summaryrefslogtreecommitdiff
path: root/arm/Constpropproof.v
diff options
context:
space:
mode:
Diffstat (limited to 'arm/Constpropproof.v')
-rw-r--r--arm/Constpropproof.v970
1 files changed, 970 insertions, 0 deletions
diff --git a/arm/Constpropproof.v b/arm/Constpropproof.v
new file mode 100644
index 0000000..e85cadf
--- /dev/null
+++ b/arm/Constpropproof.v
@@ -0,0 +1,970 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Correctness proof for constant propagation. *)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Events.
+Require Import Mem.
+Require Import Globalenvs.
+Require Import Smallstep.
+Require Import Op.
+Require Import Registers.
+Require Import RTL.
+Require Import Lattice.
+Require Import Kildall.
+Require Import Constprop.
+
+(** * Correctness of the static analysis *)
+
+Section ANALYSIS.
+
+Variable ge: genv.
+
+(** We first show that the dataflow analysis is correct with respect
+ to the dynamic semantics: the approximations (sets of values)
+ of a register at a program point predicted by the static analysis
+ are a superset of the values actually encountered during concrete
+ executions. We formalize this correspondence between run-time values and
+ compile-time approximations by the following predicate. *)
+
+Definition val_match_approx (a: approx) (v: val) : Prop :=
+ match a with
+ | Unknown => True
+ | I p => v = Vint p
+ | F p => v = Vfloat p
+ | S symb ofs => exists b, Genv.find_symbol ge symb = Some b /\ v = Vptr b ofs
+ | _ => False
+ end.
+
+Definition regs_match_approx (a: D.t) (rs: regset) : Prop :=
+ forall r, val_match_approx (D.get r a) rs#r.
+
+Lemma regs_match_approx_top:
+ forall rs, regs_match_approx D.top rs.
+Proof.
+ intros. red; intros. simpl. rewrite PTree.gempty.
+ unfold Approx.top, val_match_approx. auto.
+Qed.
+
+Lemma val_match_approx_increasing:
+ forall a1 a2 v,
+ Approx.ge a1 a2 -> val_match_approx a2 v -> val_match_approx a1 v.
+Proof.
+ intros until v.
+ intros [A|[B|C]].
+ subst a1. simpl. auto.
+ subst a2. simpl. tauto.
+ subst a2. auto.
+Qed.
+
+Lemma regs_match_approx_increasing:
+ forall a1 a2 rs,
+ D.ge a1 a2 -> regs_match_approx a2 rs -> regs_match_approx a1 rs.
+Proof.
+ unfold D.ge, regs_match_approx. intros.
+ apply val_match_approx_increasing with (D.get r a2); auto.
+Qed.
+
+Lemma regs_match_approx_update:
+ forall ra rs a v r,
+ val_match_approx a v ->
+ regs_match_approx ra rs ->
+ regs_match_approx (D.set r a ra) (rs#r <- v).
+Proof.
+ intros; red; intros. rewrite Regmap.gsspec.
+ case (peq r0 r); intro.
+ subst r0. rewrite D.gss. auto.
+ rewrite D.gso; auto.
+Qed.
+
+Inductive val_list_match_approx: list approx -> list val -> Prop :=
+ | vlma_nil:
+ val_list_match_approx nil nil
+ | vlma_cons:
+ forall a al v vl,
+ val_match_approx a v ->
+ val_list_match_approx al vl ->
+ val_list_match_approx (a :: al) (v :: vl).
+
+Lemma approx_regs_val_list:
+ forall ra rs rl,
+ regs_match_approx ra rs ->
+ val_list_match_approx (approx_regs rl ra) rs##rl.
+Proof.
+ induction rl; simpl; intros.
+ constructor.
+ constructor. apply H. auto.
+Qed.
+
+Ltac SimplVMA :=
+ match goal with
+ | H: (val_match_approx (I _) ?v) |- _ =>
+ simpl in H; (try subst v); SimplVMA
+ | H: (val_match_approx (F _) ?v) |- _ =>
+ simpl in H; (try subst v); SimplVMA
+ | H: (val_match_approx (S _ _) ?v) |- _ =>
+ simpl in H;
+ (try (elim H;
+ let b := fresh "b" in let A := fresh in let B := fresh in
+ (intros b [A B]; subst v; clear H)));
+ SimplVMA
+ | _ =>
+ idtac
+ end.
