summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.depend9
-rw-r--r--Makefile2
-rw-r--r--backend/Allocproof.v2
-rw-r--r--backend/CSEproof.v2
-rw-r--r--backend/CastOptim.v8
-rw-r--r--backend/CastOptimproof.v2
-rw-r--r--backend/Constprop.v13
-rw-r--r--backend/Constpropproof.v2
-rw-r--r--backend/Kildall.v70
-rw-r--r--backend/LTL.v2
-rw-r--r--backend/Linearizeproof.v2
-rw-r--r--backend/RTL.v2
-rw-r--r--backend/RTLgen.v2
-rw-r--r--backend/RTLgenproof.v3
-rw-r--r--backend/RTLgenspec.v7
-rw-r--r--driver/Driver.ml1
-rw-r--r--lib/Heaps.v570
-rw-r--r--lib/Lattice.v383
-rw-r--r--lib/Maps.v24
19 files changed, 965 insertions, 141 deletions
diff --git a/.depend b/.depend
index 24ba8a7..ccafd5a 100644
--- a/.depend
+++ b/.depend
@@ -2,6 +2,7 @@ lib/Axioms.vo: lib/Axioms.v
lib/Coqlib.vo: lib/Coqlib.v
lib/Intv.vo: lib/Intv.v lib/Coqlib.vo
lib/Maps.vo: lib/Maps.v lib/Coqlib.vo
+lib/Heaps.vo: lib/Heaps.v lib/Coqlib.vo lib/Ordered.vo
lib/Lattice.vo: lib/Lattice.v lib/Coqlib.vo lib/Maps.vo
lib/Ordered.vo: lib/Ordered.v lib/Coqlib.vo lib/Maps.vo lib/Integers.vo
lib/Iteration.vo: lib/Iteration.v lib/Axioms.vo lib/Coqlib.vo
@@ -35,7 +36,7 @@ backend/RTLgenproof.vo: backend/RTLgenproof.v lib/Coqlib.vo lib/Maps.vo common/A
backend/Tailcall.vo: backend/Tailcall.v lib/Coqlib.vo lib/Maps.vo common/AST.vo common/Globalenvs.vo backend/Registers.vo $(ARCH)/Op.vo backend/RTL.vo backend/Conventions.vo
backend/Tailcallproof.vo: backend/Tailcallproof.v lib/Coqlib.vo lib/Maps.vo common/AST.vo lib/Integers.vo common/Values.vo common/Memory.vo $(ARCH)/Op.vo common/Events.vo common/Globalenvs.vo common/Smallstep.vo backend/Registers.vo backend/RTL.vo backend/Conventions.vo backend/Tailcall.vo
backend/RTLtyping.vo: backend/RTLtyping.v lib/Coqlib.vo common/Errors.vo lib/Maps.vo common/AST.vo $(ARCH)/Op.vo backend/Registers.vo common/Globalenvs.vo common/Values.vo common/Memory.vo lib/Integers.vo common/Events.vo common/Smallstep.vo backend/RTL.vo backend/Conventions.vo
-backend/Kildall.vo: backend/Kildall.v lib/Coqlib.vo lib/Iteration.vo lib/Maps.vo lib/Lattice.vo lib/Ordered.vo
+backend/Kildall.vo: backend/Kildall.v lib/Coqlib.vo lib/Iteration.vo lib/Maps.vo lib/Lattice.vo lib/Heaps.vo
backend/CastOptim.vo: backend/CastOptim.v lib/Coqlib.vo lib/Maps.vo common/AST.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/Globalenvs.vo $(ARCH)/Op.vo backend/Registers.vo backend/RTL.vo lib/Lattice.vo backend/Kildall.vo
backend/CastOptimproof.vo: backend/CastOptimproof.v lib/Coqlib.vo lib/Maps.vo common/AST.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/Events.vo common/Memory.vo common/Globalenvs.vo common/Smallstep.vo $(ARCH)/Op.vo backend/Registers.vo backend/RTL.vo lib/Lattice.vo backend/Kildall.vo backend/CastOptim.vo
