summaryrefslogtreecommitdiff
path: root/backend/Machabstr2mach.v
diff options
context:
space:
mode:
Diffstat (limited to 'backend/Machabstr2mach.v')
-rw-r--r--backend/Machabstr2mach.v1185
1 files changed, 0 insertions, 1185 deletions
diff --git a/backend/Machabstr2mach.v b/backend/Machabstr2mach.v
deleted file mode 100644
index 8a2b01d..0000000
--- a/backend/Machabstr2mach.v
+++ /dev/null
@@ -1,1185 +0,0 @@
-(** Simulation between the two semantics for the Mach language. *)
-
-Require Import Coqlib.
-Require Import Maps.
-Require Import AST.
-Require Import Integers.
-Require Import Values.
-Require Import Mem.
-Require Import Events.
-Require Import Globalenvs.
-Require Import Op.
-Require Import Locations.
-Require Import Machabstr.
-Require Import Mach.
-Require Import Machtyping.
-Require Import Stackingproof.
-
-(** Two semantics were defined for the Mach intermediate language:
-- The concrete semantics (file [Mach]), where the whole activation
- record resides in memory and the [Mgetstack], [Msetstack] and
- [Mgetparent] are interpreted as [sp]-relative memory accesses.
-- The abstract semantics (file [Machabstr]), where the activation
- record is split in two parts: the Cminor stack data, resident in
- memory, and the frame information, residing not in memory but
- in additional evaluation environments.
-
- In this file, we show a simulation result between these
- semantics: if a program executes to some result [r] in the
- abstract semantics, it also executes to the same result in
- the concrete semantics. This result bridges the correctness proof
- in file [Stackingproof] (which uses the abstract Mach semantics
- as output) and that in file [PPCgenproof] (which uses the concrete
- Mach semantics as input).
-*)
-
-Remark align_16_top_ge:
- forall lo hi,
- hi <= align_16_top lo hi.
-Proof.
- intros. unfold align_16_top. apply Zmax_bound_r.
- assert (forall x, x <= (x + 15) / 16 * 16).
- intro. assert (16 > 0). omega.
- generalize (Z_div_mod_eq (x + 15) 16 H). intro.
- replace ((x + 15) / 16 * 16) with ((x + 15) - (x + 15) mod 16).
- generalize (Z_mod_lt (x + 15) 16 H). omega.
- rewrite Zmult_comm. omega.
- generalize (H (hi - lo)). omega.
-Qed.
-
-Remark align_16_top_pos:
- forall lo hi,
- 0 <= align_16_top lo hi.
-Proof.
- intros. unfold align_16_top. apply Zmax_bound_l. omega.
-Qed.
-
-Remark size_mem_pos:
- forall sz, size_mem sz > 0.
-Proof.
- destruct sz; simpl; compute; auto.
-Qed.
-
-Remark size_type_chunk:
- forall ty, size_chunk (chunk_of_type ty) = 4 * typesize ty.
-Proof.
- destruct ty; reflexivity.
-Qed.
-
-Remark mem_chunk_type:
- forall ty, mem_chunk (chunk_of_type ty) = mem_type ty.
-Proof.
- destruct ty; reflexivity.
-Qed.
-
-Remark size_mem_type:
- forall ty, size_mem (mem_type ty) = 4 * typesize ty.
-Proof.
- destruct ty; reflexivity.
-Qed.
-
-(** * Agreement between frames and memory-resident activation records *)
-
-(** ** Agreement for one frame *)
-
-(** The core idea of the simulation proof is that for all active
- functions, the memory-allocated activation record, in the concrete
- semantics, contains the same data as the Cminor stack block
- (at positive offsets) and the frame of the function (at negative
- offsets) in the abstract semantics.
-
- This intuition (activation record = Cminor stack data + frame)
- is formalized by the following predicate [frame_match fr sp base mm ms].
- [fr] is a frame and [mm] the current memory state in the abstract
- semantics. [ms] is the current memory state in the concrete semantics.
- The stack pointer is [Vptr sp base] in both semantics. *)
-
-Inductive frame_match: frame -> block -> int -> mem -> mem -> Prop :=
- frame_match_intro:
- forall fr sp base mm ms,
- valid_block ms sp ->
- low_bound mm sp = 0 ->
- low_bound ms sp = fr.(low) ->
- high_bound ms sp = align_16_top fr.(low) (high_bound mm sp) ->
- fr.(low) <= 0 ->
- Int.min_signed <= fr.(low) ->
- base = Int.repr fr.(low) ->
- block_contents_agree fr.(low) 0 fr (ms.(blocks) sp) ->
- block_contents_agree 0 (high_bound ms sp)
- (mm.(blocks) sp) (ms.(blocks) sp) ->
- frame_match fr sp base mm ms.
-
-(** [frame_match], while presented as a relation for convenience,
- is actually a function: it fully determines the contents of the
- activation record [ms.(blocks) sp]. *)
-
-Lemma frame_match_exten:
- forall fr sp base mm ms1 ms2,
- frame_match fr sp base mm ms1 ->
- frame_match fr sp base mm ms2 ->
- ms1.(blocks) sp = ms2.(blocks) sp.
-Proof.
- intros. inversion H. inversion H0.
- unfold low_bound, high_bound in *.
- apply block_contents_exten.
- congruence.
- congruence.
- hnf; intros.
- elim H29. rewrite H3; rewrite H4; intros.
- case (zlt ofs 0); intro.
- assert (low fr <= ofs < 0). tauto.
- transitivity (contents fr ofs).
- symmetry. apply H8; auto.
- apply H22; auto.
- transitivity (contents (blocks mm sp) ofs).
- symmetry. apply H9. rewrite H4. omega.
- apply H23. rewrite H18. omega.
-Qed.
-
-(** The following two innocuous-looking lemmas are the key results
- showing that [sp]-relative memory accesses in the concrete
- semantics behave like the direct frame accesses in the abstract
- semantics. First, a value [v] that has type [ty] is preserved
- when stored in memory with chunk [chunk_of_type ty], then read
- back with the same chunk. The typing hypothesis is crucial here:
- for instance, a float value reads back as [Vundef] when stored
- and load with chunk [Mint32]. *)
-
-Lemma load_result_ty:
- forall v ty,
- Val.has_type v ty -> Val.load_result (chunk_of_type ty) v = v.
-Proof.
- destruct v; destruct ty; simpl; contradiction || reflexivity.
-Qed.