+
+Ltac InvVLMA :=
+ match goal with
+ | H: (val_list_match_approx nil ?vl) |- _ =>
+ inversion H
+ | H: (val_list_match_approx (?a :: ?al) ?vl) |- _ =>
+ inversion H; SimplVMA; InvVLMA
+ | _ =>
+ idtac
+ end.
+
+(** We then show that [eval_static_operation] is a correct abstract
+ interpretations of [eval_operation]: if the concrete arguments match
+ the given approximations, the concrete results match the
+ approximations returned by [eval_static_operation]. *)
+
+Lemma eval_static_condition_correct:
+ forall cond al vl m b,
+ val_list_match_approx al vl ->
+ eval_static_condition cond al = Some b ->
+ eval_condition cond vl m = Some b.
+Proof.
+ intros until b.
+ unfold eval_static_condition.
+ case (eval_static_condition_match cond al); intros;
+ InvVLMA; simpl; congruence.
+Qed.
+
+Lemma eval_static_operation_correct:
+ forall op sp al vl m v,
+ val_list_match_approx al vl ->
+ eval_operation ge sp op vl m = Some v ->
+ val_match_approx (eval_static_operation op al) v.
+Proof.
+ intros until v.
+ unfold eval_static_operation.
+ case (eval_static_operation_match op al); intros;
+ InvVLMA; simpl in *; FuncInv; try congruence.
+
+ destruct (Genv.find_symbol ge s). exists b. intuition congruence.
+ congruence.
+
+ rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
+ rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
+ rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
+ rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
+
+ exists b. split. auto. congruence.
+ exists b. split. auto. congruence.
+ exists b. split. auto. congruence.
+ exists b. split. auto. congruence.
+ exists b. split. auto. congruence.
+
+ replace n2 with i0. destruct (Int.eq i0 Int.zero).
+ discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
+
+ replace n2 with i0. destruct (Int.eq i0 Int.zero).
+ discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
+
+ replace n2 with i0. destruct (Int.ltu i0 (Int.repr 32)).
+ injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
+
+ replace n2 with i0. destruct (Int.ltu i0 (Int.repr 32)).
+ injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
+
+ replace n2 with i0. destruct (Int.ltu i0 (Int.repr 32)).
+ injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
+
+ rewrite <- H3. replace v0 with (Vfloat n1). reflexivity. congruence.
+
+ caseEq (eval_static_condition c vl0).
+ intros. generalize (eval_static_condition_correct _ _ _ m _ H H1).
+ intro. rewrite H2 in H0.
+ destruct b; injection H0; intro; subst v; simpl; auto.
+ intros; simpl; auto.
+
+ replace n1 with i. destruct (Int.ltu n (Int.repr 31)).
+ injection H0; intro; subst v. simpl. auto. congruence. congruence.
+
+ auto.
+Qed.
+
+(** The correctness of the static analysis follows from the results
+ above and the fact that the result of the static analysis is
+ a solution of the forward dataflow inequations. *)
+
+Lemma analyze_correct_1:
+ forall f pc rs pc',
+ In pc' (successors f pc) ->
+ regs_match_approx (transfer f pc (analyze f)!!pc) rs ->
+ regs_match_approx (analyze f)!!pc' rs.
+Proof.
+ intros until pc'. unfold analyze.
+ caseEq (DS.fixpoint (successors f) (fn_nextpc f) (transfer f)
+ ((fn_entrypoint f, D.top) :: nil)).
+ intros approxs; intros.
+ apply regs_match_approx_increasing with (transfer f pc approxs!!pc).
+ eapply DS.fixpoint_solution; eauto.
+ elim (fn_code_wf f pc); intro. auto.
+ unfold successors in H0; rewrite H2 in H0; simpl; contradiction.
+ auto.
+ intros. rewrite PMap.gi. apply regs_match_approx_top.
+Qed.
+
+Lemma analyze_correct_3:
+ forall f rs,
+ regs_match_approx (analyze f)!!(f.(fn_entrypoint)) rs.
+Proof.
+ intros. unfold analyze.
+ caseEq (DS.fixpoint (successors f) (fn_nextpc f) (transfer f)
+ ((fn_entrypoint f, D.top) :: nil)).
+ intros approxs; intros.
+ apply regs_match_approx_increasing with D.top.
+ eapply DS.fixpoint_entry; eauto. auto with coqlib.
+ apply regs_match_approx_top.
+ intros. rewrite PMap.gi. apply regs_match_approx_top.
+Qed.
+
+(** * Correctness of strength reduction *)
+
+(** We now show that strength reduction over operators and addressing
+ modes preserve semantics: the strength-reduced operations and
+ addressings evaluate to the same values as the original ones if the
+ actual arguments match the static approximations used for strength
+ reduction. *)
+
+Section STRENGTH_REDUCTION.
