summaryrefslogtreecommitdiff
path: root/backend/Cmconstr.v
diff options
context:
space:
mode:
Diffstat (limited to 'backend/Cmconstr.v')
-rw-r--r--backend/Cmconstr.v911
1 files changed, 911 insertions, 0 deletions
diff --git a/backend/Cmconstr.v b/backend/Cmconstr.v
new file mode 100644
index 0000000..cd50e38
--- /dev/null
+++ b/backend/Cmconstr.v
@@ -0,0 +1,911 @@
+(** Smart constructors for Cminor. This library provides functions
+ for building Cminor expressions and statements, especially expressions
+ consisting of operator applications. These functions examine their
+ arguments to choose cheaper forms of operators whenever possible.
+
+ For instance, [add e1 e2] will return a Cminor expression semantically
+ equivalent to [Eop Oadd (e1 ::: e2 ::: Enil)], but will use a
+ [Oaddimm] operator if one of the arguments is an integer constant,
+ or suppress the addition altogether if one of the arguments is the
+ null integer. In passing, we perform operator reassociation
+ ([(e + c1) * c2] becomes [(e * c2) + (c1 * c2)]) and a small amount
+ of constant propagation.
+
+ In more general terms, the purpose of the smart constructors is twofold:
+- Perform instruction selection (for operators, loads, stores and
+ conditional expressions);
+- Abstract over processor dependencies in operators and addressing modes,
+ providing Cminor providers with processor-independent ways of constructing
+ Cminor terms.
+*)
+
+Require Import Coqlib.
+Require Import Compare_dec.
+Require Import Maps.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Mem.
+Require Import Op.
+Require Import Globalenvs.
+Require Import Cminor.
+
+Infix ":::" := Econs (at level 60, right associativity) : cminor_scope.
+
+Open Scope cminor_scope.
+
+(** * Lifting of let-bound variables *)
+
+(** Some of the smart constructors, as well as the Cminor producers,
+ generate [Elet] constructs to share the evaluation of a subexpression.
+ Owing to the use of de Bruijn indices for let-bound variables,
+ we need to shift de Bruijn indices when an expression [b] is put
+ in a [Elet a b] context. *)
+
+Fixpoint lift_expr (p: nat) (a: expr) {struct a}: expr :=
+ match a with
+ | Evar id => Evar id
+ | Eassign id b => Eassign id (lift_expr p b)
+ | Eop op bl => Eop op (lift_exprlist p bl)
+ | Eload chunk addr bl => Eload chunk addr (lift_exprlist p bl)
+ | Estore chunk addr bl c =>
+ Estore chunk addr (lift_exprlist p bl) (lift_expr p c)
+ | Ecall sig b cl => Ecall sig (lift_expr p b) (lift_exprlist p cl)
+ | Econdition b c d =>
+ Econdition (lift_condexpr p b) (lift_expr p c) (lift_expr p d)
+ | Elet b c => Elet (lift_expr p b) (lift_expr (S p) c)
+ | Eletvar n =>
+ if le_gt_dec p n then Eletvar (S n) else Eletvar n
+ end
+
+with lift_condexpr (p: nat) (a: condexpr) {struct a}: condexpr :=
+ match a with
+ | CEtrue => CEtrue
+ | CEfalse => CEfalse
+ | CEcond cond bl => CEcond cond (lift_exprlist p bl)
+ | CEcondition b c d =>
+ CEcondition (lift_condexpr p b) (lift_condexpr p c) (lift_condexpr p d)
+ end
+
+with lift_exprlist (p: nat) (a: exprlist) {struct a}: exprlist :=
+ match a with
+ | Enil => Enil
+ | Econs b cl => Econs (lift_expr p b) (lift_exprlist p cl)
+ end.
+
+Definition lift (a: expr): expr := lift_expr O a.
+
+(** * Smart constructors for operators *)
+
+Definition negint (e: expr) := Eop (Osubimm Int.zero) (e ::: Enil).
+Definition negfloat (e: expr) := Eop Onegf (e ::: Enil).
+Definition absfloat (e: expr) := Eop Oabsf (e ::: Enil).
+Definition intoffloat (e: expr) := Eop Ointoffloat (e ::: Enil).
+Definition floatofint (e: expr) := Eop Ofloatofint (e ::: Enil).
+Definition floatofintu (e: expr) := Eop Ofloatofintu (e ::: Enil).
+
+(** ** Integer logical negation *)
+
+(** The natural way to write smart constructors is by pattern-matching
+ on their arguments, recognizing cases where cheaper operators
+ or combined operators are applicable. For instance, integer logical
+ negation has three special cases (not-and, not-or and not-xor),
+ along with a default case that uses not-or over its arguments and itself.