-
-(** Second, computations of [sp]-relative offsets using machine
- arithmetic (as done in the concrete semantics) never overflows
- and behaves identically to the offset computations using exact
- arithmetic (as done in the abstract semantics). *)
-
-Lemma int_add_no_overflow:
- forall x y,
- Int.min_signed <= Int.signed x + Int.signed y <= Int.max_signed ->
- Int.signed (Int.add x y) = Int.signed x + Int.signed y.
-Proof.
- intros. rewrite Int.add_signed. rewrite Int.signed_repr. auto. auto.
-Qed.
-
-(** Given matching frames and activation records, loading from the
- activation record (in the concrete semantics) behaves identically
- to reading the corresponding slot from the frame
- (in the abstract semantics). *)
-
-Lemma frame_match_get_slot:
- forall fr sp base mm ms ty ofs v,
- frame_match fr sp base mm ms ->
- get_slot fr ty (Int.signed ofs) v ->
- Val.has_type v ty ->
- load_stack ms (Vptr sp base) ty ofs = Some v.
-Proof.
- intros. inversion H. inversion H0. subst v.
- unfold load_stack, Val.add, loadv.
- assert (Int.signed base = low fr).
- rewrite H8. apply Int.signed_repr.
- split. auto. apply Zle_trans with 0. auto. compute; congruence.
- assert (Int.signed (Int.add base ofs) = low fr + Int.signed ofs).
- rewrite int_add_no_overflow. rewrite H18. auto.
- rewrite H18. split. omega. apply Zle_trans with 0.
- generalize (typesize_pos ty). omega. compute. congruence.
- rewrite H23.
- assert (BND1: low_bound ms sp <= low fr + Int.signed ofs).
- omega.
- assert (BND2: (low fr + Int.signed ofs) + size_chunk (chunk_of_type ty) <= high_bound ms sp).
- rewrite size_type_chunk. apply Zle_trans with 0.
- assumption. rewrite H5. apply align_16_top_pos.
- generalize (load_in_bounds (chunk_of_type ty) ms sp (low fr + Int.signed ofs) H2 BND1 BND2).
- intros [v' LOAD].
- generalize (load_inv _ _ _ _ _ LOAD).
- intros [A [B [C D]]].
- rewrite LOAD. rewrite <- D.
- decEq. rewrite mem_chunk_type.
- rewrite <- size_mem_type in H17.
- assert (low fr <= low fr + Int.signed ofs). omega.
- generalize (load_contentmap_agree _ _ _ _ _ _ H9 H24 H17).
- intro. rewrite H25.
- apply load_result_ty.
- assumption.
-Qed.
-
-(** Loads from [sp], corresponding to accesses to Cminor stack data
- in the abstract semantics, give the same results in the concrete
- semantics. This is because the offset from [sp] must be positive or
- null for the original load to succeed, and because the part
- of the activation record at positive offsets matches the Cminor
- stack data block. *)
-
-Lemma frame_match_load:
- forall fr sp base mm ms chunk ofs v,
- frame_match fr sp base mm ms ->
- load chunk mm sp ofs = Some v ->
- load chunk ms sp ofs = Some v.
-Proof.
- intros. inversion H.
- generalize (load_inv _ _ _ _ _ H0). intros [A [B [C D]]].
- change (low (blocks mm sp)) with (low_bound mm sp) in B.
- change (high (blocks mm sp)) with (high_bound mm sp) in C.
- unfold load. rewrite zlt_true; auto.
- rewrite in_bounds_holds.
- rewrite <- D. decEq. decEq. eapply load_contentmap_agree.
- red in H9. eexact H9.
- omega.
- unfold size_chunk in C. rewrite H4.
- apply Zle_trans with (high_bound mm sp). auto.
- apply align_16_top_ge.
- change (low (blocks ms sp)) with (low_bound ms sp).
- rewrite H3. omega.
- change (high (blocks ms sp)) with (high_bound ms sp).
- rewrite H4. apply Zle_trans with (high_bound mm sp). auto.
- apply align_16_top_ge.
-Qed.
-
-(** Assigning a value to a frame slot (in the abstract semantics)
- corresponds to storing this value in the activation record
- (in the concrete semantics). Moreover, agreement between frames
- and activation records is preserved. *)
-
-Lemma frame_match_set_slot:
- forall fr sp base mm ms ty ofs v fr',
- frame_match fr sp base mm ms ->
- set_slot fr ty (Int.signed ofs) v fr' ->
- exists ms',
- store_stack ms (Vptr sp base) ty ofs v = Some ms' /\
- frame_match fr' sp base mm ms'.
-Proof.
- intros. inversion H. inversion H0. subst ty0.
- unfold store_stack, Val.add, storev.
- assert (Int.signed base = low fr).
- rewrite H7. apply Int.signed_repr.
- split. auto. apply Zle_trans with 0. auto. compute; congruence.
- assert (Int.signed (Int.add base ofs) = low fr + Int.signed ofs).
- rewrite int_add_no_overflow. rewrite H16. auto.
- rewrite H16. split. omega. apply Zle_trans with 0.
- generalize (typesize_pos ty). omega. compute. congruence.
- rewrite H20.
- assert (BND1: low_bound ms sp <= low fr + Int.signed ofs).
- omega.
- assert (BND2: (low fr + Int.signed ofs) + size_chunk (chunk_of_type ty) <= high_bound ms sp).
- rewrite size_type_chunk. rewrite H4.
- apply Zle_trans with 0. subst ofs0. auto. apply align_16_top_pos.
- generalize (store_in_bounds _ _ _ _ v H1 BND1 BND2).
- intros [ms' STORE].
- generalize (store_inv _ _ _ _ _ _ STORE). intros [P [Q [R [S [x T]]]]].
- generalize (low_bound_store _ _ _ _ sp _ _ STORE). intro LB.
- generalize (high_bound_store _ _ _ _ sp _ _ STORE). intro HB.
- exists ms'.
- split. exact STORE.
- apply frame_match_intro; auto.
- eapply valid_block_store; eauto.
- rewrite LB. auto.
- rewrite HB. auto.
- red. rewrite T; rewrite update_s; simpl.
- rewrite mem_chunk_type.
- subst ofs0. eapply store_contentmap_agree; eauto.
- rewrite HB; rewrite T; rewrite update_s.
- red. simpl. apply store_contentmap_outside_agree.
- assumption. left. rewrite mem_chunk_type.
- rewrite size_mem_type. subst ofs0. auto.
-Qed.
-
-(** Agreement is preserved by stores within blocks other than the
- one pointed to by [sp]. *)
-
-Lemma frame_match_store_stack_other:
- forall fr sp base mm ms sp' base' ty ofs v ms',
- frame_match fr sp base mm ms ->
- store_stack ms (Vptr sp' base') ty ofs v = Some ms' ->
- sp <> sp' ->
- frame_match fr sp base mm ms'.