$(ARCH)/ConstpropOp.vo: $(ARCH)/ConstpropOp.v lib/Coqlib.vo common/AST.vo lib/Integers.vo lib/Floats.vo common/Values.vo $(ARCH)/Op.vo backend/Registers.vo
@@ -82,9 +83,9 @@ backend/Machconcr.vo: backend/Machconcr.v lib/Coqlib.vo lib/Maps.vo common/AST.v
backend/Machabstr2concr.vo: backend/Machabstr2concr.v lib/Axioms.vo lib/Coqlib.vo lib/Maps.vo common/AST.vo lib/Integers.vo common/Values.vo common/Memory.vo common/Events.vo common/Globalenvs.vo common/Smallstep.vo $(ARCH)/Op.vo backend/Locations.vo backend/Mach.vo backend/Machtyping.vo backend/Machabstr.vo backend/Machconcr.vo backend/Conventions.vo $(ARCH)/Asmgenretaddr.vo
$(ARCH)/Asm.vo: $(ARCH)/Asm.v lib/Coqlib.vo lib/Maps.vo common/AST.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/Memory.vo common/Events.vo common/Globalenvs.vo common/Smallstep.vo backend/Locations.vo $(ARCH)/$(VARIANT)/Stacklayout.vo backend/Conventions.vo
$(ARCH)/Asmgen.vo: $(ARCH)/Asmgen.v lib/Coqlib.vo lib/Maps.vo common/Errors.vo common/AST.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/Memory.vo common/Globalenvs.vo $(ARCH)/Op.vo backend/Locations.vo backend/Mach.vo $(ARCH)/Asm.vo
-$(ARCH)/Asmgenretaddr.vo: $(ARCH)/Asmgenretaddr.v lib/Coqlib.vo lib/Maps.vo common/AST.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/Memory.vo common/Globalenvs.vo $(ARCH)/Op.vo backend/Locations.vo backend/Mach.vo $(ARCH)/Asm.vo $(ARCH)/Asmgen.vo
-$(ARCH)/Asmgenproof1.vo: $(ARCH)/Asmgenproof1.v lib/Coqlib.vo lib/Maps.vo common/AST.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/Memory.vo common/Globalenvs.vo $(ARCH)/Op.vo backend/Locations.vo backend/Mach.vo backend/Machconcr.vo backend/Machtyping.vo $(ARCH)/Asm.vo $(ARCH)/Asmgen.vo backend/Conventions.vo
-$(ARCH)/Asmgenproof.vo: $(ARCH)/Asmgenproof.v lib/Coqlib.vo lib/Maps.vo common/Errors.vo common/AST.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/Memory.vo common/Events.vo common/Globalenvs.vo common/Smallstep.vo $(ARCH)/Op.vo backend/Locations.vo backend/Conventions.vo backend/Mach.vo backend/Machconcr.vo backend/Machtyping.vo $(ARCH)/Asm.vo $(ARCH)/Asmgen.vo $(ARCH)/Asmgenretaddr.vo $(ARCH)/Asmgenproof1.vo
+$(ARCH)/Asmgenretaddr.vo: $(ARCH)/Asmgenretaddr.v lib/Coqlib.vo lib/Maps.vo common/AST.vo common/Errors.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/Memory.vo common/Globalenvs.vo $(ARCH)/Op.vo backend/Locations.vo backend/Mach.vo $(ARCH)/Asm.vo $(ARCH)/Asmgen.vo
+$(ARCH)/Asmgenproof1.vo: $(ARCH)/Asmgenproof1.v lib/Coqlib.vo lib/Maps.vo common/AST.vo common/Errors.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/Memory.vo common/Globalenvs.vo $(ARCH)/Op.vo backend/Locations.vo backend/Mach.vo backend/Machconcr.vo backend/Machtyping.vo $(ARCH)/Asm.vo $(ARCH)/Asmgen.vo backend/Conventions.vo
