summaryrefslogtreecommitdiff
path: root/backend/Machabstr2concr.v
diff options
context:
space:
mode:
Diffstat (limited to 'backend/Machabstr2concr.v')
-rw-r--r--backend/Machabstr2concr.v1160
1 files changed, 0 insertions, 1160 deletions
diff --git a/backend/Machabstr2concr.v b/backend/Machabstr2concr.v
deleted file mode 100644
index fa7f580..0000000
--- a/backend/Machabstr2concr.v
+++ /dev/null
@@ -1,1160 +0,0 @@
-(* *********************************************************************)
-(* *)
-(* The Compcert verified compiler *)
-(* *)
-(* Xavier Leroy, INRIA Paris-Rocquencourt *)
-(* *)
-(* Copyright Institut National de Recherche en Informatique et en *)
-(* Automatique. All rights reserved. This file is distributed *)
-(* under the terms of the INRIA Non-Commercial License Agreement. *)
-(* *)
-(* *********************************************************************)
-
-(** Simulation between the two semantics for the Mach language. *)
-
-Require Import Axioms.
-Require Import Coqlib.
-Require Import Maps.
-Require Import AST.
-Require Import Integers.
-Require Import Values.
-Require Import Memory.
-Require Import Events.
-Require Import Globalenvs.
-Require Import Smallstep.
-Require Import Op.
-Require Import Locations.
-Require Import Mach.
-Require Import Machtyping.
-Require Import Machabstr.
-Require Import Machconcr.
-Require Import Conventions.
-Require Import Asmgenretaddr.
-
-(** Two semantics were defined for the Mach intermediate language:
-- The concrete semantics (file [Mach]), where the whole activation
- record resides in memory and the [Mgetstack], [Msetstack] and
- [Mgetparent] are interpreted as [sp]-relative memory accesses.
-- The abstract semantics (file [Machabstr]), where the activation
- record is split in two parts: the Cminor stack data, resident in
- memory, and the frame information, residing not in memory but
- in additional evaluation environments.
-
- In this file, we show a simulation result between these
- semantics: if a program executes with some behaviour [beh] in the
- abstract semantics, it also executes with the same behaviour in
- the concrete semantics. This result bridges the correctness proof
- in file [Stackingproof] (which uses the abstract Mach semantics
- as output) and that in file [Asmgenproof] (which uses the concrete
- Mach semantics as input).
-*)
-
-Remark size_type_chunk:
- forall ty, size_chunk (chunk_of_type ty) = AST.typesize ty.
-Proof.
- destruct ty; reflexivity.
-Qed.
-
-(** * Agreement between frames and memory-resident activation records *)
-
-(** ** Agreement for one frame *)
-
-Section FRAME_MATCH.
-
-Variable f: function.
-Hypothesis wt_f: wt_function f.
-
-(** The core idea of the simulation proof is that for all active
- functions, the memory-allocated activation record, in the concrete
- semantics, contains the same data as the Cminor stack block
- (at positive offsets) and the frame of the function (at negative
- offsets) in the abstract semantics
-
- This intuition (activation record = Cminor stack data + frame)
- is formalized by the following predicate [frame_match fr sp base mm ms].
- [fr] is a frame and [mm] the current memory state in the abstract
- semantics. [ms] is the current memory state in the concrete semantics.
- The stack pointer is [Vptr sp base] in both semantics. *)
-
-Record frame_match (fr: frame)
- (sp: block) (base: int)
- (mm ms: mem) : Prop :=
- mk_frame_match {
- fm_valid_1:
- Mem.valid_block mm sp;
- fm_valid_2:
- Mem.valid_block ms sp;
- fm_base:
- base = Int.repr(- f.(fn_framesize));
- fm_stackdata_pos:
- Mem.low_bound mm sp = 0;
- fm_write_perm:
- Mem.range_perm ms sp (-f.(fn_framesize)) 0 Freeable;
- fm_contents_match:
- forall ty ofs,
- -f.(fn_framesize) <= ofs -> ofs + AST.typesize ty <= 0 -> (4 | ofs) ->
- exists v,
- Mem.load (chunk_of_type ty) ms sp ofs = Some v
- /\ Val.lessdef (fr ty ofs) v
- }.
-
-(** The following two innocuous-looking lemmas are the key results
- showing that [sp]-relative memory accesses in the concrete
- semantics behave like the direct frame accesses in the abstract
- semantics. First, a value [v] that has type [ty] is preserved
- when stored in memory with chunk [chunk_of_type ty], then read
- back with the same chunk. The typing hypothesis is crucial here:
- for instance, a float value is not preserved when stored
- and loaded with chunk [Mint32]. *)
-
-Lemma load_result_ty:
- forall v ty,
- Val.has_type v ty -> Val.load_result (chunk_of_type ty) v = v.
-Proof.
- destruct v; destruct ty; simpl; contradiction || reflexivity.
-Qed.
-
-(** Second, computations of [sp]-relative offsets using machine
- arithmetic (as done in the concrete semantics) never overflows
- and behaves identically to the offset computations using exact
- arithmetic (as done in the abstract semantics). *)
-
-Lemma int_add_no_overflow:
- forall x y,
- Int.min_signed <= Int.signed x + Int.signed y <= Int.max_signed ->
- Int.signed (Int.add x y) = Int.signed x + Int.signed y.
-Proof.
- intros. rewrite Int.add_signed. rewrite Int.signed_repr. auto. auto.
-Qed.
-
-(** Given matching frames and activation records, loading from the
- activation record (in the concrete semantics) behaves identically
- to reading the corresponding slot from the frame
- (in the abstract semantics). *)
-
-Lemma frame_match_load_stack:
- forall fr sp base mm ms ty ofs,
- frame_match fr sp base mm ms ->
- 0 <= Int.signed ofs /\ Int.signed ofs + AST.typesize ty <= f.(fn_framesize) ->
- (4 | Int.signed ofs) ->
- exists v,
- load_stack ms (Vptr sp base) ty ofs = Some v
- /\ Val.lessdef (fr ty (Int.signed ofs - f.(fn_framesize))) v.
-Proof.
- intros. inv H. inv wt_f.
- unfold load_stack, Val.add, Mem.loadv.
- replace (Int.signed (Int.add (Int.repr (- fn_framesize f)) ofs))
- with (Int.signed ofs - fn_framesize f).