+ This is written naively as follows:
+<<
+Definition notint (e: expr) :=
+ match e with
+ | Eop Oand (t1:::t2:::Enil) => Eop Onand (t1:::t2:::Enil)
+ | Eop Oor (t1:::t2:::Enil) => Eop Onor (t1:::t2:::Enil)
+ | Eop Oxor (t1:::t2:::Enil) => Eop Onxor (t1:::t2:::Enil)
+ | _ => Elet(e, Eop Onor (Eletvar O ::: Eletvar O ::: Enil)
+ end.
+>>
+ However, Coq expands complex pattern-matchings like the above into
+ elementary matchings over all constructors of an inductive type,
+ resulting in much duplication of the final catch-all case.
+ Such duplications generate huge executable code and duplicate
+ cases in the correctness proofs.
+
+ To limit this duplication, we use the following trick due to
+ Yves Bertot. We first define a dependent inductive type that
+ characterizes the expressions that match each of the 4 cases of interest.
+*)
+
+Inductive notint_cases: forall (e: expr), Set :=
+ | notint_case1:
+ forall (t1: expr) (t2: expr),
+ notint_cases (Eop Oand (t1:::t2:::Enil))
+ | notint_case2:
+ forall (t1: expr) (t2: expr),
+ notint_cases (Eop Oor (t1:::t2:::Enil))
+ | notint_case3:
+ forall (t1: expr) (t2: expr),
+ notint_cases (Eop Oxor (t1:::t2:::Enil))
+ | notint_default:
+ forall (e: expr),
+ notint_cases e.
+
+(** We then define a classification function that takes an expression
+ and return in which case it falls. Note that the catch-all case
+ [notint_default] does not state that it is mutually exclusive with
+ the first three, more specific cases. The classification function
+ nonetheless chooses the specific cases in preference to the catch-all
+ case. *)
+
+Definition notint_match (e: expr) :=
+ match e as z1 return notint_cases z1 with
+ | Eop Oand (t1:::t2:::Enil) =>
+ notint_case1 t1 t2
+ | Eop Oor (t1:::t2:::Enil) =>
+ notint_case2 t1 t2
+ | Eop Oxor (t1:::t2:::Enil) =>
+ notint_case3 t1 t2
+ | e =>
+ notint_default e
+ end.
+
+(** Finally, the [notint] function we need is defined by a 4-case match
+ over the result of the classification function. Thus, no duplication
+ of the right-hand sides of this match occur, and the proof has only
+ 4 cases to consider (it proceeds by case over [notint_match e]).
+ Since the default case is not obviously exclusive with the three
+ specific cases, it is important that its right-hand side is
+ semantically correct for all possible values of [e], which is the
+ case here and for all other smart constructors. *)
+
+Definition notint (e: expr) :=
+ match notint_match e with
+ | notint_case1 t1 t2 =>
+ Eop Onand (t1:::t2:::Enil)
+ | notint_case2 t1 t2 =>
+ Eop Onor (t1:::t2:::Enil)
+ | notint_case3 t1 t2 =>
+ Eop Onxor (t1:::t2:::Enil)
+ | notint_default e =>
+ Elet e (Eop Onor (Eletvar O ::: Eletvar O ::: Enil))
+ end.
+
+(** This programming pattern will be applied systematically for the
+ other smart constructors in this file. *)
+
+(** ** Boolean negation *)
+
+Definition notbool_base (e: expr) :=
+ Eop (Ocmp (Ccompuimm Ceq Int.zero)) (e ::: Enil).
+
+Fixpoint notbool (e: expr) {struct e} : expr :=
+ match e with
+ | Eop (Ointconst n) Enil =>
+ Eop (Ointconst (if Int.eq n Int.zero then Int.one else Int.zero)) Enil
+ | Eop (Ocmp cond) args =>
+ Eop (Ocmp (negate_condition cond)) args
+ | Econdition e1 e2 e3 =>
+ Econdition e1 (notbool e2) (notbool e3)
+ | _ =>
+ notbool_base e
+ end.
+
+(** ** Truncations and sign extensions *)
+
+Definition cast8signed (e: expr) := Eop Ocast8signed (e ::: Enil).
+
+Definition cast8unsigned (e: expr) :=
+ Eop (Orolm Int.zero (Int.repr 255)) (e ::: Enil).
+Definition cast16signed (e: expr) :=
+ Eop Ocast16signed (e ::: Enil).
+Definition cast16unsigned (e: expr) :=
+ Eop (Orolm Int.zero (Int.repr 65535)) (e ::: Enil).
+Definition singleoffloat (e: expr) :=
+ Eop Osingleoffloat (e ::: Enil).
+
+(** ** Integer addition and pointer addition *)
+
+(*
+Definition addimm (n: int) (e: expr) :=
+ if Int.eq n Int.zero then e else
+ match e with
+ | Eop (Ointconst m) Enil => Eop (Ointconst(Int.add n m)) Enil
+ | Eop (Oaddrsymbol s m) Enil => Eop (Oaddrsymbol s (Int.add n m)) Enil
+ | Eop (Oaddrstack m) Enil => Eop (Oaddrstack (Int.add n m)) Enil
+ | Eop (Oaddimm m) (t ::: Enil) => Eop (Oaddimm(Int.add n m)) (t ::: Enil)
+ | _ => Eop (Oaddimm n) (e ::: Enil)
+ end.