+$(ARCH)/Asmgenproof.vo: $(ARCH)/Asmgenproof.v lib/Coqlib.vo lib/Maps.vo common/Errors.vo common/AST.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/Memory.vo common/Events.vo common/Globalenvs.vo common/Smallstep.vo $(ARCH)/Op.vo backend/Locations.vo backend/Mach.vo backend/Machconcr.vo backend/Machtyping.vo backend/Conventions.vo $(ARCH)/Asm.vo $(ARCH)/Asmgen.vo $(ARCH)/Asmgenretaddr.vo $(ARCH)/Asmgenproof1.vo
cfrontend/Csyntax.vo: cfrontend/Csyntax.v lib/Coqlib.vo common/Errors.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/AST.vo
cfrontend/Csem.vo: cfrontend/Csem.v lib/Coqlib.vo common/Errors.vo lib/Maps.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/AST.vo common/Memory.vo common/Events.vo common/Globalenvs.vo cfrontend/Csyntax.vo common/Smallstep.vo
cfrontend/Cstrategy.vo: cfrontend/Cstrategy.v lib/Axioms.vo lib/Coqlib.vo common/Errors.vo lib/Maps.vo lib/Integers.vo lib/Floats.vo common/Values.vo common/AST.vo common/Memory.vo common/Events.vo common/Globalenvs.vo common/Smallstep.vo common/Determinism.vo cfrontend/Csyntax.vo cfrontend/Csem.vo
diff --git a/Makefile b/Makefile
index 752a8e6..6fea519 100644
--- a/Makefile
+++ b/Makefile
@@ -33,7 +33,7 @@ GPATH=$(DIRS)
# General-purpose libraries (in lib/)
-LIB=Axioms.v Coqlib.v Intv.v Maps.v Lattice.v Ordered.v \
+LIB=Axioms.v Coqlib.v Intv.v Maps.v Heaps.v Lattice.v Ordered.v \
Iteration.v Integers.v Floats.v Parmov.v UnionFind.v
# Parts common to the front-ends and the back-end (in common/)
diff --git a/backend/Allocproof.v b/backend/Allocproof.v
index 5a5e4c4..daa53e5 100644
--- a/backend/Allocproof.v
+++ b/backend/Allocproof.v
@@ -165,7 +165,7 @@ Proof.
apply agree_increasing with (live!!n).
eapply DS.fixpoint_solution. unfold analyze in H; eauto.
unfold RTL.successors, Kildall.successors_list.
- rewrite PTree.gmap. rewrite H0. simpl. auto.
+ rewrite PTree.gmap1. rewrite H0. simpl. auto.
auto.
Qed.
diff --git a/backend/CSEproof.v b/backend/CSEproof.v
index c5670e8..275b9fd 100644
--- a/backend/CSEproof.v
+++ b/backend/CSEproof.v
@@ -695,7 +695,7 @@ Proof.
intros res FIXPOINT WF AT SUCC.
assert (Numbering.ge res!!pc' (transfer f pc res!!pc)).
eapply Solver.fixpoint_solution; eauto.
- unfold successors_list, successors. rewrite PTree.gmap.
+ unfold successors_list, successors. rewrite PTree.gmap1.
rewrite AT. auto.
apply H.
intros. rewrite PMap.gi. apply empty_numbering_satisfiable.
diff --git a/backend/CastOptim.v b/backend/CastOptim.v
index 545564d..19d0065 100644
--- a/backend/CastOptim.v
+++ b/backend/CastOptim.v
@@ -136,12 +136,12 @@ Module Approx <: SEMILATTICE_WITH_TOP.
| Single, Single => Single
| _, _ => Unknown
end.