- apply fm_contents_match0. omega. omega.
- apply Zdivide_minus_l; auto.
- assert (Int.signed (Int.repr (-fn_framesize f)) = -fn_framesize f).
- apply Int.signed_repr.
- assert (0 <= Int.max_signed). compute; congruence. omega.
- rewrite int_add_no_overflow. rewrite H. omega.
- rewrite H. split. omega.
- apply Zle_trans with 0. generalize (AST.typesize_pos ty). omega.
- compute; congruence.
-Qed.
-
-Lemma frame_match_get_slot:
- forall fr sp base mm ms ty ofs v,
- frame_match fr sp base mm ms ->
- get_slot f fr ty (Int.signed ofs) v ->
- exists v', load_stack ms (Vptr sp base) ty ofs = Some v' /\ Val.lessdef v v'.
-Proof.
- intros. inv H0. inv H1. eapply frame_match_load_stack; eauto.
-Qed.
-
-(** Assigning a value to a frame slot (in the abstract semantics)
- corresponds to storing this value in the activation record
- (in the concrete semantics). Moreover, agreement between frames
- and activation records is preserved. *)
-
-Lemma frame_match_store_stack:
- forall fr sp base mm ms ty ofs v v',
- frame_match fr sp base mm ms ->
- 0 <= Int.signed ofs -> Int.signed ofs + AST.typesize ty <= f.(fn_framesize) ->
- (4 | Int.signed ofs) ->
- Val.has_type v ty ->
- Val.lessdef v v' ->
- Mem.extends mm ms ->
- exists ms',
- store_stack ms (Vptr sp base) ty ofs v' = Some ms' /\
- frame_match (update ty (Int.signed ofs - f.(fn_framesize)) v fr) sp base mm ms' /\
- Mem.extends mm ms'.
-Proof.
- intros. inv H. inv wt_f.
- unfold store_stack, Val.add, Mem.storev.
- assert (Int.signed (Int.add (Int.repr (- fn_framesize f)) ofs) =
- Int.signed ofs - fn_framesize f).
- assert (Int.signed (Int.repr (-fn_framesize f)) = -fn_framesize f).
- apply Int.signed_repr.
- assert (0 <= Int.max_signed). compute; congruence. omega.
- rewrite int_add_no_overflow. rewrite H. omega.
- rewrite H. split. omega.
- apply Zle_trans with 0. generalize (AST.typesize_pos ty). omega.
- compute; congruence.
- rewrite H.
- assert ({ ms' | Mem.store (chunk_of_type ty) ms sp (Int.signed ofs - fn_framesize f) v' = Some ms'}).
- apply Mem.valid_access_store. constructor.
- apply Mem.range_perm_implies with Freeable; auto with mem.
- red; intros; apply fm_write_perm0.
- rewrite <- size_type_chunk in H1.
- generalize (size_chunk_pos (chunk_of_type ty)).
- omega.
- replace (align_chunk (chunk_of_type ty)) with 4.
- apply Zdivide_minus_l; auto.
- destruct ty; auto.
- destruct X as [ms' STORE].
- exists ms'.
- split. exact STORE.
- (* frame match *)
- split. constructor.
- (* valid *)
- eauto with mem.
- eauto with mem.
- (* base *)
- auto.
- (* stackdata_pos *)
- auto.
- (* write_perm *)
- red; intros; eauto with mem.
- (* contents *)
- intros.
- exploit fm_contents_match0; eauto. intros [v0 [LOAD0 VLD0]].
- assert (exists v1, Mem.load (chunk_of_type ty0) ms' sp ofs0 = Some v1).
- apply Mem.valid_access_load; eauto with mem.
- destruct H9 as [v1 LOAD1].
- exists v1; split; auto.
- unfold update.
- destruct (zeq (Int.signed ofs - fn_framesize f) ofs0). subst ofs0.
- destruct (typ_eq ty ty0). subst ty0.
- (* same *)
- inv H4.
- assert (Some v1 = Some (Val.load_result (chunk_of_type ty) v')).
- rewrite <- LOAD1. eapply Mem.load_store_same; eauto.
- destruct ty; auto.
- inv H4. rewrite load_result_ty; auto.
- auto.
- (* mismatch *)
- auto.
- destruct (zle (ofs0 + AST.typesize ty0) (Int.signed ofs - fn_framesize f)).
- (* disjoint *)
- assert (Some v1 = Some v0).
- rewrite <- LOAD0; rewrite <- LOAD1.
- eapply Mem.load_store_other; eauto.
- right; left. rewrite size_type_chunk; auto.
- inv H9. auto.
- destruct (zle (Int.signed ofs - fn_framesize f + AST.typesize ty)).
- assert (Some v1 = Some v0).
- rewrite <- LOAD0; rewrite <- LOAD1.
- eapply Mem.load_store_other; eauto.
- right; right. rewrite size_type_chunk; auto.
- inv H9. auto.
- (* overlap *)
- auto.
- (* extends *)
- eapply Mem.store_outside_extends; eauto.
- left. rewrite fm_stackdata_pos0.
- rewrite size_type_chunk. omega.
-Qed.
-
-Lemma frame_match_set_slot:
- forall fr sp base mm ms ty ofs v fr' v',
- frame_match fr sp base mm ms ->
- set_slot f fr ty (Int.signed ofs) v fr' ->
- Val.has_type v ty ->
- Val.lessdef v v' ->
- Mem.extends mm ms ->
- exists ms',
- store_stack ms (Vptr sp base) ty ofs v' = Some ms' /\
- frame_match fr' sp base mm ms' /\
- Mem.extends mm ms'.
-Proof.
- intros. inv H0. inv H4. eapply frame_match_store_stack; eauto.
-Qed.
-
-(** Agreement is preserved by stores within blocks other than the
- one pointed to by [sp]. *)
-
-Lemma frame_match_store_other:
- forall fr sp base mm ms chunk b ofs v ms',
- frame_match fr sp base mm ms ->
- Mem.store chunk ms b ofs v = Some ms' ->
- sp <> b ->
- frame_match fr sp base mm ms'.
-Proof.
- intros. inv H. constructor; auto.
- eauto with mem.
- red; intros; eauto with mem.
- intros. exploit fm_contents_match0; eauto. intros [v0 [LOAD LD]].