+*)
+
+(** Addition of an integer constant. *)
+
+Inductive addimm_cases: forall (e: expr), Set :=
+ | addimm_case1:
+ forall (m: int),
+ addimm_cases (Eop (Ointconst m) Enil)
+ | addimm_case2:
+ forall (s: ident) (m: int),
+ addimm_cases (Eop (Oaddrsymbol s m) Enil)
+ | addimm_case3:
+ forall (m: int),
+ addimm_cases (Eop (Oaddrstack m) Enil)
+ | addimm_case4:
+ forall (m: int) (t: expr),
+ addimm_cases (Eop (Oaddimm m) (t ::: Enil))
+ | addimm_default:
+ forall (e: expr),
+ addimm_cases e.
+
+Definition addimm_match (e: expr) :=
+ match e as z1 return addimm_cases z1 with
+ | Eop (Ointconst m) Enil =>
+ addimm_case1 m
+ | Eop (Oaddrsymbol s m) Enil =>
+ addimm_case2 s m
+ | Eop (Oaddrstack m) Enil =>
+ addimm_case3 m
+ | Eop (Oaddimm m) (t ::: Enil) =>
+ addimm_case4 m t
+ | e =>
+ addimm_default e
+ end.
+
+Definition addimm (n: int) (e: expr) :=
+ if Int.eq n Int.zero then e else
+ match addimm_match e with
+ | addimm_case1 m =>
+ Eop (Ointconst(Int.add n m)) Enil
+ | addimm_case2 s m =>
+ Eop (Oaddrsymbol s (Int.add n m)) Enil
+ | addimm_case3 m =>
+ Eop (Oaddrstack (Int.add n m)) Enil
+ | addimm_case4 m t =>
+ Eop (Oaddimm(Int.add n m)) (t ::: Enil)
+ | addimm_default e =>
+ Eop (Oaddimm n) (e ::: Enil)
+ end.
+
+(** Addition of two integer or pointer expressions. *)
+
+(*
+Definition add (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop (Ointconst n1) Enil, t2 => addimm n1 t2
+ | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) => addimm (Int.add n1 n2) (Eop Oadd (t1:::t2:::Enil))
+ | Eop(Oaddimm n1) (t1:::Enil)), t2 => addimm n1 (Eop Oadd (t1:::t2:::Enil))
+ | t1, Eop (Ointconst n2) Enil => addimm n2 t1
+ | t1, Eop (Oaddimm n2) (t2:::Enil) => addimm n2 (Eop Oadd (t1:::t2:::Enil))
+ | _, _ => Eop Oadd (e1:::e2:::Enil)
+ end.
+*)
+
+Inductive add_cases: forall (e1: expr) (e2: expr), Set :=
+ | add_case1:
+ forall (n1: int) (t2: expr),
+ add_cases (Eop (Ointconst n1) Enil) (t2)
+ | add_case2:
+ forall (n1: int) (t1: expr) (n2: int) (t2: expr),
+ add_cases (Eop (Oaddimm n1) (t1:::Enil)) (Eop (Oaddimm n2) (t2:::Enil))
+ | add_case3:
+ forall (n1: int) (t1: expr) (t2: expr),
+ add_cases (Eop(Oaddimm n1) (t1:::Enil)) (t2)
+ | add_case4:
+ forall (t1: expr) (n2: int),
+ add_cases (t1) (Eop (Ointconst n2) Enil)
+ | add_case5:
+ forall (t1: expr) (n2: int) (t2: expr),
+ add_cases (t1) (Eop (Oaddimm n2) (t2:::Enil))
+ | add_default:
+ forall (e1: expr) (e2: expr),
+ add_cases e1 e2.
+
+Definition add_match_aux (e1: expr) (e2: expr) :=
+ match e2 as z2 return add_cases e1 z2 with
+ | Eop (Ointconst n2) Enil =>
+ add_case4 e1 n2
+ | Eop (Oaddimm n2) (t2:::Enil) =>
+ add_case5 e1 n2 t2
+ | e2 =>
+ add_default e1 e2
+ end.
+
+Definition add_match (e1: expr) (e2: expr) :=
+ match e1 as z1, e2 as z2 return add_cases z1 z2 with
+ | Eop (Ointconst n1) Enil, t2 =>
+ add_case1 n1 t2
+ | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) =>
+ add_case2 n1 t1 n2 t2
+ | Eop(Oaddimm n1) (t1:::Enil), t2 =>
+ add_case3 n1 t1 t2
+ | e1, e2 =>
+ add_match_aux e1 e2
+ end.