-Proof.
- unfold store_stack, Val.add, storev. intros. inversion H.
- generalize (store_inv _ _ _ _ _ _ H0). intros [P [Q [R [S [x T]]]]].
- generalize (low_bound_store _ _ _ _ sp _ _ H0). intro LB.
- generalize (high_bound_store _ _ _ _ sp _ _ H0). intro HB.
- apply frame_match_intro; auto.
- eapply valid_block_store; eauto.
- rewrite LB; auto.
- rewrite HB; auto.
- rewrite T; rewrite update_o; auto.
- rewrite HB; rewrite T; rewrite update_o; auto.
-Qed.
-
-(** Stores relative to [sp], corresponding to accesses to Cminor stack data
- in the abstract semantics, give the same results in the concrete
- semantics. Moreover, agreement between frames and activation
- records is preserved. *)
-
-Lemma frame_match_store_ok:
- forall fr sp base mm ms chunk ofs v mm',
- frame_match fr sp base mm ms ->
- store chunk mm sp ofs v = Some mm' ->
- exists ms', store chunk ms sp ofs v = Some ms'.
-Proof.
- intros. inversion H.
- generalize (store_inv _ _ _ _ _ _ H0). intros [P [Q [R [S [x T]]]]].
- change (low (blocks mm sp)) with (low_bound mm sp) in Q.
- change (high (blocks mm sp)) with (high_bound mm sp) in R.
- apply store_in_bounds.
- auto.
- omega.
- apply Zle_trans with (high_bound mm sp).
- auto. rewrite H4. apply align_16_top_ge.
-Qed.
-
-Lemma frame_match_store:
- forall fr sp base mm ms chunk b ofs v mm' ms',
- frame_match fr sp base mm ms ->
- store chunk mm b ofs v = Some mm' ->
- store chunk ms b ofs v = Some ms' ->
- frame_match fr sp base mm' ms'.
-Proof.
- intros. inversion H.
- generalize (store_inv _ _ _ _ _ _ H1). intros [A [B [C [D [x1 E]]]]].
- generalize (store_inv _ _ _ _ _ _ H0). intros [I [J [K [L [x2 M]]]]].
- generalize (low_bound_store _ _ _ _ sp _ _ H0). intro LBm.
- generalize (low_bound_store _ _ _ _ sp _ _ H1). intro LBs.
- generalize (high_bound_store _ _ _ _ sp _ _ H0). intro HBm.
- generalize (high_bound_store _ _ _ _ sp _ _ H1). intro HBs.
- apply frame_match_intro; auto.
- eapply valid_block_store; eauto.
- congruence. congruence. congruence.
- rewrite E. unfold update. case (zeq sp b); intro.
- subst b. red; simpl.
- apply store_contentmap_outside_agree; auto.
- right. unfold low_bound in H3. omega.
- assumption.
- rewrite HBs; rewrite E; rewrite M; unfold update.
- case (zeq sp b); intro.
- subst b. red; simpl.
- apply store_contentmap_agree; auto.
- assumption.
-Qed.
-
-(** Memory allocation of the Cminor stack data block (in the abstract
- semantics) and of the whole activation record (in the concrete
- semantics) return memory states that agree according to [frame_match].
- Moreover, [frame_match] relations over already allocated blocks
- remain true. *)
-
-Lemma frame_match_new:
- forall mm ms mm' ms' sp sp' f,
- mm.(nextblock) = ms.(nextblock) ->
- alloc mm 0 f.(fn_stacksize) = (mm', sp) ->
- alloc ms (- f.(fn_framesize)) (align_16_top (- f.(fn_framesize)) f.(fn_stacksize)) = (ms', sp') ->
- f.(fn_framesize) >= 0 ->
- f.(fn_framesize) <= -Int.min_signed ->
- frame_match (init_frame f) sp (Int.repr (-f.(fn_framesize))) mm' ms'.
-Proof.
- intros.
- injection H0; intros. injection H1; intros.
- assert (sp = sp'). congruence. rewrite <- H8 in H6. subst sp'.
- generalize (low_bound_alloc _ _ sp _ _ _ H0). rewrite zeq_true. intro LBm.
- generalize (low_bound_alloc _ _ sp _ _ _ H1). rewrite zeq_true. intro LBs.
- generalize (high_bound_alloc _ _ sp _ _ _ H0). rewrite zeq_true. intro HBm.
- generalize (high_bound_alloc _ _ sp _ _ _ H1). rewrite zeq_true. intro HBs.
- apply frame_match_intro; auto.
- eapply valid_new_block; eauto.
- simpl. congruence.
- simpl. omega.
- simpl. omega.
- rewrite <- H7. simpl. rewrite H6; simpl. rewrite update_s.
- hnf; simpl; auto.
- rewrite HBs; rewrite <- H5; simpl; rewrite H4; rewrite <- H7; simpl; rewrite H6; simpl;
- repeat (rewrite update_s).
- hnf; simpl; auto.
-Qed.
-
-Lemma frame_match_alloc:
- forall mm ms fr sp base lom him los his mm' ms' bm bs,
- mm.(nextblock) = ms.(nextblock) ->
- frame_match fr sp base mm ms ->
- alloc mm lom him = (mm', bm) ->
- alloc ms los his = (ms', bs) ->
- frame_match fr sp base mm' ms'.
-Proof.
- intros. inversion H0.
- assert (sp <> bm).
- apply valid_not_valid_diff with mm.
- red. rewrite H. exact H3.
- eapply fresh_block_alloc; eauto.
- assert (sp <> bs).
- apply valid_not_valid_diff with ms. auto.
- eapply fresh_block_alloc; eauto.
- generalize (low_bound_alloc _ _ sp _ _ _ H1).
- rewrite zeq_false; auto; intro LBm.
- generalize (low_bound_alloc _ _ sp _ _ _ H2).
- rewrite zeq_false; auto; intro LBs.
- generalize (high_bound_alloc _ _ sp _ _ _ H1).
- rewrite zeq_false; auto; intro HBm.
- generalize (high_bound_alloc _ _ sp _ _ _ H2).
- rewrite zeq_false; auto; intro HBs.
- apply frame_match_intro.
- eapply valid_block_alloc; eauto.
- congruence. congruence. congruence. auto. auto. auto.
- injection H2; intros. rewrite <- H20; simpl; rewrite H19; simpl.
- rewrite update_o; auto.
- rewrite HBs;
- injection H2; intros. rewrite <- H20; simpl; rewrite H19; simpl.