- exists v0; split; auto. rewrite <- LOAD. eapply Mem.load_store_other; eauto.
-Qed.
-
-(** Agreement is preserved by parallel stores in the Machabstr
- and the Machconcr semantics. *)
-
-Lemma frame_match_store:
- forall fr sp base mm ms chunk b ofs v mm' v' ms',
- frame_match fr sp base mm ms ->
- Mem.store chunk mm b ofs v = Some mm' ->
- Mem.store chunk ms b ofs v' = Some ms' ->
- frame_match fr sp base mm' ms'.
-Proof.
- intros. inv H. constructor; auto.
- eauto with mem.
- eauto with mem.
- rewrite (Mem.bounds_store _ _ _ _ _ _ H0). auto.
- red; intros; eauto with mem.
- intros. exploit fm_contents_match0; eauto. intros [v0 [LOAD LD]].
- exists v0; split; auto. rewrite <- LOAD. eapply Mem.load_store_other; eauto.
- destruct (zeq sp b); auto. subst b. right.
- rewrite size_type_chunk.
- assert (Mem.valid_access mm chunk sp ofs Nonempty) by eauto with mem.
- exploit Mem.store_valid_access_3. eexact H0. intro.
- exploit Mem.valid_access_in_bounds. eauto. rewrite fm_stackdata_pos0.
- omega.
-Qed.
-
-(** Memory allocation of the Cminor stack data block (in the abstract
- semantics) and of the whole activation record (in the concrete
- semantics) return memory states that agree according to [frame_match].
- Moreover, [frame_match] relations over already allocated blocks
- remain true. *)
-
-Lemma frame_match_new:
- forall mm ms mm' ms' sp,
- Mem.alloc mm 0 f.(fn_stacksize) = (mm', sp) ->
- Mem.alloc ms (- f.(fn_framesize)) f.(fn_stacksize) = (ms', sp) ->
- frame_match empty_frame sp (Int.repr (-f.(fn_framesize))) mm' ms'.
-Proof.
- intros.
- inv wt_f.
- constructor; simpl; eauto with mem.
- rewrite (Mem.bounds_alloc_same _ _ _ _ _ H). auto.
- red; intros. eapply Mem.perm_alloc_2; eauto. omega.
- intros. exists Vundef; split.
- eapply Mem.load_alloc_same'; eauto.
- rewrite size_type_chunk. omega.
- replace (align_chunk (chunk_of_type ty)) with 4; auto.
- destruct ty; auto.
- unfold empty_frame. auto.
-Qed.
-
-Lemma frame_match_alloc:
- forall mm ms fr sp base lom him los his mm' ms' b,
- frame_match fr sp base mm ms ->
- Mem.alloc mm lom him = (mm', b) ->
- Mem.alloc ms los his = (ms', b) ->
- frame_match fr sp base mm' ms'.
-Proof.
- intros. inversion H.
- assert (sp <> b).
- apply Mem.valid_not_valid_diff with ms; eauto with mem.
- constructor; auto.
- eauto with mem.
- eauto with mem.
- rewrite (Mem.bounds_alloc_other _ _ _ _ _ H0); auto.
- red; intros; eauto with mem.
- intros. exploit fm_contents_match0; eauto. intros [v [LOAD LD]].
- exists v; split; auto. eapply Mem.load_alloc_other; eauto.
-Qed.
-
-(** [frame_match] relations are preserved by freeing a block
- other than the one pointed to by [sp]. *)
-
-Lemma frame_match_free:
- forall fr sp base mm ms b lom him los his mm' ms',
- frame_match fr sp base mm ms ->
- sp <> b ->
- Mem.free mm b lom him = Some mm' ->
- Mem.free ms b los his = Some ms' ->
- frame_match fr sp base mm' ms'.
-Proof.
- intros. inversion H. constructor; auto.
- eauto with mem.
- eauto with mem.
- rewrite (Mem.bounds_free _ _ _ _ _ H1). auto.
- red; intros; eauto with mem.
- intros. rewrite (Mem.load_free _ _ _ _ _ H2); auto.
-Qed.
-
-Lemma frame_match_delete:
- forall fr sp base mm ms mm',
- frame_match fr sp base mm ms ->
- Mem.free mm sp 0 f.(fn_stacksize) = Some mm' ->
- Mem.extends mm ms ->
- exists ms',
- Mem.free ms sp (-f.(fn_framesize)) f.(fn_stacksize) = Some ms'
- /\ Mem.extends mm' ms'.
-Proof.
- intros. inversion H.
- assert (Mem.range_perm mm sp 0 (fn_stacksize f) Freeable).
- eapply Mem.free_range_perm; eauto.
- assert ({ ms' | Mem.free ms sp (-f.(fn_framesize)) f.(fn_stacksize) = Some ms' }).
- apply Mem.range_perm_free.
- red; intros. destruct (zlt ofs 0).
- apply fm_write_perm0. omega.
- eapply Mem.perm_extends; eauto. apply H2. omega.
- destruct X as [ms' FREE]. exists ms'; split; auto.
- eapply Mem.free_right_extends; eauto.
- eapply Mem.free_left_extends; eauto.
- intros; red; intros.
- exploit Mem.perm_in_bounds; eauto.
- rewrite (Mem.bounds_free _ _ _ _ _ H0). rewrite fm_stackdata_pos0; intro.
- exploit Mem.perm_free_2. eexact H0. instantiate (1 := ofs); omega. eauto.
- auto.
-Qed.
-
-(** [frame_match] is preserved by external calls. *)
-
-Lemma frame_match_external_call:
- forall (ge: genv) fr sp base mm ms mm' ms' ef vargs vres t vargs' vres',
- frame_match fr sp base mm ms ->
- Mem.extends mm ms ->
- external_call ef ge vargs mm t vres mm' ->
- Mem.extends mm' ms' ->
- external_call ef ge vargs' ms t vres' ms' ->
- mem_unchanged_on (loc_out_of_bounds mm) ms ms' ->
- frame_match fr sp base mm' ms'.
-Proof.
- intros. destruct H4 as [A B]. inversion H. constructor.
- eapply external_call_valid_block; eauto.
- eapply external_call_valid_block; eauto.
- auto.
- rewrite (external_call_bounds _ _ _ _ _ _ H1); auto.