+
+Definition add (e1: expr) (e2: expr) :=
+ match add_match e1 e2 with
+ | add_case1 n1 t2 =>
+ addimm n1 t2
+ | add_case2 n1 t1 n2 t2 =>
+ addimm (Int.add n1 n2) (Eop Oadd (t1:::t2:::Enil))
+ | add_case3 n1 t1 t2 =>
+ addimm n1 (Eop Oadd (t1:::t2:::Enil))
+ | add_case4 t1 n2 =>
+ addimm n2 t1
+ | add_case5 t1 n2 t2 =>
+ addimm n2 (Eop Oadd (t1:::t2:::Enil))
+ | add_default e1 e2 =>
+ Eop Oadd (e1:::e2:::Enil)
+ end.
+
+(** ** Integer and pointer subtraction *)
+
+(*
+Definition sub (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | t1, Eop (Ointconst n2) Enil => addimm (Int.neg n2) t1
+ | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) => addimm
+(intsub n1 n2) (Eop Osub (t1:::t2:::Enil))
+ | Eop (Oaddimm n1) (t1:::Enil), t2 => addimm n1 (Eop Osub (t1:::t2:::Rni
+l))
+ | t1, Eop (Oaddimm n2) (t2:::Enil) => addimm (Int.neg n2) (Eop Osub (t1:::
+:t2:::Enil))
+ | _, _ => Eop Osub (e1:::e2:::Enil)
+ end.
+*)
+
+Inductive sub_cases: forall (e1: expr) (e2: expr), Set :=
+ | sub_case1:
+ forall (t1: expr) (n2: int),
+ sub_cases (t1) (Eop (Ointconst n2) Enil)
+ | sub_case2:
+ forall (n1: int) (t1: expr) (n2: int) (t2: expr),
+ sub_cases (Eop (Oaddimm n1) (t1:::Enil)) (Eop (Oaddimm n2) (t2:::Enil))
+ | sub_case3:
+ forall (n1: int) (t1: expr) (t2: expr),
+ sub_cases (Eop (Oaddimm n1) (t1:::Enil)) (t2)
+ | sub_case4:
+ forall (t1: expr) (n2: int) (t2: expr),
+ sub_cases (t1) (Eop (Oaddimm n2) (t2:::Enil))
+ | sub_default:
+ forall (e1: expr) (e2: expr),
+ sub_cases e1 e2.
+
+Definition sub_match_aux (e1: expr) (e2: expr) :=
+ match e1 as z1 return sub_cases z1 e2 with
+ | Eop (Oaddimm n1) (t1:::Enil) =>
+ sub_case3 n1 t1 e2
+ | e1 =>
+ sub_default e1 e2
+ end.
+
+Definition sub_match (e1: expr) (e2: expr) :=
+ match e2 as z2, e1 as z1 return sub_cases z1 z2 with
+ | Eop (Ointconst n2) Enil, t1 =>
+ sub_case1 t1 n2
+ | Eop (Oaddimm n2) (t2:::Enil), Eop (Oaddimm n1) (t1:::Enil) =>
+ sub_case2 n1 t1 n2 t2
+ | Eop (Oaddimm n2) (t2:::Enil), t1 =>
+ sub_case4 t1 n2 t2
+ | e2, e1 =>
+ sub_match_aux e1 e2
+ end.
+
+Definition sub (e1: expr) (e2: expr) :=
+ match sub_match e1 e2 with
+ | sub_case1 t1 n2 =>
+ addimm (Int.neg n2) t1
+ | sub_case2 n1 t1 n2 t2 =>
+ addimm (Int.sub n1 n2) (Eop Osub (t1:::t2:::Enil))
+ | sub_case3 n1 t1 t2 =>
+ addimm n1 (Eop Osub (t1:::t2:::Enil))
+ | sub_case4 t1 n2 t2 =>
+ addimm (Int.neg n2) (Eop Osub (t1:::t2:::Enil))
+ | sub_default e1 e2 =>
+ Eop Osub (e1:::e2:::Enil)
+ end.
+
+(** ** Rotates and immediate shifts *)
+
+(*
+Definition rolm (e1: expr) :=
+ match e1 with
+ | Eop (Ointconst n1) Enil =>
+ Eop (Ointconst(Int.and (Int.rol n1 amount2) mask2)) Enil
+ | Eop (Orolm amount1 mask1) (t1:::Enil) =>
+ let amount := Int.and (Int.add amount1 amount2) Ox1Fl in
+ let mask := Int.and (Int.rol mask1 amount2) mask2 in
+ if Int.is_rlw_mask mask
+ then Eop (Orolm amount mask) (t1:::Enil)
+ else Eop (Orolm amount2 mask2) (e1:::Enil)
+ | _ => Eop (Orolm amount2 mask2) (e1:::Enil)
+ end
+*)
+
+Inductive rolm_cases: forall (e1: expr), Set :=
+ | rolm_case1:
+ forall (n1: int),
+ rolm_cases (Eop (Ointconst n1) Enil)
+ | rolm_case2:
+ forall (amount1: int) (mask1: int) (t1: expr),
+ rolm_cases (Eop (Orolm amount1 mask1) (t1:::Enil))
+ | rolm_default:
+ forall (e1: expr),
+ rolm_cases e1.