- injection H1; intros. rewrite <- H22; simpl; rewrite H21; simpl.
- repeat (rewrite update_o; auto).
-Qed.
-
-(** [frame_match] relations are preserved by freeing a block
- other than the one pointed to by [sp]. *)
-
-Lemma frame_match_free:
- forall fr sp base mm ms b,
- frame_match fr sp base mm ms ->
- sp <> b ->
- frame_match fr sp base (free mm b) (free ms b).
-Proof.
- intros. inversion H.
- generalize (low_bound_free mm _ _ H0); intro LBm.
- generalize (low_bound_free ms _ _ H0); intro LBs.
- generalize (high_bound_free mm _ _ H0); intro HBm.
- generalize (high_bound_free ms _ _ H0); intro HBs.
- apply frame_match_intro; auto.
- congruence. congruence. congruence.
- unfold free; simpl. rewrite update_o; auto.
- rewrite HBs.
- unfold free; simpl. repeat (rewrite update_o; auto).
-Qed.
-
-(** ** Agreement for all the frames in a call stack *)
-
-(** We need to reason about all the frames and activation records
- active at any given time during the executions: not just
- about those for the currently executing function, but also
- those for the callers. These collections of
- active frames are called ``call stacks''. They are lists
- of triples representing a frame and a stack pointer
- (reference and offset) in the abstract semantics. *)
-
-Definition callstack : Set := list (frame * block * int).
-
-(** The correct linking of frames (each frame contains a pointer
- to the frame of its caller at the lowest offset) is captured
- by the following predicate. *)
-
-Inductive callstack_linked: callstack -> Prop :=
- | callstack_linked_nil:
- callstack_linked nil
- | callstack_linked_one:
- forall fr1 sp1 base1,
- callstack_linked ((fr1, sp1, base1) :: nil)
- | callstack_linked_cons:
- forall fr1 sp1 base1 fr2 base2 sp2 cs,
- get_slot fr1 Tint 0 (Vptr sp2 base2) ->
- callstack_linked ((fr2, sp2, base2) :: cs) ->
- callstack_linked ((fr1, sp1, base1) :: (fr2, sp2, base2) :: cs).
-
-(** [callstack_dom cs b] (read: call stack [cs] is ``dominated''
- by block reference [b]) means that the stack pointers in [cs]
- strictly decrease and are all below [b]. This ensures that
- the stack block for a function was allocated after that for its
- callers. A consequence is that no two active functions share
- the same stack block. *)
-
-Inductive callstack_dom: callstack -> block -> Prop :=
- | callstack_dom_nil:
- forall b, callstack_dom nil b
- | callstack_dom_cons:
- forall fr sp base cs b,
- sp < b ->
- callstack_dom cs sp ->
- callstack_dom ((fr, sp, base) :: cs) b.
-
-Lemma callstack_dom_less:
- forall cs b, callstack_dom cs b ->
- forall fr sp base, In (fr, sp, base) cs -> sp < b.
-Proof.
- induction 1. simpl. tauto.
- simpl. intros fr0 sp0 base0 [A|B].
- injection A; intros; subst fr0; subst sp0; subst base0. auto.
- apply Zlt_trans with sp. eapply IHcallstack_dom; eauto. auto.
-Qed.
-
-Lemma callstack_dom_diff:
- forall cs b, callstack_dom cs b ->
- forall fr sp base, In (fr, sp, base) cs -> sp <> b.
-Proof.
- intros. apply Zlt_not_eq. eapply callstack_dom_less; eauto.
-Qed.
-
-Lemma callstack_dom_incr:
- forall cs b, callstack_dom cs b ->
- forall b', b < b' -> callstack_dom cs b'.
-Proof.
- induction 1; intros.
- apply callstack_dom_nil.
- apply callstack_dom_cons. omega. auto.
-Qed.
-
-(** Every block reference is either ``in'' a call stack (that is,
- refers to the stack block of one of the calls) or ``not in''
- a call stack (that is, differs from all the stack blocks). *)
-
-Inductive notin_callstack: block -> callstack -> Prop :=
- | notin_callstack_nil:
- forall b, notin_callstack b nil
- | notin_callstack_cons:
- forall b fr sp base cs,
- b <> sp ->
- notin_callstack b cs ->
- notin_callstack b ((fr, sp, base) :: cs).
-
-Lemma in_or_notin_callstack:
- forall b cs,
- (exists fr, exists base, In (fr, b, base) cs) \/ notin_callstack b cs.
-Proof.
- induction cs.
- right; constructor.
- elim IHcs.
- intros [fr [base IN]]. left. exists fr; exists base; auto with coqlib.
- intro NOTIN. destruct a. destruct p. case (eq_block b b0); intro.
- left. exists f; exists i. subst b0. auto with coqlib.
- right. apply notin_callstack_cons; auto.
-Qed.
-
-(** [callstack_invariant cs mm ms] relates the memory state [mm]
- from the abstract semantics with the memory state [ms] from the
- concrete semantics, relative to the current call stack [cs].
- Five conditions are enforced:
-- All frames in [cs] agree with the corresponding activation records
- (in the sense of [frame_match]).
-- The frames in the call stack are properly linked.
-- Memory blocks that are not activation records for active function
- calls are exactly identical in [mm] and [ms].
-- The allocation pointers are the same in [mm] and [ms].
-- The call stack [cs] is ``dominated'' by this allocation pointer,
- implying that all activation records are valid, allocated blocks,
- pairwise disjoint, and they were allocated in the order implied
- by [cs]. *)
-
-Record callstack_invariant (cs: callstack) (mm ms: mem) : Prop :=
- mk_callstack_invariant {
- cs_frame:
- forall fr sp base,
- In (fr, sp, base) cs -> frame_match fr sp base mm ms;
- cs_linked:
- callstack_linked cs;
- cs_others:
- forall b, notin_callstack b cs ->
- mm.(blocks) b = ms.(blocks) b;
- cs_next:
- mm.(nextblock) = ms.(nextblock);
- cs_dom:
- callstack_dom cs ms.(nextblock)
- }.
-
-(** Again, while [callstack_invariant] is presented as a relation,
- it actually fully determines the concrete memory state [ms]
- from the abstract memory state [mm] and the call stack [cs]. *)
-
-Lemma callstack_exten:
- forall cs mm ms1 ms2,
- callstack_invariant cs mm ms1 ->
- callstack_invariant cs mm ms2 ->
- ms1 = ms2.
-Proof.
- intros. inversion H; inversion H0.
- apply mem_exten.
- congruence.
- intros. elim (in_or_notin_callstack b cs).