- red; intros. apply A; auto. red. omega.
- intros. exploit fm_contents_match0; eauto. intros [v [C D]].
- exists v; split; auto.
- apply B; auto.
- rewrite size_type_chunk; intros; red. omega.
-Qed.
-
-End FRAME_MATCH.
-
-(** ** Accounting for the return address and back link *)
-
-Section EXTEND_FRAME.
-
-Variable f: function.
-Hypothesis wt_f: wt_function f.
-Variable cs: list Machconcr.stackframe.
-
-Definition extend_frame (fr: frame) : frame :=
- update Tint (Int.signed f.(fn_retaddr_ofs) - f.(fn_framesize)) (parent_ra cs)
- (update Tint (Int.signed f.(fn_link_ofs) - f.(fn_framesize)) (parent_sp cs)
- fr).
-
-Lemma get_slot_extends:
- forall fr ty ofs v,
- get_slot f fr ty ofs v ->
- get_slot f (extend_frame fr) ty ofs v.
-Proof.
- intros. inv H. constructor. auto.
- inv H0. inv wt_f. generalize (AST.typesize_pos ty); intro.
- unfold extend_frame. rewrite update_other. rewrite update_other. auto.
- simpl; omega. simpl; omega.
-Qed.
-
-Lemma update_commut:
- forall ty1 ofs1 v1 ty2 ofs2 v2 fr,
- ofs1 + AST.typesize ty1 <= ofs2 \/
- ofs2 + AST.typesize ty2 <= ofs1 ->
- update ty1 ofs1 v1 (update ty2 ofs2 v2 fr) =
- update ty2 ofs2 v2 (update ty1 ofs1 v1 fr).
-Proof.
- intros. unfold frame.
- apply extensionality. intro ty. apply extensionality. intro ofs.
- generalize (AST.typesize_pos ty1).
- generalize (AST.typesize_pos ty2).
- generalize (AST.typesize_pos ty); intros.
- unfold update.
- set (sz1 := AST.typesize ty1) in *.
- set (sz2 := AST.typesize ty2) in *.
- set (sz := AST.typesize ty) in *.
- destruct (zeq ofs1 ofs).
- rewrite zeq_false.
- destruct (zle (ofs + sz) ofs2). auto.
- destruct (zle (ofs2 + sz2) ofs). auto.
- destruct (typ_eq ty1 ty); auto.
- replace sz with sz1 in z. omegaContradiction. unfold sz1, sz; congruence.
- omega.
-
- destruct (zle (ofs + sz) ofs1).
- auto.
- destruct (zle (ofs1 + sz1) ofs).
- auto.
-
- destruct (zeq ofs2 ofs).
- destruct (typ_eq ty2 ty); auto.
- replace sz with sz2 in z. omegaContradiction. unfold sz2, sz; congruence.
- destruct (zle (ofs + sz) ofs2); auto.
- destruct (zle (ofs2 + sz2) ofs); auto.
-Qed.
-
-Lemma set_slot_extends:
- forall fr ty ofs v fr',
- set_slot f fr ty ofs v fr' ->
- set_slot f (extend_frame fr) ty ofs v (extend_frame fr').
-Proof.
- intros. inv H. constructor. auto.
- inv H0. inv wt_f. generalize (AST.typesize_pos ty); intro.
- unfold extend_frame.
- rewrite (update_commut ty). rewrite (update_commut ty). auto.
- simpl. omega.
- simpl. omega.
-Qed.
-
-Definition is_pointer_or_int (v: val) : Prop :=
- match v with
- | Vint _ => True
- | Vptr _ _ => True
- | _ => False
- end.
-
-Remark is_pointer_has_type:
- forall v, is_pointer_or_int v -> Val.has_type v Tint.
-Proof.
- intros; destruct v; elim H; exact I.
-Qed.
-
-Lemma frame_match_load_stack_pointer:
- forall fr sp base mm ms ty ofs,
- frame_match f fr sp base mm ms ->
- 0 <= Int.signed ofs /\ Int.signed ofs + AST.typesize ty <= f.(fn_framesize) ->
- (4 | Int.signed ofs) ->
- is_pointer_or_int (fr ty (Int.signed ofs - f.(fn_framesize))) ->
- load_stack ms (Vptr sp base) ty ofs = Some (fr ty (Int.signed ofs - f.(fn_framesize))).
-Proof.
- intros. exploit frame_match_load_stack; eauto.
- intros [v [LOAD LD]].
- inv LD. auto. rewrite <- H4 in H2. elim H2.
-Qed.
-
-Lemma frame_match_load_link:
- forall fr sp base mm ms,
- frame_match f (extend_frame fr) sp base mm ms ->
- is_pointer_or_int (parent_sp cs) ->
- load_stack ms (Vptr sp base) Tint f.(fn_link_ofs) = Some(parent_sp cs).
-Proof.
- intros. inversion wt_f.
- assert (parent_sp cs =
- extend_frame fr Tint (Int.signed f.(fn_link_ofs) - f.(fn_framesize))).
- unfold extend_frame. rewrite update_other. rewrite update_same. auto.
- simpl. omega.
- rewrite H1; eapply frame_match_load_stack_pointer; eauto.
- rewrite <- H1; auto.
-Qed.
-
-Lemma frame_match_load_retaddr:
- forall fr sp base mm ms,
- frame_match f (extend_frame fr) sp base mm ms ->
- is_pointer_or_int (parent_ra cs) ->
- load_stack ms (Vptr sp base) Tint f.(fn_retaddr_ofs) = Some(parent_ra cs).
-Proof.
- intros. inversion wt_f.
- assert (parent_ra cs =
- extend_frame fr Tint (Int.signed f.(fn_retaddr_ofs) - f.(fn_framesize))).
- unfold extend_frame. rewrite update_same. auto.
- rewrite H1; eapply frame_match_load_stack_pointer; eauto.
- rewrite <- H1; auto.
-Qed.