+
+Definition rolm_match (e1: expr) :=
+ match e1 as z1 return rolm_cases z1 with
+ | Eop (Ointconst n1) Enil =>
+ rolm_case1 n1
+ | Eop (Orolm amount1 mask1) (t1:::Enil) =>
+ rolm_case2 amount1 mask1 t1
+ | e1 =>
+ rolm_default e1
+ end.
+
+Definition rolm (e1: expr) (amount2 mask2: int) :=
+ match rolm_match e1 with
+ | rolm_case1 n1 =>
+ Eop (Ointconst(Int.and (Int.rol n1 amount2) mask2)) Enil
+ | rolm_case2 amount1 mask1 t1 =>
+ let amount := Int.and (Int.add amount1 amount2) (Int.repr 31) in
+ let mask := Int.and (Int.rol mask1 amount2) mask2 in
+ if Int.is_rlw_mask mask
+ then Eop (Orolm amount mask) (t1:::Enil)
+ else Eop (Orolm amount2 mask2) (e1:::Enil)
+ | rolm_default e1 =>
+ Eop (Orolm amount2 mask2) (e1:::Enil)
+ end.
+
+Definition shlimm (e1: expr) (n2: int) :=
+ if Int.eq n2 Int.zero then
+ e1
+ else if Int.ltu n2 (Int.repr 32) then
+ rolm e1 n2 (Int.shl Int.mone n2)
+ else
+ Eop Oshl (e1:::Eop (Ointconst n2) Enil:::Enil).
+
+Definition shruimm (e1: expr) (n2: int) :=
+ if Int.eq n2 Int.zero then
+ e1
+ else if Int.ltu n2 (Int.repr 32) then
+ rolm e1 (Int.sub (Int.repr 32) n2) (Int.shru Int.mone n2)
+ else
+ Eop Oshru (e1:::Eop (Ointconst n2) Enil:::Enil).
+
+(** ** Integer multiply *)
+
+Definition mulimm_base (n1: int) (e2: expr) :=
+ match Int.one_bits n1 with
+ | i :: nil =>
+ shlimm e2 i
+ | i :: j :: nil =>
+ Elet e2
+ (Eop Oadd (shlimm (Eletvar 0) i :::
+ shlimm (Eletvar 0) j ::: Enil))
+ | _ =>
+ Eop (Omulimm n1) (e2:::Enil)
+ end.
+
+(*
+Definition mulimm (n1: int) (e2: expr) :=
+ if Int.eq n1 Int.zero then
+ Elet e2 (Eop (Ointconst Int.zero) Enil)
+ else if Int.eq n1 Int.one then
+ e2
+ else match e2 with
+ | Eop (Ointconst n2) Enil => Eop (Ointconst(intmul n1 n2)) Enil
+ | Eop (Oaddimm n2) (t2:::Enil) => addimm (intmul n1 n2) (mulimm_base n1 t2)
+ | _ => mulimm_base n1 e2
+ end.
+*)
+
+Inductive mulimm_cases: forall (e2: expr), Set :=
+ | mulimm_case1:
+ forall (n2: int),
+ mulimm_cases (Eop (Ointconst n2) Enil)
+ | mulimm_case2:
+ forall (n2: int) (t2: expr),
+ mulimm_cases (Eop (Oaddimm n2) (t2:::Enil))
+ | mulimm_default:
+ forall (e2: expr),
+ mulimm_cases e2.
+
+Definition mulimm_match (e2: expr) :=
+ match e2 as z1 return mulimm_cases z1 with
+ | Eop (Ointconst n2) Enil =>
+ mulimm_case1 n2
+ | Eop (Oaddimm n2) (t2:::Enil) =>
+ mulimm_case2 n2 t2
+ | e2 =>
+ mulimm_default e2
+ end.
+
+Definition mulimm (n1: int) (e2: expr) :=
+ if Int.eq n1 Int.zero then
+ Elet e2 (Eop (Ointconst Int.zero) Enil)
+ else if Int.eq n1 Int.one then
+ e2
+ else match mulimm_match e2 with
+ | mulimm_case1 n2 =>
+ Eop (Ointconst(Int.mul n1 n2)) Enil
+ | mulimm_case2 n2 t2 =>
+ addimm (Int.mul n1 n2) (mulimm_base n1 t2)
+ | mulimm_default e2 =>
+ mulimm_base n1 e2
+ end.
+
+(*
+Definition mul (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop (Ointconst n1) Enil, t2 => mulimm n1 t2
+ | t1, Eop (Ointconst n2) Enil => mulimm n2 t1
+ | _, _ => Eop Omul (e1:::e2:::Enil)
+ end.
+*)
+
+Inductive mul_cases: forall (e1: expr) (e2: expr), Set :=
+ | mul_case1:
+ forall (n1: int) (t2: expr),
+ mul_cases (Eop (Ointconst n1) Enil) (t2)
+ | mul_case2:
+ forall (t1: expr) (n2: int),
+ mul_cases (t1) (Eop (Ointconst n2) Enil)
+ | mul_default:
+ forall (e1: expr) (e2: expr),
+ mul_cases e1 e2.