+
+Variable approx: D.t.
+Variable sp: val.
+Variable rs: regset.
+Hypothesis MATCH: regs_match_approx approx rs.
+
+Lemma intval_correct:
+ forall r n,
+ intval approx r = Some n -> rs#r = Vint n.
+Proof.
+ intros until n.
+ unfold intval. caseEq (D.get r approx); intros; try discriminate.
+ generalize (MATCH r). unfold val_match_approx. rewrite H.
+ congruence.
+Qed.
+
+Lemma cond_strength_reduction_correct:
+ forall cond args m,
+ let (cond', args') := cond_strength_reduction approx cond args in
+ eval_condition cond' rs##args' m = eval_condition cond rs##args m.
+Proof.
+ intros. unfold cond_strength_reduction.
+ case (cond_strength_reduction_match cond args); intros.
+
+ caseEq (intval approx r1); intros.
+ simpl. rewrite (intval_correct _ _ H).
+ destruct (rs#r2); auto. rewrite Int.swap_cmp. auto.
+ destruct c; reflexivity.
+ caseEq (intval approx r2); intros.
+ simpl. rewrite (intval_correct _ _ H0). auto.
+ auto.
+
+ caseEq (intval approx r1); intros.
+ simpl. rewrite (intval_correct _ _ H).
+ destruct (rs#r2); auto. rewrite Int.swap_cmpu. auto.
+ caseEq (intval approx r2); intros.
+ simpl. rewrite (intval_correct _ _ H0). auto.
+ auto.
+
+ caseEq (intval approx r2); intros.
+ simpl. rewrite (intval_correct _ _ H). auto.
+ auto.
+
+ caseEq (intval approx r2); intros.
+ simpl. rewrite (intval_correct _ _ H). auto.
+ auto.
+
+ auto.
+Qed.
+
+Lemma make_addimm_correct:
+ forall n r m v,
+ let (op, args) := make_addimm n r in
+ eval_operation ge sp Oadd (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_addimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.add_zero in H. congruence.
+ rewrite Int.add_zero in H. congruence.
+ exact H0.
+Qed.
+
+Lemma make_shlimm_correct:
+ forall n r m v,
+ let (op, args) := make_shlimm n r in
+ eval_operation ge sp Oshl (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_shlimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.shl_zero in H. congruence.
+ unfold is_shift_amount. destruct (is_shift_amount_aux n); intros.
+ simpl in *. FuncInv. rewrite e in H0. auto.
+ simpl in *. FuncInv. rewrite e in H0. discriminate.
+Qed.
+
+Lemma make_shrimm_correct:
+ forall n r m v,
+ let (op, args) := make_shrimm n r in
+ eval_operation ge sp Oshr (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_shrimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.shr_zero in H. congruence.
+ unfold is_shift_amount. destruct (is_shift_amount_aux n); intros.
+ simpl in *. FuncInv. rewrite e in H0. auto.
+ simpl in *. FuncInv. rewrite e in H0. discriminate.
+Qed.
+
+Lemma make_shruimm_correct:
+ forall n r m v,
+ let (op, args) := make_shruimm n r in
+ eval_operation ge sp Oshru (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_shruimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.shru_zero in H. congruence.
+ unfold is_shift_amount. destruct (is_shift_amount_aux n); intros.
+ simpl in *. FuncInv. rewrite e in H0. auto.
+ simpl in *. FuncInv. rewrite e in H0. discriminate.
+Qed.
+
+Lemma make_mulimm_correct:
+ forall n r r' m v,
+ rs#r' = Vint n ->
+ let (op, args) := make_mulimm n r r' in
+ eval_operation ge sp Omul (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_mulimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in H1. FuncInv. rewrite Int.mul_zero in H0. simpl. congruence.
+ generalize (Int.eq_spec n Int.one); case (Int.eq n Int.one); intros.
+ subst n. simpl in H2. simpl. FuncInv. rewrite Int.mul_one in H1. congruence.
+ caseEq (Int.is_power2 n); intros.
+ replace (eval_operation ge sp Omul (rs # r :: Vint n :: nil) m)
+ with (eval_operation ge sp Oshl (rs # r :: Vint i :: nil) m).
+ apply make_shlimm_correct.
+ simpl. generalize (Int.is_power2_range _ _ H2).
+ change (Z_of_nat wordsize) with 32. intro. rewrite H3.