-
-Lemma frame_match_function_entry:
- forall mm ms mm' sp,
- Mem.extends mm ms ->
- Mem.alloc mm 0 f.(fn_stacksize) = (mm', sp) ->
- is_pointer_or_int (parent_sp cs) ->
- is_pointer_or_int (parent_ra cs) ->
- let base := Int.repr (-f.(fn_framesize)) in
- exists ms1, exists ms2, exists ms3,
- Mem.alloc ms (- f.(fn_framesize)) f.(fn_stacksize) = (ms1, sp) /\
- store_stack ms1 (Vptr sp base) Tint f.(fn_link_ofs) (parent_sp cs) = Some ms2 /\
- store_stack ms2 (Vptr sp base) Tint f.(fn_retaddr_ofs) (parent_ra cs) = Some ms3 /\
- frame_match f (extend_frame empty_frame) sp base mm' ms3 /\
- Mem.extends mm' ms3.
-Proof.
- intros. inversion wt_f.
- exploit Mem.alloc_extends; eauto.
- instantiate (1 := -f.(fn_framesize)). omega.
- instantiate (1 := f.(fn_stacksize)). omega.
- intros [ms1 [A EXT0]].
- exploit frame_match_new; eauto. fold base. intros FM0.
- exploit frame_match_store_stack. eauto. eexact FM0.
- instantiate (1 := fn_link_ofs f); omega.
- instantiate (1 := Tint). simpl; omega.
- auto. apply is_pointer_has_type. eexact H1. constructor. auto.
- intros [ms2 [STORE1 [FM1 EXT1]]].
- exploit frame_match_store_stack. eauto. eexact FM1.
- instantiate (1 := fn_retaddr_ofs f); omega.
- instantiate (1 := Tint). simpl; omega.
- auto. apply is_pointer_has_type. eexact H2. constructor. auto.
- intros [ms3 [STORE2 [FM2 EXT2]]].
- exists ms1; exists ms2; exists ms3; auto.
-Qed.
-
-End EXTEND_FRAME.
-
-(** ** The ``less defined than'' relation between register states. *)
-
-Definition regset_lessdef (rs1 rs2: regset) : Prop :=
- forall r, Val.lessdef (rs1 r) (rs2 r).
-
-Lemma regset_lessdef_list:
- forall rs1 rs2, regset_lessdef rs1 rs2 ->
- forall rl, Val.lessdef_list (rs1##rl) (rs2##rl).
-Proof.
- induction rl; simpl.
- constructor.
- constructor; auto.
-Qed.
-
-Lemma regset_lessdef_set:
- forall rs1 rs2 r v1 v2,
- regset_lessdef rs1 rs2 -> Val.lessdef v1 v2 ->
- regset_lessdef (rs1#r <- v1) (rs2#r <- v2).
-Proof.
- intros; red; intros. unfold Regmap.set.
- destruct (RegEq.eq r0 r); auto.
-Qed.
-
-Lemma regset_lessdef_undef_temps:
- forall rs1 rs2,
- regset_lessdef rs1 rs2 -> regset_lessdef (undef_temps rs1) (undef_temps rs2).
-Proof.
- unfold undef_temps.
- generalize (int_temporaries ++ float_temporaries).
- induction l; simpl; intros. auto. apply IHl. apply regset_lessdef_set; auto.
-Qed.
-
-Lemma regset_lessdef_undef_op:
- forall op rs1 rs2,
- regset_lessdef rs1 rs2 -> regset_lessdef (undef_op op rs1) (undef_op op rs2).
-Proof.
- intros. set (D := regset_lessdef_undef_temps _ _ H).
- destruct op; simpl; auto.
-Qed.
-
-Lemma regset_lessdef_find_function_ptr:
- forall ge ros rs1 rs2 fb,
- find_function_ptr ge ros rs1 = Some fb ->
- regset_lessdef rs1 rs2 ->
- find_function_ptr ge ros rs2 = Some fb.
-Proof.
- unfold find_function_ptr; intros; destruct ros; simpl in *.
- generalize (H0 m); intro LD; inv LD. auto. rewrite <- H2 in H. congruence.
- auto.
-Qed.
-
-(** ** Invariant for stacks *)
-
-Section SIMULATION.
-
-Variable p: program.
-Let ge := Genv.globalenv p.
-
-(** The [match_stacks] predicate relates a Machabstr call stack
- with the corresponding Machconcr stack. In addition to enforcing
- the [frame_match] predicate for each stack frame, we also enforce:
-- Proper chaining of activation record on the Machconcr side.
-- Preservation of the return address stored at the bottom of the
- activation record.
-- Separation between the memory blocks holding the activation records:
- their addresses increase strictly from caller to callee.
-*)
-
-Definition stack_below (ts: list Machconcr.stackframe) (b: block) : Prop :=
- match parent_sp ts with
- | Vptr sp base' => sp < b
- | _ => False
- end.
-
-Inductive match_stacks:
- list Machabstr.stackframe -> list Machconcr.stackframe ->
- mem -> mem -> Prop :=
- | match_stacks_nil: forall mm ms,
- match_stacks nil nil mm ms
- | match_stacks_cons: forall fb sp base c fr s f ra ts mm ms,
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- wt_function f ->
- frame_match f (extend_frame f ts fr) sp base mm ms ->
- stack_below ts sp ->
- is_pointer_or_int ra ->
- match_stacks s ts mm ms ->
- match_stacks (Machabstr.Stackframe f (Vptr sp base) c fr :: s)
- (Machconcr.Stackframe fb (Vptr sp base) ra c :: ts)
- mm ms.
-
-Lemma match_stacks_parent_sp_pointer:
- forall s ts mm ms,
- match_stacks s ts mm ms -> is_pointer_or_int (Machconcr.parent_sp ts).
-Proof.
- induction 1; simpl; auto.
-Qed.
-
-Lemma match_stacks_parent_ra_pointer:
- forall s ts mm ms,
- match_stacks s ts mm ms -> is_pointer_or_int (Machconcr.parent_ra ts).
-Proof.
- induction 1; simpl; auto.
-Qed.
-
-(** If [match_stacks] holds, a lookup in the parent frame in the
- Machabstr semantics corresponds to two memory loads in the
- Machconcr semantics, one to load the pointer to the parent's
- activation record, the second to read within this record. *)
-
-Lemma match_stacks_get_parent:
- forall s ts mm ms ty ofs v,
- match_stacks s ts mm ms ->
- get_slot (parent_function s) (parent_frame s) ty (Int.signed ofs) v ->
- exists v',
- load_stack ms (Machconcr.parent_sp ts) ty ofs = Some v'
- /\ Val.lessdef v v'.