+
+Definition mul_match_aux (e1: expr) (e2: expr) :=
+ match e2 as z2 return mul_cases e1 z2 with
+ | Eop (Ointconst n2) Enil =>
+ mul_case2 e1 n2
+ | e2 =>
+ mul_default e1 e2
+ end.
+
+Definition mul_match (e1: expr) (e2: expr) :=
+ match e1 as z1 return mul_cases z1 e2 with
+ | Eop (Ointconst n1) Enil =>
+ mul_case1 n1 e2
+ | e1 =>
+ mul_match_aux e1 e2
+ end.
+
+Definition mul (e1: expr) (e2: expr) :=
+ match mul_match e1 e2 with
+ | mul_case1 n1 t2 =>
+ mulimm n1 t2
+ | mul_case2 t1 n2 =>
+ mulimm n2 t1
+ | mul_default e1 e2 =>
+ Eop Omul (e1:::e2:::Enil)
+ end.
+
+(** ** Integer division and modulus *)
+
+Definition divs (e1: expr) (e2: expr) := Eop Odiv (e1:::e2:::Enil).
+
+Definition mod_aux (divop: operation) (e1 e2: expr) :=
+ Elet e1
+ (Elet (lift e2)
+ (Eop Osub (Eletvar 1 :::
+ Eop Omul (Eop divop (Eletvar 1 ::: Eletvar 0 ::: Enil) :::
+ Eletvar 0 :::
+ Enil) :::
+ Enil))).
+
+Definition mods := mod_aux Odiv.
+
+Inductive divu_cases: forall (e2: expr), Set :=
+ | divu_case1:
+ forall (n2: int),
+ divu_cases (Eop (Ointconst n2) Enil)
+ | divu_default:
+ forall (e2: expr),
+ divu_cases e2.
+
+Definition divu_match (e2: expr) :=
+ match e2 as z1 return divu_cases z1 with
+ | Eop (Ointconst n2) Enil =>
+ divu_case1 n2
+ | e2 =>
+ divu_default e2
+ end.
+
+Definition divu (e1: expr) (e2: expr) :=
+ match divu_match e2 with
+ | divu_case1 n2 =>
+ match Int.is_power2 n2 with
+ | Some l2 => shruimm e1 l2
+ | None => Eop Odivu (e1:::e2:::Enil)
+ end
+ | divu_default e2 =>
+ Eop Odivu (e1:::e2:::Enil)
+ end.
+
+Definition modu (e1: expr) (e2: expr) :=
+ match divu_match e2 with
+ | divu_case1 n2 =>
+ match Int.is_power2 n2 with
+ | Some l2 => rolm e1 Int.zero (Int.sub n2 Int.one)
+ | None => mod_aux Odivu e1 e2
+ end
+ | divu_default e2 =>
+ mod_aux Odivu e1 e2
+ end.
+
+(** ** Bitwise and, or, xor *)
+
+Definition andimm (n1: int) (e2: expr) :=
+ if Int.is_rlw_mask n1
+ then rolm e2 Int.zero n1
+ else Eop (Oandimm n1) (e2:::Enil).
+
+Definition and (e1: expr) (e2: expr) :=
+ match mul_match e1 e2 with
+ | mul_case1 n1 t2 =>
+ andimm n1 t2
+ | mul_case2 t1 n2 =>
+ andimm n2 t1
+ | mul_default e1 e2 =>
+ Eop Oand (e1:::e2:::Enil)
+ end.
+
+Definition same_expr_pure (e1 e2: expr) :=
+ match e1, e2 with
+ | Evar v1, Evar v2 => if ident_eq v1 v2 then true else false
+ | _, _ => false
+ end.
+
+Inductive or_cases: forall (e1: expr) (e2: expr), Set :=
+ | or_case1:
+ forall (amount1: int) (mask1: int) (t1: expr)
+ (amount2: int) (mask2: int) (t2: expr),
+ or_cases (Eop (Orolm amount1 mask1) (t1:::Enil))
+ (Eop (Orolm amount2 mask2) (t2:::Enil))
+ | or_default:
+ forall (e1: expr) (e2: expr),
+ or_cases e1 e2.
+
+Definition or_match (e1: expr) (e2: expr) :=
+ match e1 as z1, e2 as z2 return or_cases z1 z2 with
+ | Eop (Orolm amount1 mask1) (t1:::Enil),
+ Eop (Orolm amount2 mask2) (t2:::Enil) =>
+ or_case1 amount1 mask1 t1 amount2 mask2 t2
+ | e1, e2 =>
+ or_default e1 e2
+ end.