- intros [fr [base FM]]. apply frame_match_exten with fr base mm; auto.
- intro. transitivity (blocks mm b).
- symmetry. auto. auto.
-Qed.
-
-(** The following properties of [callstack_invariant] are the
- building blocks for the proof of simulation. First, a [get_slot]
- operation in the abstract semantics corresponds to a [sp]-relative
- memory load in the concrete semantics. *)
-
-Lemma callstack_get_slot:
- forall fr sp base cs mm ms ty ofs v,
- callstack_invariant ((fr, sp, base) :: cs) mm ms ->
- get_slot fr ty (Int.signed ofs) v ->
- Val.has_type v ty ->
- load_stack ms (Vptr sp base) ty ofs = Some v.
-Proof.
- intros. inversion H.
- apply frame_match_get_slot with fr mm.
- apply cs_frame0. apply in_eq.
- auto. auto.
-Qed.
-
-(** Similarly, a [get_parent] operation corresponds to loading
- the back-link from the current activation record, then loading
- from this back-link. *)
-
-Lemma callstack_get_parent:
- forall fr1 sp1 base1 fr2 sp2 base2 cs mm ms ty ofs v,
- callstack_invariant ((fr1, sp1, base1) :: (fr2, sp2, base2) :: cs) mm ms ->
- get_slot fr2 ty (Int.signed ofs) v ->
- Val.has_type v ty ->
- load_stack ms (Vptr sp1 base1) Tint (Int.repr 0) = Some (Vptr sp2 base2) /\
- load_stack ms (Vptr sp2 base2) ty ofs = Some v.
-Proof.
- intros. inversion H. split.
- inversion cs_linked0.
- apply frame_match_get_slot with fr1 mm.
- apply cs_frame0. auto with coqlib.
- rewrite Int.signed_repr. auto. compute. intuition congruence.
- exact I.
- apply frame_match_get_slot with fr2 mm.
- apply cs_frame0. auto with coqlib.
- auto. auto.
-Qed.
-
-(** A memory load valid in the abstract semantics can also be performed
- in the concrete semantics. *)
-
-Lemma callstack_load:
- forall cs chunk mm ms a v,
- callstack_invariant cs mm ms ->
- loadv chunk mm a = Some v ->
- loadv chunk ms a = Some v.
-Proof.
- unfold loadv. intros. destruct a; try discriminate.
- inversion H.
- elim (in_or_notin_callstack b cs).
- intros [fr [base IN]]. apply frame_match_load with fr base mm; auto.
- intro. rewrite <- H0. unfold load.
- rewrite (cs_others0 b H1). rewrite cs_next0. reflexivity.
-Qed.
-
-(** A [set_slot] operation in the abstract semantics corresponds
- to a [sp]-relative memory store in the concrete semantics.
- Moreover, the property [callstack_invariant] still holds for
- the final call stacks and memory states. *)
-
-Lemma callstack_set_slot:
- forall fr sp base cs mm ms ty ofs v fr',
- callstack_invariant ((fr, sp, base) :: cs) mm ms ->
- set_slot fr ty (Int.signed ofs) v fr' ->
- 4 <= Int.signed ofs ->
- exists ms',
- store_stack ms (Vptr sp base) ty ofs v = Some ms' /\
- callstack_invariant ((fr', sp, base) :: cs) mm ms'.
-Proof.
- intros. inversion H.
- assert (frame_match fr sp base mm ms). apply cs_frame0. apply in_eq.
- generalize (frame_match_set_slot _ _ _ _ _ _ _ _ _ H2 H0).
- intros [ms' [SS FM]].
- generalize (store_inv _ _ _ _ _ _ SS). intros [A [B [C [D [x E]]]]].
- exists ms'.
- split. auto.
- constructor.
- (* cs_frame *)
- intros. elim H3; intros.
- injection H4; intros; clear H4.
- subst fr0; subst sp0; subst base0. auto.
- apply frame_match_store_stack_other with ms sp base ty ofs v.
- apply cs_frame0. auto with coqlib. auto.
- apply callstack_dom_diff with cs fr0 base0. inversion cs_dom0; auto. auto.
- (* cs_linked *)
- inversion cs_linked0. apply callstack_linked_one.
- apply callstack_linked_cons.
- eapply slot_gso; eauto.
- auto.
- (* cs_others *)
- intros. inversion H3.
- rewrite E; simpl. rewrite update_o; auto. apply cs_others0.
- constructor; auto.
- (* cs_next *)
- congruence.
- (* cs_dom *)
- inversion cs_dom0. constructor. rewrite D; auto. auto.
-Qed.
-
-(** A memory store in the abstract semantics can also be performed
- in the concrete semantics. Moreover, the property
- [callstack_invariant] is preserved. *)
-
-Lemma callstack_store_aux:
- forall cs mm ms chunk b ofs v mm' ms',
- callstack_invariant cs mm ms ->
- store chunk mm b ofs v = Some mm' ->
- store chunk ms b ofs v = Some ms' ->
- callstack_invariant cs mm' ms'.
-Proof.
- intros. inversion H.
- generalize (store_inv _ _ _ _ _ _ H0). intros [A [B [C [D [x E]]]]].
- generalize (store_inv _ _ _ _ _ _ H1). intros [P [Q [R [S [y T]]]]].
- constructor; auto.
- (* cs_frame *)
- intros. eapply frame_match_store; eauto.
- (* cs_others *)
- intros. generalize (cs_others0 b0 H2); intro.
- rewrite E; rewrite T; unfold update.
- case (zeq b0 b); intro.
- subst b0.
- generalize x; generalize y. rewrite H3.
- intros. replace y0 with x0. reflexivity. apply proof_irrelevance.
- auto.
- (* cs_nextblock *)
- congruence.
- (* cs_dom *)
- rewrite S. auto.
-Qed.
-
-Lemma callstack_store_ok:
- forall cs mm ms chunk b ofs v mm',
- callstack_invariant cs mm ms ->
- store chunk mm b ofs v = Some mm' ->
- exists ms', store chunk ms b ofs v = Some ms'.
-Proof.
- intros. inversion H.
- elim (in_or_notin_callstack b cs).
- intros [fr [base IN]].
- apply frame_match_store_ok with fr base mm mm'; auto.
- intro. generalize (cs_others0 b H1). intro.
- generalize (store_inv _ _ _ _ _ _ H0).
- rewrite cs_next0; rewrite H2. intros [A [B [C [D [x E]]]]].
- apply store_in_bounds; auto.
-Qed.