- Lemma lub_commut: forall x y, eq (lub x y) (lub y x).
+ Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof.
- unfold lub, eq; intros.
- destruct x; destruct y; auto.
+ unfold lub, ge; intros.
+ destruct x; destruct y; auto.
Qed.
- Lemma ge_lub_left: forall x y, ge (lub x y) x.
+ Lemma ge_lub_right: forall x y, ge (lub x y) y.
Proof.
unfold lub, ge; intros.
destruct x; destruct y; auto.
diff --git a/backend/CastOptimproof.v b/backend/CastOptimproof.v
index d507609..b04e061 100644
--- a/backend/CastOptimproof.v
+++ b/backend/CastOptimproof.v
@@ -118,7 +118,7 @@ Proof.
intros approxs; intros.
apply regs_match_approx_increasing with (transfer f pc approxs!!pc).
eapply DS.fixpoint_solution; eauto.
- unfold successors_list, successors. rewrite PTree.gmap. rewrite H0. auto.
+ unfold successors_list, successors. rewrite PTree.gmap1. rewrite H0. auto.
auto.
intros. rewrite PMap.gi. apply regs_match_approx_top.
Qed.
diff --git a/backend/Constprop.v b/backend/Constprop.v
index 03966cd..47c40e3 100644
--- a/backend/Constprop.v
+++ b/backend/Constprop.v
@@ -87,12 +87,6 @@ Module Approx <: SEMILATTICE_WITH_TOP.
| _, Novalue => x
| _, _ => Unknown
end.
- Lemma lub_commut: forall x y, eq (lub x y) (lub y x).
- Proof.
- unfold lub, eq; intros.
- case (eq_dec x y); case (eq_dec y x); intros; try congruence.
- destruct x; destruct y; auto.
- Qed.
Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof.
unfold lub; intros.
@@ -100,6 +94,13 @@ Module Approx <: SEMILATTICE_WITH_TOP.
apply ge_refl. apply eq_refl.
destruct x; destruct y; unfold ge; tauto.
Qed.
+ Lemma ge_lub_right: forall x y, ge (lub x y) y.
+ Proof.
+ unfold lub; intros.
+ case (eq_dec x y); intro.
+ apply ge_refl. subst. apply eq_refl.
+ destruct x; destruct y; unfold ge; tauto.
+ Qed.
End Approx.
Module D := LPMap Approx.
diff --git a/backend/Constpropproof.v b/backend/Constpropproof.v
index 714468a..1dad518 100644
--- a/backend/Constpropproof.v
+++ b/backend/Constpropproof.v
@@ -106,7 +106,7 @@ Proof.
intros approxs; intros.
apply regs_match_approx_increasing with (transfer f pc approxs!!pc).
eapply DS.fixpoint_solution; eauto.
- unfold successors_list, successors. rewrite PTree.gmap. rewrite H0. auto.
+ unfold successors_list, successors. rewrite PTree.gmap1. rewrite H0. auto.
auto.
intros. rewrite PMap.gi. apply regs_match_approx_top.
Qed.
diff --git a/backend/Kildall.v b/backend/Kildall.v
index 83206f7..e1e6ea5 100644
--- a/backend/Kildall.v
+++ b/backend/Kildall.v
@@ -344,14 +344,12 @@ Proof.
((st_in st) !! n) (L.lub (st_in st) !! n out).
split.
eapply L.ge_trans. apply L.ge_refl. apply H; auto.
- eapply L.ge_compat. apply L.lub_commut. apply L.eq_refl.
- apply L.ge_lub_left.
+ apply L.ge_lub_right.
auto.
simpl. split.
rewrite PMap.gss.
- eapply L.ge_compat. apply L.lub_commut. apply L.eq_refl.
- apply L.ge_lub_left.
+ apply L.ge_lub_right.
intros. rewrite PMap.gso; auto.
Qed.