+ destruct rs#r; auto. rewrite (Int.mul_pow2 i0 _ _ H2). auto.
+ simpl List.map. rewrite H. auto.
+Qed.
+
+Lemma make_andimm_correct:
+ forall n r m v,
+ let (op, args) := make_andimm n r in
+ eval_operation ge sp Oand (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_andimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.and_zero in H. congruence.
+ generalize (Int.eq_spec n Int.mone); case (Int.eq n Int.mone); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.and_mone in H0. congruence.
+ exact H1.
+Qed.
+
+Lemma make_orimm_correct:
+ forall n r m v,
+ let (op, args) := make_orimm n r in
+ eval_operation ge sp Oor (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_orimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.or_zero in H. congruence.
+ generalize (Int.eq_spec n Int.mone); case (Int.eq n Int.mone); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.or_mone in H0. congruence.
+ exact H1.
+Qed.
+
+Lemma make_xorimm_correct:
+ forall n r m v,
+ let (op, args) := make_xorimm n r in
+ eval_operation ge sp Oxor (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_xorimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.xor_zero in H. congruence.
+ generalize (Int.eq_spec n Int.mone); case (Int.eq n Int.mone); intros.
+ subst n. simpl in *. FuncInv. decEq. auto.
+ exact H1.
+Qed.
+
+Lemma op_strength_reduction_correct:
+ forall op args m v,
+ let (op', args') := op_strength_reduction approx op args in
+ eval_operation ge sp op rs##args m = Some v ->
+ eval_operation ge sp op' rs##args' m = Some v.
+Proof.
+ intros; unfold op_strength_reduction;
+ case (op_strength_reduction_match op args); intros; simpl List.map.
+ (* Oadd *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Oadd (Vint i :: rs # r2 :: nil) m)
+ with (eval_operation ge sp Oadd (rs # r2 :: Vint i :: nil) m).
+ apply make_addimm_correct.
+ simpl. destruct rs#r2; auto. rewrite Int.add_commut; auto.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0). apply make_addimm_correct.
+ assumption.
+ (* Oaddshift *)
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp (Oaddshift s) (rs # r1 :: Vint i :: nil) m)
+ with (eval_operation ge sp Oadd (rs # r1 :: Vint (eval_shift s i) :: nil) m).
+ apply make_addimm_correct.
+ simpl. destruct rs#r1; auto.
+ assumption.
+ (* Osub *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H) in H0.
+ simpl in *. destruct rs#r2; auto.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0).
+ replace (eval_operation ge sp Osub (rs # r1 :: Vint i :: nil) m)
+ with (eval_operation ge sp Oadd (rs # r1 :: Vint (Int.neg i) :: nil) m).
+ apply make_addimm_correct.
+ simpl. destruct rs#r1; auto; rewrite Int.sub_add_opp; auto.
+ assumption.
+ (* Osubshift *)
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp (Osubshift s) (rs # r1 :: Vint i :: nil) m)
+ with (eval_operation ge sp Oadd (rs # r1 :: Vint (Int.neg (eval_shift s i)) :: nil) m).
+ apply make_addimm_correct.
+ simpl. destruct rs#r1; auto; rewrite Int.sub_add_opp; auto.
+ assumption.
+ (* Orsubshift *)
+ caseEq (intval approx r2). intros n H.
+ rewrite (intval_correct _ _ H).
+ simpl. destruct rs#r1; auto.
+ auto.
+ (* Omul *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Omul (Vint i :: rs # r2 :: nil) m)
+ with (eval_operation ge sp Omul (rs # r2 :: Vint i :: nil) m).
+ apply make_mulimm_correct. apply intval_correct; auto.
+ simpl. destruct rs#r2; auto. rewrite Int.mul_commut; auto.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0). apply make_mulimm_correct.
+ apply intval_correct; auto.
+ assumption.
+ (* Odivu *)
+ caseEq (intval approx r2); intros.
+ caseEq (Int.is_power2 i); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Odivu (rs # r1 :: Vint i :: nil) m)
+ with (eval_operation ge sp Oshru (rs # r1 :: Vint i0 :: nil) m).
+ apply make_shruimm_correct.
+ simpl. destruct rs#r1; auto.
+ change 32 with (Z_of_nat wordsize).
+ rewrite (Int.is_power2_range _ _ H0).
+ generalize (Int.eq_spec i Int.zero); case (Int.eq i Int.zero); intros.
+ subst i. discriminate.
+ rewrite (Int.divu_pow2 i1 _ _ H0). auto.
+ assumption.
+ assumption.