-
-Lemma callstack_store:
- forall cs mm ms chunk a v mm',
- callstack_invariant cs mm ms ->
- storev chunk mm a v = Some mm' ->
- exists ms',
- storev chunk ms a v = Some ms' /\
- callstack_invariant cs mm' ms'.
-Proof.
- unfold storev; intros. destruct a; try discriminate.
- generalize (callstack_store_ok _ _ _ _ _ _ _ _ H H0).
- intros [ms' STORE].
- exists ms'. split. auto. eapply callstack_store_aux; eauto.
-Qed.
-
-(** Allocations of heap blocks can be performed in parallel in
- both semantics, preserving [callstack_invariant]. *)
-
-Lemma callstack_alloc:
- forall cs mm ms lo hi mm' blk,
- callstack_invariant cs mm ms ->
- Mem.alloc mm lo hi = (mm', blk) ->
- exists ms',
- Mem.alloc ms lo hi = (ms', blk) /\
- callstack_invariant cs mm' ms'.
-Proof.
- intros. inversion H.
- caseEq (alloc ms lo hi). intros ms' blk' ALLOC'.
- injection H0; intros. injection ALLOC'; intros.
- assert (blk' = blk). congruence. rewrite H5 in H3. rewrite H5.
- exists ms'; split. auto.
- constructor.
- (* frame *)
- intros; eapply frame_match_alloc; eauto.
- (* linked *)
- auto.
- (* others *)
- intros. rewrite <- H2; rewrite <- H4; simpl.
- rewrite H1; rewrite H3. unfold update. case (zeq b blk); auto.
- (* next *)
- rewrite <- H2; rewrite <- H4; simpl; congruence.
- (* dom *)
- eapply callstack_dom_incr; eauto. rewrite <- H4; simpl. omega.
-Qed.
-
-(** At function entry, a new frame is pushed on the call stack,
- and memory blocks are allocated in both semantics. Moreover,
- the back link to the caller's activation record is set up
- in the concrete semantics. All this preserves [callstack_invariant]. *)
-
-Lemma callstack_function_entry:
- forall fr0 sp0 base0 cs mm ms f fr mm' sp ms' sp',
- callstack_invariant ((fr0, sp0, base0) :: cs) mm ms ->
- alloc mm 0 f.(fn_stacksize) = (mm', sp) ->
- alloc ms (- f.(fn_framesize)) (align_16_top (- f.(fn_framesize)) f.(fn_stacksize)) = (ms', sp') ->
- f.(fn_framesize) >= 0 ->
- f.(fn_framesize) <= -Int.min_signed ->
- set_slot (init_frame f) Tint 0 (Vptr sp0 base0) fr ->
- let base := Int.repr (-f.(fn_framesize)) in
- exists ms'',
- store_stack ms' (Vptr sp base) Tint (Int.repr 0) (Vptr sp0 base0) = Some ms''
- /\ callstack_invariant ((fr, sp, base) :: (fr0, sp0, base0) :: cs) mm' ms''
- /\ sp' = sp.
-Proof.
- assert (ZERO: 0 = Int.signed (Int.repr 0)).
- rewrite Int.signed_repr. auto. compute; intuition congruence.
- intros. inversion H.
- injection H0; intros. injection H1; intros.
- assert (sp' = sp). congruence. rewrite H9 in H7. subst sp'.
- assert (frame_match (init_frame f) sp base mm' ms').
- unfold base. eapply frame_match_new; eauto.
- rewrite ZERO in H4.
- generalize (frame_match_set_slot _ _ _ _ _ _ _ _ _ H9 H4).
- intros [ms'' [SS FM]].
- generalize (store_inv _ _ _ _ _ _ SS).
- intros [A [B [C [D [x E]]]]].
- exists ms''. split; auto. split.
- constructor.
- (* cs_frame *)
- intros. elim H10; intro.
- injection H11; intros; clear H11.
- subst fr1; subst sp1; subst base1. auto.
- eapply frame_match_store_stack_other; eauto.
- eapply frame_match_alloc; [idtac|idtac|eexact H0|eexact H1].
- congruence. eapply cs_frame; eauto with coqlib.
- rewrite <- H7. eapply callstack_dom_diff; eauto with coqlib.
- (* cs_linked *)
- constructor. rewrite ZERO. eapply slot_gss; eauto. auto.
- (* cs_others *)
- intros. inversion H10.
- rewrite E; rewrite update_o; auto.
- rewrite <- H6; rewrite <- H8; simpl; rewrite H5; rewrite H7; simpl.
- repeat (rewrite update_o; auto).
- (* cs_next *)
- rewrite D. rewrite <- H6; rewrite <- H8; simpl. congruence.
- (* cs_dom *)
- constructor. rewrite D; auto. rewrite <- H7. auto.
- auto.
-Qed.
-
-(** At function return, the memory blocks corresponding to Cminor
- stack data and activation record for the function are freed.
- This preserves [callstack_invariant]. *)
-
-Lemma callstack_function_return:
- forall fr sp base cs mm ms,
- callstack_invariant ((fr, sp, base) :: cs) mm ms ->
- callstack_invariant cs (free mm sp) (free ms sp).
-Proof.
- intros. inversion H. inversion cs_dom0.
- constructor.
- (* cs_frame *)
- intros. apply frame_match_free. apply cs_frame0; auto with coqlib.
- apply callstack_dom_diff with cs fr1 base1. auto. auto.
- (* cs_linked *)
- inversion cs_linked0. apply callstack_linked_nil. auto.
- (* cs_others *)
- intros.
- unfold free; simpl; unfold update.
- case (zeq b0 sp); intro.
- auto.
- apply cs_others0. apply notin_callstack_cons; auto.
- (* cs_nextblock *)
- simpl. auto.
- (* cs_dom *)
- simpl. apply callstack_dom_incr with sp; auto.
-Qed.
-
-(** Finally, [callstack_invariant] holds for the initial memory states
- in the two semantics. *)
-
-Lemma callstack_init:
- forall (p: program),
- callstack_invariant ((empty_frame, nullptr, Int.zero) :: nil)
- (Genv.init_mem p) (Genv.init_mem p).
-Proof.
- intros.
- generalize (Genv.initmem_nullptr p). intros [A B].
- constructor.
- (* cs_frame *)
- intros. elim H; intro.
- injection H0; intros; subst fr; subst sp; subst base.
- constructor.
- assumption.
- unfold low_bound. rewrite B. reflexivity.
- unfold low_bound, empty_frame. rewrite B. reflexivity.
- unfold high_bound. rewrite B. reflexivity.
- simpl. omega.
- simpl. compute. intuition congruence.
- reflexivity.
