -> + ffs_match i (ev :: t, s1) s2. + +Lemma star_non_E0_split': + forall s2 t s2', Star L2 s2 t s2' -> + match t with + | nil => True + | ev :: t' => exists s2x, Plus L2 s2 (ev :: nil) s2x /\ Star L2 s2x t' s2' + end. +Proof. + induction 1. simpl. auto. + exploit L2single; eauto. intros LEN. + destruct t1. simpl in *. subst. destruct t2. auto. + destruct IHstar as [s2x [A B]]. exists s2x; split; auto. + eapply plus_left. eauto. apply plus_star; eauto. auto. + destruct t1. simpl in *. subst t. exists s2; split; auto. apply plus_one; auto. + simpl in LEN. omegaContradiction. +Qed. + +Lemma ffs_simulation: + forall s1 t s1', Step (atomic L1) s1 t s1' -> + forall i s2, ffs_match i s1 s2 -> + exists i', exists s2', + (Plus L2 s2 t s2' \/ (Star L2 s2 t s2') /\ fsim_order sim i' i) + /\ ffs_match i' s1' s2'. +Proof. + induction 1; intros. +(* silent step *) + inv H0. + exploit (fsim_simulation sim); eauto. + intros [i' [s2' [A B]]]. + exists i'; exists s2'; split. auto. constructor; auto. +(* start step *) + inv H0. + exploit (fsim_simulation sim); eauto. + intros [i' [s2' [A B]]]. + destruct t as [ | ev' t]. + (* single event *) + exists i'; exists s2'; split. auto. constructor; auto. + (* multiple events *) + assert (C: Star L2 s2 (ev :: ev' :: t) s2'). intuition. apply plus_star; auto. + exploit star_non_E0_split'. eauto. simpl. intros [s2x [P Q]]. + exists i'; exists s2x; split. auto. econstructor; eauto. +(* continue step *) + inv H0. + exploit star_non_E0_split'. eauto. simpl. intros [s2x [P Q]]. + destruct t. + exists i; exists s2'; split. left. eapply plus_star_trans; eauto. constructor; auto. + exists i; exists s2x; split. auto. econstructor; eauto. +Qed. + +Theorem factor_forward_simulation: + forward_simulation (atomic L1) L2. +Proof. + apply Forward_simulation with (fsim_match_states := ffs_match) (fsim_order := fsim_order sim). +(* wf *) + apply fsim_order_wf. +(* initial states *) + intros. destruct s1 as [t1 s1]. simpl in H. destruct H. subst. + exploit (fsim_match_initial_states sim); eauto. intros [i [s2 [A B]]]. + exists i; exists s2; split; auto. constructor; auto. +(* final states *) + intros. destruct s1 as [t1 s1]. simpl in H0; destruct H0; subst. inv H. + eapply (fsim_match_final_states sim); eauto. +(* simulation *) + exact ffs_simulation. +(* symbols preserved *) + simpl. exact (fsim_symbols_preserved sim). +Qed. + +End FACTOR_FORWARD_SIMULATION. + +(** Likewise, a backward simulation from a single-event semantics [L1] to a semantics [L2] + can be "factored" as a backward simulation from [L1] to [atomic L2]. *) + +Section FACTOR_BACKWARD_SIMULATION. + +Variable L1: semantics. +Variable L2: semantics. +Variable sim: backward_simulation L1 L2. +Hypothesis L1single: single_events L1. +Hypothesis L2wb: well_behaved_traces L2. + +Inductive fbs_match: bsim_index sim -> state L1 -> (trace * state L2) -> Prop := + | fbs_match_intro: forall i s1 t s2 s1', + Star L1 s1 t s1' -> sim i s1' s2 -> + t = E0 \/ output_trace t -> + fbs_match i s1 (t, s2). + +Lemma fbs_simulation: + forall s2 t s2', Step (atomic L2) s2 t s2' -> + forall i s1, fbs_match i s1 s2 -> safe L1 s1 -> + exists i', exists s1', + (Plus L1 s1 t s1' \/ (Star L1 s1 t s1' /\ bsim_order sim i' i)) + /\ fbs_match i' s1' s2'. +Proof. + induction 1; intros. +(* silent step *) + inv H0. + exploit (bsim_simulation sim); eauto. eapply star_safe; eauto. + intros [i' [s1'' [A B]]]. + exists i'; exists s1''; split. + destruct A as [P | [P Q]]. left. eapply star_plus_trans; eauto. right; split; auto. eapply star_trans; eauto. + econstructor. apply