+ (* Oand *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Oand (Vint i :: rs # r2 :: nil) m)
+ with (eval_operation ge sp Oand (rs # r2 :: Vint i :: nil) m).
+ apply make_andimm_correct.
+ simpl. destruct rs#r2; auto. rewrite Int.and_commut; auto.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0). apply make_andimm_correct.
+ assumption.
+ (* Oandshift *)
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp (Oandshift s) (rs # r1 :: Vint i :: nil) m)
+ with (eval_operation ge sp Oand (rs # r1 :: Vint (eval_shift s i) :: nil) m).
+ apply make_andimm_correct. reflexivity.
+ assumption.
+ (* Oor *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Oor (Vint i :: rs # r2 :: nil) m)
+ with (eval_operation ge sp Oor (rs # r2 :: Vint i :: nil) m).
+ apply make_orimm_correct.
+ simpl. destruct rs#r2; auto. rewrite Int.or_commut; auto.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0). apply make_orimm_correct.
+ assumption.
+ (* Oorshift *)
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp (Oorshift s) (rs # r1 :: Vint i :: nil) m)
+ with (eval_operation ge sp Oor (rs # r1 :: Vint (eval_shift s i) :: nil) m).
+ apply make_orimm_correct. reflexivity.
+ assumption.
+ (* Oxor *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Oxor (Vint i :: rs # r2 :: nil) m)
+ with (eval_operation ge sp Oxor (rs # r2 :: Vint i :: nil) m).
+ apply make_xorimm_correct.
+ simpl. destruct rs#r2; auto. rewrite Int.xor_commut; auto.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0). apply make_xorimm_correct.
+ assumption.
+ (* Oxorshift *)
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp (Oxorshift s) (rs # r1 :: Vint i :: nil) m)
+ with (eval_operation ge sp Oxor (rs # r1 :: Vint (eval_shift s i) :: nil) m).
+ apply make_xorimm_correct. reflexivity.
+ assumption.
+ (* Obic *)
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Obic (rs # r1 :: Vint i :: nil) m)
+ with (eval_operation ge sp Oand (rs # r1 :: Vint (Int.not i) :: nil) m).
+ apply make_andimm_correct. reflexivity.
+ assumption.
+ (* Obicshift *)
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp (Obicshift s) (rs # r1 :: Vint i :: nil) m)
+ with (eval_operation ge sp Oand (rs # r1 :: Vint (Int.not (eval_shift s i)) :: nil) m).
+ apply make_andimm_correct. reflexivity.
+ assumption.
+ (* Oshl *)
+ caseEq (intval approx r2); intros.
+ caseEq (Int.ltu i (Int.repr 32)); intros.
+ rewrite (intval_correct _ _ H). apply make_shlimm_correct.
+ assumption.
+ assumption.
+ (* Oshr *)
+ caseEq (intval approx r2); intros.
+ caseEq (Int.ltu i (Int.repr 32)); intros.
+ rewrite (intval_correct _ _ H). apply make_shrimm_correct.
+ assumption.
+ assumption.
+ (* Oshru *)
+ caseEq (intval approx r2); intros.
+ caseEq (Int.ltu i (Int.repr 32)); intros.
+ rewrite (intval_correct _ _ H). apply make_shruimm_correct.
+ assumption.
+ assumption.
+ (* Ocmp *)
+ generalize (cond_strength_reduction_correct c rl).
+ destruct (cond_strength_reduction approx c rl).
+ simpl. intro. rewrite H. auto.
+ (* default *)
+ assumption.
+Qed.
+
+Ltac KnownApprox :=
+ match goal with
+ | MATCH: (regs_match_approx ?approx ?rs),
+ H: (D.get ?r ?approx = ?a) |- _ =>
+ generalize (MATCH r); rewrite H; intro; clear H; KnownApprox
+ | _ => idtac
+ end.
+
+Lemma addr_strength_reduction_correct:
+ forall addr args,
+ let (addr', args') := addr_strength_reduction approx addr args in
+ eval_addressing ge sp addr' rs##args' = eval_addressing ge sp addr rs##args.
+Proof.
+ intros.
+
+ unfold addr_strength_reduction;
+ case (addr_strength_reduction_match addr args); intros.
+
+ (* Aindexed2 *)
+ caseEq (intval approx r1); intros.
+ simpl; rewrite (intval_correct _ _ H).
+ destruct rs#r2; auto. rewrite Int.add_commut; auto.
+ caseEq (intval approx r2); intros.
+ simpl; rewrite (intval_correct _ _ H0). auto.
+ auto.