+
+Definition or (e1: expr) (e2: expr) :=
+ match or_match e1 e2 with
+ | or_case1 amount1 mask1 t1 amount2 mask2 t2 =>
+ if Int.eq amount1 amount2
+ && Int.is_rlw_mask (Int.or mask1 mask2)
+ && same_expr_pure t1 t2
+ then Eop (Orolm amount1 (Int.or mask1 mask2)) (t1:::Enil)
+ else Eop Oor (e1:::e2:::Enil)
+ | or_default e1 e2 =>
+ Eop Oor (e1:::e2:::Enil)
+ end.
+
+Definition xor (e1 e2: expr) := Eop Oxor (e1:::e2:::Enil).
+
+(** ** General shifts *)
+
+Inductive shift_cases: forall (e1: expr), Set :=
+ | shift_case1:
+ forall (n2: int),
+ shift_cases (Eop (Ointconst n2) Enil)
+ | shift_default:
+ forall (e1: expr),
+ shift_cases e1.
+
+Definition shift_match (e1: expr) :=
+ match e1 as z1 return shift_cases z1 with
+ | Eop (Ointconst n2) Enil =>
+ shift_case1 n2
+ | e1 =>
+ shift_default e1
+ end.
+
+Definition shl (e1: expr) (e2: expr) :=
+ match shift_match e2 with
+ | shift_case1 n2 =>
+ shlimm e1 n2
+ | shift_default e2 =>
+ Eop Oshl (e1:::e2:::Enil)
+ end.
+
+Definition shr (e1 e2: expr) :=
+ Eop Oshr (e1:::e2:::Enil).
+
+Definition shru (e1: expr) (e2: expr) :=
+ match shift_match e2 with
+ | shift_case1 n2 =>
+ shruimm e1 n2
+ | shift_default e2 =>
+ Eop Oshru (e1:::e2:::Enil)
+ end.
+
+(** ** Floating-point arithmetic *)
+
+(*
+Definition addf (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop Omulf (t1:::t2:::Enil), t3 => Eop Omuladdf (t1:::t2:::t3:::Enil)
+ | t1, Eop Omulf (t2:::t3:::Enil) => Elet t1 (Eop Omuladdf (t2:::t3:::Rvar 0:::Enil))
+ | _, _ => Eop Oaddf (e1:::e2:::Enil)
+ end.
+*)
+
+Inductive addf_cases: forall (e1: expr) (e2: expr), Set :=
+ | addf_case1:
+ forall (t1: expr) (t2: expr) (t3: expr),
+ addf_cases (Eop Omulf (t1:::t2:::Enil)) (t3)
+ | addf_case2:
+ forall (t1: expr) (t2: expr) (t3: expr),
+ addf_cases (t1) (Eop Omulf (t2:::t3:::Enil))
+ | addf_default:
+ forall (e1: expr) (e2: expr),
+ addf_cases e1 e2.
+
+Definition addf_match_aux (e1: expr) (e2: expr) :=
+ match e2 as z2 return addf_cases e1 z2 with
+ | Eop Omulf (t2:::t3:::Enil) =>
+ addf_case2 e1 t2 t3
+ | e2 =>
+ addf_default e1 e2
+ end.
+
+Definition addf_match (e1: expr) (e2: expr) :=
+ match e1 as z1 return addf_cases z1 e2 with
+ | Eop Omulf (t1:::t2:::Enil) =>
+ addf_case1 t1 t2 e2
+ | e1 =>
+ addf_match_aux e1 e2
+ end.
+
+Definition addf (e1: expr) (e2: expr) :=
+ match addf_match e1 e2 with
+ | addf_case1 t1 t2 t3 =>
+ Eop Omuladdf (t1:::t2:::t3:::Enil)
+ | addf_case2 t1 t2 t3 =>
+ Elet t1 (Eop Omuladdf (lift t2:::lift t3:::Eletvar 0:::Enil))
+ | addf_default e1 e2 =>
+ Eop Oaddf (e1:::e2:::Enil)
+ end.
+
+(*
+Definition subf (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop Omulfloat (t1:::t2:::Enil), t3 => Eop Omulsubf (t1:::t2:::t3:::Enil)
+ | _, _ => Eop Osubf (e1:::e2:::Enil)
+ end.
+*)
+
+Inductive subf_cases: forall (e1: expr) (e2: expr), Set :=
+ | subf_case1:
+ forall (t1: expr) (t2: expr) (t3: expr),
+ subf_cases (Eop Omulf (t1:::t2:::Enil)) (t3)
+ | subf_default:
+ forall (e1: expr) (e2: expr),
+ subf_cases e1 e2.
+
+Definition subf_match (e1: expr) (e2: expr) :=
+ match e1 as z1 return subf_cases z1 e2 with
+ | Eop Omulf (t1:::t2:::Enil) =>
+ subf_case1 t1 t2 e2
+ | e1 =>
+ subf_default e1 e2
+ end.
+
+Definition subf (e1: expr) (e2: expr) :=
+ match subf_match e1 e2 with
+ | subf_case1 t1 t2 t3 =>
+ Eop Omulsubf (t1:::t2:::t3:::Enil)
+ | subf_default e1 e2 =>
+ Eop Osubf (e1:::e2:::Enil)
+ end.