-Proof.
- intros. inv H; simpl in H0.
- inv H0. inv H. simpl in H1. elimtype False. generalize (AST.typesize_pos ty). omega.
- simpl. eapply frame_match_get_slot; eauto.
- eapply get_slot_extends; eauto.
-Qed.
-
-(** Preservation of the [match_stacks] invariant
- by various kinds of memory operations. *)
-
-Remark stack_below_trans:
- forall ts b b',
- stack_below ts b -> b <= b' -> stack_below ts b'.
-Proof.
- unfold stack_below; intros.
- destruct (parent_sp ts); auto. omega.
-Qed.
-
-Lemma match_stacks_store_other:
- forall s ts ms mm,
- match_stacks s ts mm ms ->
- forall chunk b ofs v ms',
- Mem.store chunk ms b ofs v = Some ms' ->
- stack_below ts b ->
- match_stacks s ts mm ms'.
-Proof.
- induction 1; intros.
- constructor.
- red in H6; simpl in H6.
- econstructor; eauto.
- eapply frame_match_store_other; eauto.
- unfold block; omega.
- eapply IHmatch_stacks; eauto.
- eapply stack_below_trans; eauto. omega.
-Qed.
-
-Lemma match_stacks_store_slot:
- forall s ts ms mm,
- match_stacks s ts mm ms ->
- forall ty ofs v ms' b i,
- stack_below ts b ->
- store_stack ms (Vptr b i) ty ofs v = Some ms' ->
- match_stacks s ts mm ms'.
-Proof.
- intros.
- unfold store_stack in H1. simpl in H1.
- inv H.
- constructor.
- red in H0; simpl in H0.
- econstructor; eauto.
- eapply frame_match_store_other; eauto.
- unfold block; omega.
- eapply match_stacks_store_other; eauto.
- eapply stack_below_trans; eauto. omega.
-Qed.
-
-Lemma match_stacks_store:
- forall s ts ms mm,
- match_stacks s ts mm ms ->
- forall chunk b ofs v mm' v' ms',
- Mem.store chunk mm b ofs v = Some mm' ->
- Mem.store chunk ms b ofs v' = Some ms' ->
- match_stacks s ts mm' ms'.
-Proof.
- induction 1; intros.
- constructor.
- econstructor; eauto.
- eapply frame_match_store; eauto.
-Qed.
-
-Lemma match_stacks_alloc:
- forall s ts ms mm,
- match_stacks s ts mm ms ->
- forall lom him mm' b los his ms',
- Mem.alloc mm lom him = (mm', b) ->
- Mem.alloc ms los his = (ms', b) ->
- match_stacks s ts mm' ms'.
-Proof.
- induction 1; intros.
- constructor.
- econstructor; eauto. eapply frame_match_alloc; eauto.
-Qed.
-
-Lemma match_stacks_free:
- forall s ts ms mm,
- match_stacks s ts mm ms ->
- forall b lom him los his mm' ms',
- Mem.free mm b lom him = Some mm' ->
- Mem.free ms b los his = Some ms' ->
- stack_below ts b ->
- match_stacks s ts mm' ms'.
-Proof.
- induction 1; intros.
- constructor.
- red in H7; simpl in H7.
- econstructor; eauto.
- eapply frame_match_free; eauto. unfold block; omega.
- eapply IHmatch_stacks; eauto.
- eapply stack_below_trans; eauto. omega.
-Qed.
-
-Lemma match_stacks_function_entry:
- forall s ts ms mm,
- match_stacks s ts mm ms ->
- forall lom him mm' stk los his ms',
- Mem.alloc mm lom him = (mm', stk) ->
- Mem.alloc ms los his = (ms', stk) ->
- match_stacks s ts mm' ms' /\ stack_below ts stk.
-Proof.
- intros.
- assert (stk = Mem.nextblock mm) by eauto with mem.
- split. eapply match_stacks_alloc; eauto.
- red. inv H; simpl.
- unfold Mem.nullptr. apply Zgt_lt. apply Mem.nextblock_pos.
- inv H5. auto.
-Qed.
-
-Lemma match_stacks_external_call:
- forall s ts mm ms,
- match_stacks s ts mm ms ->
- forall ef vargs t vres mm' ms' vargs' vres',
- Mem.extends mm ms ->
- external_call ef ge vargs mm t vres mm' ->
- Mem.extends mm' ms' ->
- external_call ef ge vargs' ms t vres' ms' ->
- mem_unchanged_on (loc_out_of_bounds mm) ms ms' ->
- match_stacks s ts mm' ms'.
-Proof.
- induction 1; intros.
- constructor.
- econstructor; eauto.
- eapply frame_match_external_call; eauto.
-Qed.
-
-(** ** Invariant between states. *)
-
-(** The [match_state] predicate relates a Machabstr state with
- a Machconcr state. In addition to [match_stacks] between the
- stacks, we ask that
-- The Machabstr frame is properly stored in the activation record,
- as characterized by [frame_match].
-- The Machconcr memory state extends the Machabstr memory state,
- in the sense of the [Mem.extends] relation defined in module [Mem]. *)
-
-Inductive match_states:
- Machabstr.state -> Machconcr.state -> Prop :=
- | match_states_intro:
- forall s f sp base c rs fr mm ts trs fb ms
- (STACKS: match_stacks s ts mm ms)
- (FM: frame_match f (extend_frame f ts fr) sp base mm ms)
- (BELOW: stack_below ts sp)
- (RLD: regset_lessdef rs trs)
- (MEXT: Mem.extends mm ms)
- (FIND: Genv.find_funct_ptr ge fb = Some (Internal f)),
- match_states (Machabstr.State s f (Vptr sp base) c rs fr mm)
- (Machconcr.State ts fb (Vptr sp base) c trs ms)
- | match_states_call:
- forall s f rs mm ts trs fb ms
- (STACKS: match_stacks s ts mm ms)
- (MEXT: Mem.extends mm ms)
- (RLD: regset_lessdef rs trs)
- (FIND: Genv.find_funct_ptr ge fb = Some f),
- match_states (Machabstr.Callstate s f rs mm)
- (Machconcr.Callstate ts fb trs ms)
- | match_states_return:
- forall s rs mm ts trs ms
- (STACKS: match_stacks s ts mm ms)
- (MEXT: Mem.extends mm ms)
- (RLD: regset_lessdef rs trs),
- match_states (Machabstr.Returnstate s rs mm)
- (Machconcr.Returnstate ts trs ms).