+
+ (* Aindexed2shift *)
+ caseEq (intval approx r2); intros.
+ simpl; rewrite (intval_correct _ _ H). auto.
+ auto.
+
+ (* default *)
+ reflexivity.
+Qed.
+
+End STRENGTH_REDUCTION.
+
+End ANALYSIS.
+
+(** * Correctness of the code transformation *)
+
+(** We now show that the transformed code after constant propagation
+ has the same semantics as the original code. *)
+
+Section PRESERVATION.
+
+Variable prog: program.
+Let tprog := transf_program prog.
+Let ge := Genv.globalenv prog.
+Let tge := Genv.globalenv tprog.
+
+Lemma symbols_preserved:
+ forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
+Proof.
+ intros; unfold ge, tge, tprog, transf_program.
+ apply Genv.find_symbol_transf.
+Qed.
+
+Lemma functions_translated:
+ forall (v: val) (f: fundef),
+ Genv.find_funct ge v = Some f ->
+ Genv.find_funct tge v = Some (transf_fundef f).
+Proof.
+ intros.
+ exact (Genv.find_funct_transf transf_fundef H).
+Qed.
+
+Lemma function_ptr_translated:
+ forall (b: block) (f: fundef),
+ Genv.find_funct_ptr ge b = Some f ->
+ Genv.find_funct_ptr tge b = Some (transf_fundef f).
+Proof.
+ intros.
+ exact (Genv.find_funct_ptr_transf transf_fundef H).
+Qed.
+
+Lemma sig_function_translated:
+ forall f,
+ funsig (transf_fundef f) = funsig f.
+Proof.
+ intros. destruct f; reflexivity.
+Qed.
+
+Lemma transf_ros_correct:
+ forall ros rs f approx,
+ regs_match_approx ge approx rs ->
+ find_function ge ros rs = Some f ->
+ find_function tge (transf_ros approx ros) rs = Some (transf_fundef f).
+Proof.
+ intros until approx; intro MATCH.
+ destruct ros; simpl.
+ intro.
+ exploit functions_translated; eauto. intro FIND.
+ caseEq (D.get r approx); intros; auto.
+ generalize (Int.eq_spec i0 Int.zero); case (Int.eq i0 Int.zero); intros; auto.
+ generalize (MATCH r). rewrite H0. intros [b [A B]].
+ rewrite <- symbols_preserved in A.
+ rewrite B in FIND. rewrite H1 in FIND.
+ rewrite Genv.find_funct_find_funct_ptr in FIND.
+ simpl. rewrite A. auto.
+ rewrite symbols_preserved. destruct (Genv.find_symbol ge i).
+ intro. apply function_ptr_translated. auto.
+ congruence.
+Qed.
+
+(** The proof of semantic preservation is a simulation argument
+ based on diagrams of the following form:
+<<
+ st1 --------------- st2
+ | |
+ t| |t
+ | |
+ v v
+ st1'--------------- st2'
+>>
+ The left vertical arrow represents a transition in the
+ original RTL code. The top horizontal bar is the [match_states]
+ invariant between the initial state [st1] in the original RTL code
+ and an initial state [st2] in the transformed code.
+ This invariant expresses that all code fragments appearing in [st2]
+ are obtained by [transf_code] transformation of the corresponding
+ fragments in [st1]. Moreover, the values of registers in [st1]
+ must match their compile-time approximations at the current program
+ point.
+ These two parts of the diagram are the hypotheses. In conclusions,
+ we want to prove the other two parts: the right vertical arrow,
+ which is a transition in the transformed RTL code, and the bottom
+ horizontal bar, which means that the [match_state] predicate holds
+ between the final states [st1'] and [st2']. *)
+
+Inductive match_stackframes: stackframe -> stackframe -> Prop :=
+ match_stackframe_intro:
+ forall res c sp pc rs f,
+ c = f.(RTL.fn_code) ->
+ (forall v, regs_match_approx ge (analyze f)!!pc (rs#res <- v)) ->
+ match_stackframes
+ (Stackframe res c sp pc rs)
+ (Stackframe res (transf_code (analyze f) c) sp pc rs).
+
+Inductive match_states: state -> state -> Prop :=
+ | match_states_intro:
+ forall s c sp pc rs m f s'
+ (CF: c = f.(RTL.fn_code))
+ (MATCH: regs_match_approx ge (analyze f)!!pc rs)
+ (STACKS: list_forall2 match_stackframes s s'),
+ match_states (State s c sp pc rs m)
+ (State s' (transf_code (analyze f) c) sp pc rs m)
+ | match_states_call:
+ forall s f args m s',
+ list_forall2 match_stackframes s s' ->
+ match_states (Callstate s f args m)
+ (Callstate s' (transf_fundef f) args m)
+ | match_states_return:
+ forall s s' v m,
+ list_forall2 match_stackframes s s' ->
+ match_states (Returnstate s v m)
+ (Returnstate s' v m).