- rewrite B. unfold empty_frame. simpl. hnf. auto.
- rewrite B. hnf. auto.
- elim H0.
- (* cs_linked *)
- apply callstack_linked_one.
- (* cs_others *)
- auto.
- (* cs_nextblock *)
- reflexivity.
- (* cs_dom *)
- constructor. exact A. constructor.
-Qed.
-
-(** Preservation of arguments to external functions. *)
-
-Lemma transl_extcall_arguments:
- forall rs fr sg args stk base cs m ms,
- Machabstr.extcall_arguments rs fr sg args ->
- callstack_invariant ((fr, stk, base) :: cs) m ms ->
- wt_frame fr ->
- extcall_arguments rs ms (Vptr stk base) sg args.
-Proof.
- unfold Machabstr.extcall_arguments, extcall_arguments; intros.
- assert (forall locs vals,
- Machabstr.extcall_args rs fr locs vals ->
- extcall_args rs ms (Vptr stk base) locs vals).
- induction locs; intros; inversion H2; subst; clear H2.
- constructor.
- constructor; auto.
- inversion H7; subst; clear H7.
- constructor.
- constructor. eapply callstack_get_slot; eauto.
- eapply wt_get_slot; eauto.
- auto.
-Qed.
-
-(** * The proof of simulation *)
-
-Section SIMULATION.
-
-Variable p: program.
-Hypothesis wt_p: wt_program p.
-Let ge := Genv.globalenv p.
-
-(** The proof of simulation relies on diagrams of the following form:
-<<
- sp, parent, c, rs, fr, mm ----------- sp, c, rs, ms
- | |
- | |
- v v
- sp, parent, c', rs', fr', mm' -------- sp, c', rs', ms'
->>
- The left vertical arrow is a transition in the abstract semantics.
- The right vertical arrow is a transition in the concrete semantics.
- The precondition (top horizontal line) is the appropriate
- [callstack_invariant] property between the initial memory states
- [mm] and [ms] and any call stack with [fr] as top frame and
- [parent] as second frame. In addition, well-typedness conditions
- over the code [c], the register [rs] and the frame [fr] are demanded.
- The postcondition (bottom horizontal line) is [callstack_invariant]
- between the final memory states [mm'] and [ms'] and the final
- call stack.
-*)
-
-Definition exec_instr_prop
- (f: function) (sp: val) (parent: frame)
- (c: code) (rs: regset) (fr: frame) (mm: mem) (t: trace)
- (c': code) (rs': regset) (fr': frame) (mm': mem) : Prop :=
- forall ms stk base pstk pbase cs
- (WTF: wt_function f)
- (INCL: incl c f.(fn_code))
- (WTRS: wt_regset rs)
- (WTFR: wt_frame fr)
- (WTPA: wt_frame parent)
- (CSI: callstack_invariant ((fr, stk, base) :: (parent, pstk, pbase) :: cs) mm ms)
- (SP: sp = Vptr stk base),
- exists ms',
- exec_instr ge f sp c rs ms t c' rs' ms' /\
- callstack_invariant ((fr', stk, base) :: (parent, pstk, pbase) :: cs) mm' ms'.
-
-Definition exec_instrs_prop
- (f: function) (sp: val) (parent: frame)
- (c: code) (rs: regset) (fr: frame) (mm: mem) (t: trace)
- (c': code) (rs': regset) (fr': frame) (mm': mem) : Prop :=
- forall ms stk base pstk pbase cs
- (WTF: wt_function f)
- (INCL: incl c f.(fn_code))
- (WTRS: wt_regset rs)
- (WTFR: wt_frame fr)
- (WTPA: wt_frame parent)
- (CSI: callstack_invariant ((fr, stk, base) :: (parent, pstk, pbase) :: cs) mm ms)
- (SP: sp = Vptr stk base),
- exists ms',
- exec_instrs ge f sp c rs ms t c' rs' ms' /\
- callstack_invariant ((fr', stk, base) :: (parent, pstk, pbase) :: cs) mm' ms'.
-
-Definition exec_function_body_prop
- (f: function) (parent: frame) (link ra: val)
- (rs: regset) (mm: mem) (t: trace)
- (rs': regset) (mm': mem) : Prop :=
- forall ms pstk pbase cs
- (WTF: wt_function f)
- (WTRS: wt_regset rs)
- (WTPA: wt_frame parent)
- (WTRA: Val.has_type ra Tint)
- (LINK: link = Vptr pstk pbase)
- (CSI: callstack_invariant ((parent, pstk, pbase) :: cs) mm ms),
- exists ms',
- exec_function_body ge f (Vptr pstk pbase) ra rs ms t rs' ms' /\
- callstack_invariant ((parent, pstk, pbase) :: cs) mm' ms'.
-
-Definition exec_function_prop
- (f: fundef) (parent: frame)
- (rs: regset) (mm: mem) (t: trace)
- (rs': regset) (mm': mem) : Prop :=
- forall ms pstk pbase cs
- (WTF: wt_fundef f)
- (WTRS: wt_regset rs)
- (WTPA: wt_frame parent)
- (CSI: callstack_invariant ((parent, pstk, pbase) :: cs) mm ms),
- exists ms',
- exec_function ge f (Vptr pstk pbase) rs ms t rs' ms' /\
- callstack_invariant ((parent, pstk, pbase) :: cs) mm' ms'.
-
-Lemma exec_function_equiv:
- forall f parent rs mm t rs' mm',
- Machabstr.exec_function ge f parent rs mm t rs' mm' ->
- exec_function_prop f parent rs mm t rs' mm'.
-Proof.
- apply (Machabstr.exec_function_ind4 ge
- exec_instr_prop
- exec_instrs_prop
- exec_function_body_prop
- exec_function_prop);
- intros; red; intros.
-
- (* Mlabel *)
- exists ms. split. constructor. auto.
- (* Mgetstack *)
- exists ms. split.
- constructor. rewrite SP. eapply callstack_get_slot; eauto.
- apply wt_get_slot with fr (Int.signed ofs); auto.
- auto.
- (* Msetstack *)
- generalize (wt_function_instrs f WTF _ (INCL _ (in_eq _ _))).
- intro WTI. inversion WTI.
- assert (4 <= Int.signed ofs). omega.
- generalize (callstack_set_slot _ _ _ _ _ _ _ _ _ _ CSI H H5).
- intros [ms' [STO CSI']].
- exists ms'. split. constructor. rewrite SP. auto. auto.
- (* Mgetparam *)
- exists ms. split.
- assert (WTV: Val.has_type v ty). eapply wt_get_slot; eauto.