-
-(** * The proof of simulation *)
-
-(** The proof of simulation relies on diagrams of the following form:
-<<
- st1 --------------- st2
- | |
- t| |t
- | |
- v v
- st1'--------------- st2'
->>
- The precondition is matching between the initial states [st1] and
- [st2], as usual, plus the fact that [st1] is well-typed
- in the sense of predicate [wt_state] from module [Machtyping].
- The postcondition is matching between the final states [st1']
- and [st2']. The well-typedness of [st2] is not part of the
- postcondition, since it follows from that of [st1] if the
- program is well-typed. (See the subject reduction property
- in module [Machtyping].)
-*)
-
-Lemma find_function_find_function_ptr:
- forall ros rs f',
- find_function ge ros rs = Some f' ->
- exists fb', Genv.find_funct_ptr ge fb' = Some f' /\ find_function_ptr ge ros rs = Some fb'.
-Proof.
- intros until f'. destruct ros; simpl.
- intro. exploit Genv.find_funct_inv; eauto. intros [fb' EQ].
- rewrite EQ in H. rewrite Genv.find_funct_find_funct_ptr in H.
- exists fb'; split. auto. rewrite EQ. simpl. auto.
- destruct (Genv.find_symbol ge i); intro.
- exists b; auto. congruence.
-Qed.
-
-(** Preservation of arguments to external functions. *)
-
-Lemma transl_extcall_arguments:
- forall rs s sg args ts trs m ms,
- Machabstr.extcall_arguments (parent_function s) rs (parent_frame s) sg args ->
- regset_lessdef rs trs ->
- match_stacks s ts m ms ->
- exists targs,
- extcall_arguments trs ms (parent_sp ts) sg targs
- /\ Val.lessdef_list args targs.
-Proof.
- unfold Machabstr.extcall_arguments, extcall_arguments; intros.
- generalize (loc_arguments sg) args H.
- induction l; intros; inv H2.
- exists (@nil val); split; constructor.
- exploit IHl; eauto. intros [targs [A B]].
- inv H7. exists (trs r :: targs); split.
- constructor; auto. constructor.
- constructor; auto.
- exploit match_stacks_get_parent; eauto. intros [targ [C D]].
- exists (targ :: targs); split.
- constructor; auto. constructor; auto.
- constructor; auto.
-Qed.
-
-Hypothesis wt_prog: wt_program p.
-
-Theorem step_equiv:
- forall s1 t s2, Machabstr.step ge s1 t s2 ->
- forall s1' (MS: match_states s1 s1') (WTS: wt_state s1),
- exists s2', Machconcr.step ge s1' t s2' /\ match_states s2 s2'.
-Proof.
- induction 1; intros; inv MS.
-
- (* Mlabel *)
- econstructor; split.
- apply exec_Mlabel; auto.
- econstructor; eauto with coqlib.
-
- (* Mgetstack *)
- assert (WTF: wt_function f) by (inv WTS; auto).
- exploit frame_match_get_slot; eauto. eapply get_slot_extends; eauto.
- intros [v' [A B]].
- exists (State ts fb (Vptr sp0 base) c (trs#dst <- v') ms); split.
- constructor; auto.
- econstructor; eauto with coqlib. eapply regset_lessdef_set; eauto.
-
- (* Msetstack *)
- assert (WTF: wt_function f) by (inv WTS; auto).
- assert (Val.has_type (rs src) ty).
- inv WTS.
- generalize (wt_function_instrs _ WTF _ (is_tail_in TAIL)); intro WTI.
- inv WTI. apply WTRS.
- exploit frame_match_set_slot. eauto. eauto.
- eapply set_slot_extends; eauto.
- auto. apply RLD. auto.
- intros [ms' [STORE [FM' EXT']]].
- exists (State ts fb (Vptr sp0 base) c trs ms'); split.
- apply exec_Msetstack; auto.
- econstructor; eauto.
- eapply match_stacks_store_slot; eauto.
-
- (* Mgetparam *)
- assert (WTF: wt_function f) by (inv WTS; auto).
- exploit match_stacks_get_parent; eauto. intros [v' [A B]].
- exists (State ts fb (Vptr sp0 base) c (trs # IT1 <- Vundef # dst <- v') ms); split.
- eapply exec_Mgetparam; eauto.
- eapply frame_match_load_link; eauto.
- eapply match_stacks_parent_sp_pointer; eauto.
- econstructor; eauto with coqlib.
- apply regset_lessdef_set; eauto. apply regset_lessdef_set; eauto.
-
- (* Mop *)
- exploit eval_operation_lessdef. 2: eauto.
- eapply regset_lessdef_list; eauto.
- intros [v' [A B]].
- exists (State ts fb (Vptr sp0 base) c ((undef_op op trs)#res <- v') ms); split.
- apply exec_Mop; auto.
- econstructor; eauto with coqlib. apply regset_lessdef_set; eauto.
- apply regset_lessdef_undef_op; auto.
-
- (* Mload *)
- exploit eval_addressing_lessdef. 2: eauto. eapply regset_lessdef_list; eauto.
- intros [a' [A B]].
- exploit Mem.loadv_extends. eauto. eauto. eexact B.
- intros [v' [C D]].
- exists (State ts fb (Vptr sp0 base) c ((undef_temps trs)#dst <- v') ms); split.
- eapply exec_Mload; eauto.
- econstructor; eauto with coqlib. apply regset_lessdef_set; eauto.
- apply regset_lessdef_undef_temps; auto.
-
- (* Mstore *)
- exploit eval_addressing_lessdef. 2: eauto. eapply regset_lessdef_list; eauto.
- intros [a' [A B]].
- exploit Mem.storev_extends. eauto. eauto. eexact B. apply RLD.
- intros [ms' [C D]].
- exists (State ts fb (Vptr sp0 base) c (undef_temps trs) ms'); split.
- eapply exec_Mstore; eauto.
- destruct a; simpl in H0; try congruence. inv B. simpl in C.
- econstructor; eauto with coqlib.
- eapply match_stacks_store. eauto. eexact H0. eexact C.
- eapply frame_match_store; eauto.