+
+Ltac TransfInstr :=
+ match goal with
+ | H1: (PTree.get ?pc ?c = Some ?instr), f: function |- _ =>
+ cut ((transf_code (analyze f) c)!pc = Some(transf_instr (analyze f)!!pc instr));
+ [ simpl
+ | unfold transf_code; rewrite PTree.gmap;
+ unfold option_map; rewrite H1; reflexivity ]
+ end.
+
+(** The proof of simulation proceeds by case analysis on the transition
+ taken in the source code. *)
+
+Lemma transf_step_correct:
+ forall s1 t s2,
+ step ge s1 t s2 ->
+ forall s1' (MS: match_states s1 s1'),
+ exists s2', step tge s1' t s2' /\ match_states s2 s2'.
+Proof.
+ induction 1; intros; inv MS.
+
+ (* Inop *)
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' rs m); split.
+ TransfInstr; intro. eapply exec_Inop; eauto.
+ econstructor; eauto.
+ eapply analyze_correct_1 with (pc := pc); eauto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H. auto.
+
+ (* Iop *)
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' (rs#res <- v) m); split.
+ TransfInstr. caseEq (op_strength_reduction (analyze f)!!pc op args);
+ intros op' args' OSR.
+ assert (eval_operation tge sp op' rs##args' m = Some v).
+ rewrite (eval_operation_preserved symbols_preserved).
+ generalize (op_strength_reduction_correct ge (analyze f)!!pc sp rs
+ MATCH op args m v).
+ rewrite OSR; simpl. auto.
+ generalize (eval_static_operation_correct ge op sp
+ (approx_regs args (analyze f)!!pc) rs##args m v
+ (approx_regs_val_list _ _ _ args MATCH) H0).
+ case (eval_static_operation op (approx_regs args (analyze f)!!pc)); intros;
+ simpl in H2;
+ eapply exec_Iop; eauto; simpl.
+ congruence.
+ congruence.
+ elim H2; intros b [A B]. rewrite symbols_preserved.
+ rewrite A; rewrite B; auto.
+ econstructor; eauto.
+ eapply analyze_correct_1 with (pc := pc); eauto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H.
+ apply regs_match_approx_update; auto.
+ eapply eval_static_operation_correct; eauto.
+ apply approx_regs_val_list; auto.
+
+ (* Iload *)
+ caseEq (addr_strength_reduction (analyze f)!!pc addr args);
+ intros addr' args' ASR.
+ assert (eval_addressing tge sp addr' rs##args' = Some a).
+ rewrite (eval_addressing_preserved symbols_preserved).
+ generalize (addr_strength_reduction_correct ge (analyze f)!!pc sp rs
+ MATCH addr args).
+ rewrite ASR; simpl. congruence.
+ TransfInstr. rewrite ASR. intro.
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' (rs#dst <- v) m); split.
+ eapply exec_Iload; eauto.
+ econstructor; eauto.
+ apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H.
+ apply regs_match_approx_update; auto. simpl; auto.
+
+ (* Istore *)
+ caseEq (addr_strength_reduction (analyze f)!!pc addr args);
+ intros addr' args' ASR.
+ assert (eval_addressing tge sp addr' rs##args' = Some a).
+ rewrite (eval_addressing_preserved symbols_preserved).
+ generalize (addr_strength_reduction_correct ge (analyze f)!!pc sp rs
+ MATCH addr args).
+ rewrite ASR; simpl. congruence.
+ TransfInstr. rewrite ASR. intro.
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' rs m'); split.
+ eapply exec_Istore; eauto.
+ econstructor; eauto.
+ apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H. auto.
+
+ (* Icall *)
+ exploit transf_ros_correct; eauto. intro FIND'.
+ TransfInstr; intro.
+ econstructor; split.
+ eapply exec_Icall; eauto. apply sig_function_translated; auto.
+ constructor; auto. constructor; auto.
+ econstructor; eauto.
+ intros. apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H.
+ apply regs_match_approx_update; auto. simpl. auto.
+
+ (* Itailcall *)
+ exploit transf_ros_correct; eauto. intros FIND'.
+ TransfInstr; intro.
+ econstructor; split.