+
+Definition mulf (e1 e2: expr) := Eop Omulf (e1:::e2:::Enil).
+Definition divf (e1 e2: expr) := Eop Odivf (e1:::e2:::Enil).
+
+(** ** Comparisons and conditional expressions *)
+
+Definition cmp (c: comparison) (e1 e2: expr) :=
+ Eop (Ocmp (Ccomp c)) (e1:::e2:::Enil).
+Definition cmpu (c: comparison) (e1 e2: expr) :=
+ Eop (Ocmp (Ccompu c)) (e1:::e2:::Enil).
+Definition cmpf (c: comparison) (e1 e2: expr) :=
+ Eop (Ocmp (Ccompf c)) (e1:::e2:::Enil).
+
+Fixpoint condexpr_of_expr (e: expr) : condexpr :=
+ match e with
+ | Eop (Ointconst n) Enil =>
+ if Int.eq n Int.zero then CEfalse else CEtrue
+ | Eop (Ocmp c) el => CEcond c el
+ | Econdition e1 e2 e3 =>
+ CEcondition e1 (condexpr_of_expr e2) (condexpr_of_expr e3)
+ | e => CEcond (Ccompuimm Cne Int.zero) (e:::Enil)
+ end.
+
+Definition conditionalexpr (e1 e2 e3: expr) : expr :=
+ Econdition (condexpr_of_expr e1) e2 e3.
+
+(** ** Recognition of addressing modes for load and store operations *)
+
+(*
+Definition addressing (e: expr) :=
+ match e with
+ | Eop (Oaddrsymbol s n) Enil => (Aglobal s n, Enil)
+ | Eop (Oaddrstack n) Enil => (Ainstack n, Enil)
+ | Eop Oadd (Eop (Oaddrsymbol s n) Enil) e2 => (Abased(s, n), e2:::Enil)
+ | Eop (Oaddimm n) (e1:::Enil) => (Aindexed n, e1:::Enil)
+ | Eop Oadd (e1:::e2:::Enil) => (Aindexed2, e1:::e2:::Enil)
+ | _ => (Aindexed Int.zero, e:::Enil)
+ end.
+*)
+
+Inductive addressing_cases: forall (e: expr), Set :=
+ | addressing_case1:
+ forall (s: ident) (n: int),
+ addressing_cases (Eop (Oaddrsymbol s n) Enil)
+ | addressing_case2:
+ forall (n: int),
+ addressing_cases (Eop (Oaddrstack n) Enil)
+ | addressing_case3:
+ forall (s: ident) (n: int) (e2: expr),
+ addressing_cases
+ (Eop Oadd (Eop (Oaddrsymbol s n) Enil:::e2:::Enil))
+ | addressing_case4:
+ forall (n: int) (e1: expr),
+ addressing_cases (Eop (Oaddimm n) (e1:::Enil))
+ | addressing_case5:
+ forall (e1: expr) (e2: expr),
+ addressing_cases (Eop Oadd (e1:::e2:::Enil))
+ | addressing_default:
+ forall (e: expr),
+ addressing_cases e.
+
+Definition addressing_match (e: expr) :=
+ match e as z1 return addressing_cases z1 with
+ | Eop (Oaddrsymbol s n) Enil =>
+ addressing_case1 s n
+ | Eop (Oaddrstack n) Enil =>
+ addressing_case2 n
+ | Eop Oadd (Eop (Oaddrsymbol s n) Enil:::e2:::Enil) =>
+ addressing_case3 s n e2
+ | Eop (Oaddimm n) (e1:::Enil) =>
+ addressing_case4 n e1
+ | Eop Oadd (e1:::e2:::Enil) =>
+ addressing_case5 e1 e2
+ | e =>
+ addressing_default e
+ end.
+
+Definition addressing (e: expr) :=
+ match addressing_match e with
+ | addressing_case1 s n =>
+ (Aglobal s n, Enil)
+ | addressing_case2 n =>
+ (Ainstack n, Enil)
+ | addressing_case3 s n e2 =>
+ (Abased s n, e2:::Enil)
+ | addressing_case4 n e1 =>
+ (Aindexed n, e1:::Enil)
+ | addressing_case5 e1 e2 =>
+ (Aindexed2, e1:::e2:::Enil)
+ | addressing_default e =>
+ (Aindexed Int.zero, e:::Enil)
+ end.
+
+Definition load (chunk: memory_chunk) (e1: expr) :=
+ match addressing e1 with
+ | (mode, args) => Eload chunk mode args
+ end.
+
+Definition store (chunk: memory_chunk) (e1 e2: expr) :=
+ match addressing e1 with
+ | (mode, args) => Estore chunk mode args e2
+ end.
+
+(** ** If-then-else statement *)
+
+Definition ifthenelse (e: expr) (ifso ifnot: stmtlist) : stmt :=
+ Sifthenelse (condexpr_of_expr e) ifso ifnot.