- apply regset_lessdef_undef_temps; auto.
-
- (* Mcall *)
- exploit find_function_find_function_ptr; eauto.
- intros [fb' [FIND' FINDFUNCT]].
- assert (exists ra', return_address_offset f c ra').
- apply return_address_exists.
- inv WTS. eapply is_tail_cons_left; eauto.
- destruct H0 as [ra' RETADDR].
- econstructor; split.
- eapply exec_Mcall; eauto. eapply regset_lessdef_find_function_ptr; eauto.
- econstructor; eauto.
- econstructor; eauto. inv WTS; auto. exact I.
-
- (* Mtailcall *)
- assert (WTF: wt_function f) by (inv WTS; auto).
- exploit find_function_find_function_ptr; eauto.
- intros [fb' [FIND' FINDFUNCT]].
- exploit frame_match_delete; eauto. intros [ms' [A B]].
- econstructor; split.
- eapply exec_Mtailcall; eauto.
- eapply regset_lessdef_find_function_ptr; eauto.
- eapply frame_match_load_link; eauto. eapply match_stacks_parent_sp_pointer; eauto.
- eapply frame_match_load_retaddr; eauto. eapply match_stacks_parent_ra_pointer; eauto.
- econstructor; eauto. eapply match_stacks_free; eauto.
-
- (* Mbuiltin *)
- exploit external_call_mem_extends; eauto. eapply regset_lessdef_list; eauto.
- intros [v' [ms' [A [B [C D]]]]].
- econstructor; split.
- eapply exec_Mbuiltin. eauto.
- econstructor; eauto with coqlib.
- eapply match_stacks_external_call; eauto.
- eapply frame_match_external_call; eauto.
- apply regset_lessdef_set; eauto. apply regset_lessdef_undef_temps; auto.
-
- (* Mgoto *)
- econstructor; split.
- eapply exec_Mgoto; eauto.
- econstructor; eauto.
-
- (* Mcond *)
- econstructor; split.
- eapply exec_Mcond_true; eauto.
- eapply eval_condition_lessdef; eauto. apply regset_lessdef_list; auto.
- econstructor; eauto. apply regset_lessdef_undef_temps; auto.
- econstructor; split.
- eapply exec_Mcond_false; eauto.
- eapply eval_condition_lessdef; eauto. apply regset_lessdef_list; auto.
- econstructor; eauto. apply regset_lessdef_undef_temps; auto.
-
- (* Mjumptable *)
- econstructor; split.
- eapply exec_Mjumptable; eauto.
- generalize (RLD arg); intro LD. rewrite H in LD. inv LD. auto.
- econstructor; eauto. apply regset_lessdef_undef_temps; auto.
-
- (* Mreturn *)
- assert (WTF: wt_function f) by (inv WTS; auto).
- exploit frame_match_delete; eauto. intros [ms' [A B]].
- econstructor; split.
- eapply exec_Mreturn; eauto.
- eapply frame_match_load_link; eauto. eapply match_stacks_parent_sp_pointer; eauto.
- eapply frame_match_load_retaddr; eauto. eapply match_stacks_parent_ra_pointer; eauto.
- econstructor; eauto. eapply match_stacks_free; eauto.
-
- (* internal function *)
- assert (WTF: wt_function f). inv WTS. inv H5. auto.
- exploit frame_match_function_entry. eauto. eauto. eauto.
- instantiate (1 := ts). eapply match_stacks_parent_sp_pointer; eauto.
- eapply match_stacks_parent_ra_pointer; eauto.
- intros [ms1 [ms2 [ms3 [ALLOC [STORE1 [STORE2 [FM MEXT']]]]]]].
- econstructor; split.
- eapply exec_function_internal; eauto.
- exploit match_stacks_function_entry; eauto. intros [STACKS' BELOW].
- econstructor; eauto.
- eapply match_stacks_store_slot with (ms := ms2); eauto.
- eapply match_stacks_store_slot with (ms := ms1); eauto.
-
- (* external function *)
- exploit transl_extcall_arguments; eauto. intros [targs [A B]].
- exploit external_call_mem_extends; eauto.
- intros [tres [ms' [C [D [E F]]]]].
- econstructor; split.
- eapply exec_function_external. eauto. eexact C. eexact A. reflexivity.
- econstructor; eauto.
- eapply match_stacks_external_call; eauto.
- apply regset_lessdef_set; auto.
-
- (* return *)
- inv STACKS.
- econstructor; split.
- eapply exec_return.
- econstructor; eauto.
-Qed.
-
-Lemma equiv_initial_states:
- forall st1, Machabstr.initial_state p st1 ->
- exists st2, Machconcr.initial_state p st2 /\ match_states st1 st2 /\ wt_state st1.
-Proof.
- intros. inversion H.
- econstructor; split.
- econstructor. eauto. eauto.
- split. econstructor. constructor. apply Mem.extends_refl.
- unfold Regmap.init; red; intros. constructor.
- auto.
- econstructor. simpl; intros; contradiction.
- eapply Genv.find_funct_ptr_prop; eauto.
- red; intros; exact I.
-Qed.
-
-Lemma equiv_final_states:
- forall st1 st2 r,
- match_states st1 st2 /\ wt_state st1 -> Machabstr.final_state st1 r -> Machconcr.final_state st2 r.
-Proof.
- intros. inv H0. destruct H. inv H. inv STACKS.
- constructor.
- generalize (RLD (loc_result (mksignature nil (Some Tint)))).
- rewrite H1. intro LD. inv LD. auto.
-Qed.
-
-Theorem exec_program_equiv:
- forall (beh: program_behavior), not_wrong beh ->
- Machabstr.exec_program p beh -> Machconcr.exec_program p beh.
-Proof.
- unfold Machconcr.exec_program, Machabstr.exec_program; intros.
- eapply simulation_step_preservation with
- (step1 := Machabstr.step)
- (step2 := Machconcr.step)
- (match_states := fun st1 st2 => match_states st1 st2 /\ wt_state st1).
- eexact equiv_initial_states.
- eexact equiv_final_states.
- intros. destruct H2. exploit step_equiv; eauto.
- intros [st2' [A B]]. exists st2'; split. auto. split. auto.
- eapply Machtyping.subject_reduction; eauto.
- auto. auto.
-Qed.
-
-End SIMULATION.