+ eapply exec_Itailcall; eauto. apply sig_function_translated; auto.
+ constructor; auto.
+
+ (* Ialloc *)
+ TransfInstr; intro.
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' (rs#res <- (Vptr b Int.zero)) m'); split.
+ eapply exec_Ialloc; eauto.
+ econstructor; eauto.
+ apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H.
+ apply regs_match_approx_update; auto. simpl; auto.
+
+ (* Icond, true *)
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp ifso rs m); split.
+ caseEq (cond_strength_reduction (analyze f)!!pc cond args);
+ intros cond' args' CSR.
+ assert (eval_condition cond' rs##args' m = Some true).
+ generalize (cond_strength_reduction_correct
+ ge (analyze f)!!pc rs MATCH cond args m).
+ rewrite CSR. intro. congruence.
+ TransfInstr. rewrite CSR.
+ caseEq (eval_static_condition cond (approx_regs args (analyze f)!!pc)).
+ intros b ESC.
+ generalize (eval_static_condition_correct ge cond _ _ m _
+ (approx_regs_val_list _ _ _ args MATCH) ESC); intro.
+ replace b with true. intro; eapply exec_Inop; eauto. congruence.
+ intros. eapply exec_Icond_true; eauto.
+ econstructor; eauto.
+ apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H; auto.
+
+ (* Icond, false *)
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp ifnot rs m); split.
+ caseEq (cond_strength_reduction (analyze f)!!pc cond args);
+ intros cond' args' CSR.
+ assert (eval_condition cond' rs##args' m = Some false).
+ generalize (cond_strength_reduction_correct
+ ge (analyze f)!!pc rs MATCH cond args m).
+ rewrite CSR. intro. congruence.
+ TransfInstr. rewrite CSR.
+ caseEq (eval_static_condition cond (approx_regs args (analyze f)!!pc)).
+ intros b ESC.
+ generalize (eval_static_condition_correct ge cond _ _ m _
+ (approx_regs_val_list _ _ _ args MATCH) ESC); intro.
+ replace b with false. intro; eapply exec_Inop; eauto. congruence.
+ intros. eapply exec_Icond_false; eauto.
+ econstructor; eauto.
+ apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H; auto.
+
+ (* Ireturn *)
+ exists (Returnstate s' (regmap_optget or Vundef rs) (free m stk)); split.
+ eapply exec_Ireturn; eauto. TransfInstr; auto.
+ constructor; auto.
+
+ (* internal function *)
+ simpl. unfold transf_function.
+ econstructor; split.
+ eapply exec_function_internal; simpl; eauto.
+ simpl. econstructor; eauto.
+ apply analyze_correct_3; auto.
+
+ (* external function *)
+ simpl. econstructor; split.
+ eapply exec_function_external; eauto.
+ constructor; auto.
+
+ (* return *)
+ inv H3. inv H1.
+ econstructor; split.
+ eapply exec_return; eauto.
+ econstructor; eauto.
+Qed.
+
+Lemma transf_initial_states:
+ forall st1, initial_state prog st1 ->
+ exists st2, initial_state tprog st2 /\ match_states st1 st2.
+Proof.
+ intros. inversion H.
+ exploit function_ptr_translated; eauto. intro FIND.
+ exists (Callstate nil (transf_fundef f) nil (Genv.init_mem tprog)); split.
+ econstructor; eauto.
+ replace (prog_main tprog) with (prog_main prog).
+ rewrite symbols_preserved. eauto.
+ reflexivity.
+ rewrite <- H2. apply sig_function_translated.
+ replace (Genv.init_mem tprog) with (Genv.init_mem prog).
+ constructor. constructor. auto.
+ symmetry. unfold tprog, transf_program. apply Genv.init_mem_transf.
+Qed.
+
+Lemma transf_final_states:
+ forall st1 st2 r,
+ match_states st1 st2 -> final_state st1 r -> final_state st2 r.
+Proof.
+ intros. inv H0. inv H. inv H4. constructor.
+Qed.
+
+(** The preservation of the observable behavior of the program then
+ follows, using the generic preservation theorem
+ [Smallstep.simulation_step_preservation]. *)
+
+Theorem transf_program_correct:
+ forall (beh: program_behavior),
+ exec_program prog beh -> exec_program tprog beh.
+Proof.
+ unfold exec_program; intros.
+ eapply simulation_step_preservation; eauto.
+ eexact transf_initial_states.
+ eexact transf_final_states.
+ exact transf_step_correct.
+Qed.
+
+End PRESERVATION.