star_refl. auto. auto. +(* start step *) + inv H0. + exploit (bsim_simulation sim); eauto. eapply star_safe; eauto. + intros [i' [s1'' [A B]]]. + assert (C: Star L1 s1 (ev :: t) s1''). + eapply star_trans. eauto. destruct A as [P | [P Q]]. apply plus_star; eauto. eauto. auto. + exploit star_non_E0_split'; eauto. simpl. intros [s1x [P Q]]. + exists i'; exists s1x; split. + left; auto. + econstructor; eauto. + exploit L2wb; eauto. +(* continue step *) + inv H0. unfold E0 in H8; destruct H8; try congruence. + exploit star_non_E0_split'; eauto. simpl. intros [s1x [P Q]]. + exists i; exists s1x; split. left; auto. econstructor; eauto. simpl in H0; tauto. +Qed. + +Lemma fbs_progress: + forall i s1 s2, + fbs_match i s1 s2 -> safe L1 s1 -> + (exists r, final_state (atomic L2) s2 r) \/ + (exists t, exists s2', Step (atomic L2) s2 t s2'). +Proof. + intros. inv H. destruct t. +(* 1. no buffered events *) + exploit (bsim_progress sim); eauto. eapply star_safe; eauto. + intros [[r A] | [t [s2' A]]]. +(* final state *) + left; exists r; simpl; auto. +(* L2 can step *) + destruct t. + right; exists E0; exists (nil, s2'). constructor. auto. + right; exists (e :: nil); exists (t, s2'). constructor. auto. +(* 2. some buffered events *) + unfold E0 in H3; destruct H3. congruence. + right; exists (e :: nil); exists (t, s3). constructor. auto. +Qed. + +Theorem factor_backward_simulation: + backward_simulation L1 (atomic L2). +Proof. + apply Backward_simulation with (bsim_match_states := fbs_match) (bsim_order := bsim_order sim). +(* wf *) + apply bsim_order_wf. +(* initial states exist *) + intros. exploit (bsim_initial_states_exist sim); eauto. intros [s2 A]. + exists (E0, s2). simpl; auto. +(* initial states match *) + intros. destruct s2 as [t s2]; simpl in H0; destruct H0; subst. + exploit (bsim_match_initial_states sim); eauto. intros [i [s1' [A B]]]. + exists i; exists s1'; split. auto. econstructor. apply star_refl. auto. auto. +(* final states match *) + intros. destruct s2 as [t s2]; simpl in H1; destruct H1; subst. + inv H. exploit (bsim_match_final_states sim); eauto. eapply star_safe; eauto. + intros [s1'' [A B]]. exists s1''; split; auto. eapply star_trans; eauto. +(* progress *) + exact fbs_progress. +(* simulation *) + exact fbs_simulation. +(* symbols *) + simpl. exact (bsim_symbols_preserved sim). +Qed. + +End FACTOR_BACKWARD_SIMULATION. + +(** Receptiveness of [atomic L]. *) + +Record strongly_receptive (L: semantics) : Prop := + Strongly_receptive { + ssr_receptive: forall s ev1 t1 s1 ev2, + Step L s (ev1 :: t1) s1 -> + match_traces (globalenv L) (ev1 :: nil) (ev2 :: nil) -> + exists s2, exists t2, Step L s (ev2 :: t2) s2; + ssr_well_behaved: + well_behaved_traces L + }. + +Theorem atomic_receptive: + forall L, strongly_receptive L -> receptive (atomic L). +Proof. + intros. constructor; intros. +(* receptive *) + inv H0. + (* silent step *) + inv H1. exists (E0, s'). constructor; auto. + (* start step *) + assert (exists ev2, t2 = ev2 :: nil). inv H1; econstructor; eauto. + destruct H0 as [ev2 EQ]; subst t2. + exploit ssr_receptive; eauto. intros [s2 [t2 P]]. + exploit ssr_well_behaved. eauto. eexact P. simpl; intros Q. + exists (t2, s2). constructor; auto. + (* continue step *) + simpl in H2; destruct H2. + assert (t2 = ev :: nil). inv H1; simpl in H0; tauto. + subst t2. exists (t, s0). constructor; auto. simpl; auto. +(* single-event *) + red. intros. inv H0; simpl; omega. +Qed. + (** * Connections with big-step semantics *) (** The general form of a big-step semantics *) |