- generalize (callstack_get_parent _ _ _ _ _ _ _ _ _ _ _ _
- CSI H WTV).
- intros [L1 L2].
- eapply exec_Mgetparam. rewrite SP; eexact L1. eexact L2.
- auto.
- (* Mop *)
- exists ms. split. constructor. auto. auto.
- (* Mload *)
- exists ms. split. econstructor. eauto. eapply callstack_load; eauto.
- auto.
- (* Mstore *)
- generalize (callstack_store _ _ _ _ _ _ _ CSI H0).
- intros [ms' [STO CSI']].
- exists ms'. split. econstructor. eauto. auto.
- auto.
- (* Mcall *)
- red in H1.
- assert (WTF': wt_fundef f').
- destruct ros; simpl in H.
- apply (Genv.find_funct_prop wt_fundef wt_p H).
- destruct (Genv.find_symbol ge i); try discriminate.
- apply (Genv.find_funct_ptr_prop wt_fundef wt_p H).
- generalize (H1 _ _ _ _ WTF' WTRS WTFR CSI).
- intros [ms' [EXF CSI']].
- exists ms'. split. apply exec_Mcall with f'; auto.
- rewrite SP. auto.
- auto.
- (* Malloc *)
- generalize (callstack_alloc _ _ _ _ _ _ _ CSI H0).
- intros [ms' [ALLOC' CSI']].
- exists ms'; split.
- eapply exec_Malloc; eauto.
- auto.
- (* Mgoto *)
- exists ms. split. constructor; auto. auto.
- (* Mcond *)
- exists ms. split. apply exec_Mcond_true; auto. auto.
- exists ms. split. apply exec_Mcond_false; auto. auto.
-
- (* refl *)
- exists ms. split. apply exec_refl. auto.
- (* one *)
- generalize (H0 _ _ _ _ _ _ WTF INCL WTRS WTFR WTPA CSI SP).
- intros [ms' [EX CSI']].
- exists ms'. split. apply exec_one; auto. auto.
- (* trans *)
- generalize (subject_reduction_instrs p wt_p
- _ _ _ _ _ _ _ _ _ _ _ _ H WTF INCL WTRS WTFR WTPA).
- intros [INCL2 [WTRS2 WTFR2]].
- generalize (H0 _ _ _ _ _ _ WTF INCL WTRS WTFR WTPA CSI SP).
- intros [ms1 [EX1 CSI1]].
- generalize (H2 _ _ _ _ _ _ WTF INCL2 WTRS2 WTFR2 WTPA CSI1 SP).
- intros [ms2 [EX2 CSI2]].
- exists ms2. split. eapply exec_trans; eauto. auto.
-
- (* function body *)
- caseEq (alloc ms (- f.(fn_framesize))
- (align_16_top (- f.(fn_framesize)) f.(fn_stacksize))).
- intros ms1 stk1 ALL.
- subst link.
- assert (FS: f.(fn_framesize) >= 0).
- generalize (wt_function_framesize f WTF). omega.
- generalize (callstack_function_entry _ _ _ _ _ _ _ _ _ _ _ _
- CSI H ALL FS
- (wt_function_no_overflow f WTF) H0).
- intros [ms2 [STORELINK [CSI2 EQ]]].
- subst stk1.
- assert (ZERO: Int.signed (Int.repr 0) = 0). reflexivity.
- assert (TWELVE: Int.signed (Int.repr 12) = 12). reflexivity.
- assert (BND: 4 <= Int.signed (Int.repr 12)).
- rewrite TWELVE; omega.
- rewrite <- TWELVE in H1.
- generalize (callstack_set_slot _ _ _ _ _ _ _ _ _ _
- CSI2 H1 BND).
- intros [ms3 [STORERA CSI3]].
- assert (WTFR2: wt_frame fr2).
- eapply wt_set_slot; eauto. eapply wt_set_slot; eauto.
- red. intros. simpl. auto.
- exact I.
- red in H3.
- generalize (H3 _ _ _ _ _ _ WTF (incl_refl _) WTRS WTFR2 WTPA
- CSI3 (refl_equal _)).
- intros [ms4 [EXEC CSI4]].
- generalize (exec_instrs_link_invariant _ _ _ _ _ _ _ _ _ _ _ _ _
- H2 WTF (incl_refl _)).
- intros [INCL LINKINV].
- exists (free ms4 stk). split.
- eapply exec_funct_body; eauto.
- eapply callstack_get_slot. eexact CSI4.
- apply LINKINV. rewrite ZERO. omega.
- eapply slot_gso; eauto. rewrite ZERO. eapply slot_gss; eauto.
- exact I.
- eapply callstack_get_slot. eexact CSI4.
- apply LINKINV. rewrite TWELVE. omega. eapply slot_gss; eauto. auto.
- eapply callstack_function_return; eauto.
-
- (* internal function *)
- inversion WTF. subst f0.
- generalize (H0 (Vptr pstk pbase) Vzero I I
- ms pstk pbase cs H2 WTRS WTPA I (refl_equal _) CSI).
- intros [ms' [EXEC CSI']].
- exists ms'. split. constructor. intros.
- generalize (H0 (Vptr pstk pbase) ra I H1
- ms pstk pbase cs H2 WTRS WTPA H1 (refl_equal _) CSI).
- intros [ms1 [EXEC1 CSI1]].
- rewrite (callstack_exten _ _ _ _ CSI' CSI1). auto.
- auto.
-
- (* external function *)
- exists ms; split. econstructor; eauto.
- eapply transl_extcall_arguments; eauto.
- auto.
-Qed.
-
-End SIMULATION.
-
-Theorem exec_program_equiv:
- forall p t r,
- wt_program p ->
- Machabstr.exec_program p t r ->
- Mach.exec_program p t r.
-Proof.
- intros p t r WTP [fptr [f [rs [mm [FINDPTR [FINDF [EXEC RES]]]]]]].
- assert (WTF: wt_fundef f).
- apply (Genv.find_funct_ptr_prop wt_fundef WTP FINDF).
- assert (WTRS: wt_regset (Regmap.init Vundef)).
- red; intros. rewrite Regmap.gi; simpl; auto.
- assert (WTFR: wt_frame empty_frame).
- red; intros. simpl. auto.
- generalize (exec_function_equiv p WTP
- f empty_frame
- (Regmap.init Vundef) (Genv.init_mem p) t rs mm
- EXEC (Genv.init_mem p) nullptr Int.zero nil
- WTF WTRS WTFR (callstack_init p)).
- intros [ms' [EXEC' CSI]].
- red. exists fptr; exists f; exists rs; exists ms'. tauto.
-Qed.