@@ -506,8 +504,7 @@ Proof.
elim H.
elim H; intros.
subst a. rewrite PMap.gss.
- eapply L.ge_compat. apply L.lub_commut. apply L.eq_refl.
- apply L.ge_lub_left.
+ apply L.ge_lub_right.
destruct a. rewrite PMap.gsspec. case (peq n p); intro.
subst p. apply L.ge_trans with (start_state_in ep)!!n.
apply L.ge_lub_left. auto.
@@ -1168,49 +1165,41 @@ End BBlock_solver.
greatest node in the working list. For backward analysis,
we will similarly pick the smallest node in the working list. *)
-Require Import FSets.
-Require Import FSetAVL.
-Require Import Ordered.
-
-Module PositiveSet := FSetAVL.Make(OrderedPositive).
-Module PositiveSetFacts := FSetFacts.Facts(PositiveSet).
+Require Import Heaps.
Module NodeSetForward <: NODE_SET.
- Definition t := PositiveSet.t.
- Definition add (n: positive) (s: t) : t := PositiveSet.add n s.
+ Definition t := PHeap.t.
+ Definition add (n: positive) (s: t) : t := PHeap.insert n s.
Definition pick (s: t) :=
- match PositiveSet.max_elt s with
- | Some n => Some(n, PositiveSet.remove n s)
+ match PHeap.findMax s with
+ | Some n => Some(n, PHeap.deleteMax s)
| None => None
end.
Definition initial (successors: PTree.t (list positive)) :=
- PTree.fold (fun s pc scs => PositiveSet.add pc s) successors PositiveSet.empty.
- Definition In := PositiveSet.In.
+ PTree.fold (fun s pc scs => PHeap.insert pc s) successors PHeap.empty.
+ Definition In := PHeap.In.
Lemma add_spec:
forall n n' s, In n' (add n s) <-> n = n' \/ In n' s.
Proof.
- intros. exact (PositiveSetFacts.add_iff s n n').
+ intros. rewrite PHeap.In_insert. unfold In. intuition.
Qed.
Lemma pick_none:
forall s n, pick s = None -> ~In n s.
Proof.
- intros until n; unfold pick. caseEq (PositiveSet.max_elt s); intros.
+ intros until n; unfold pick. caseEq (PHeap.findMax s); intros.
congruence.
- apply PositiveSet.max_elt_3. auto.
+ apply PHeap.findMax_empty. auto.
Qed.
Lemma pick_some:
forall s n s', pick s = Some(n, s') ->
forall n', In n' s <-> n = n' \/ In n' s'.
Proof.
- intros until s'; unfold pick. caseEq (PositiveSet.max_elt s); intros.
- inversion H0; clear H0; subst.
- split; intros.
- destruct (peq n n'). auto. right. apply PositiveSet.remove_2; assumption.
- elim H0; intro. subst n'. apply PositiveSet.max_elt_1. auto.
- apply PositiveSet.remove_3 with n; assumption.
+ intros until s'; unfold pick. caseEq (PHeap.findMax s); intros.
+ inv H0.
+ generalize (PHeap.In_deleteMax s n n' H). unfold In. intuition.
congruence.
Qed.
@@ -1233,39 +1222,36 @@ Module NodeSetForward <: NODE_SET.
End NodeSetForward.
Module NodeSetBackward <: NODE_SET.
- Definition t := PositiveSet.t.
- Definition add (n: positive) (s: t) : t := PositiveSet.add n s.
+ Definition t := PHeap.t.
+ Definition add (n: positive) (s: t) : t := PHeap.insert n s.
Definition pick (s: t) :=
- match PositiveSet.min_elt s with
- | Some n => Some(n, PositiveSet.remove n s)
+ match PHeap.findMin s with
+ | Some n => Some(n, PHeap.deleteMin s)
| None => None
end.
Definition initial (successors: PTree.t (list positive)) :=
- PTree.fold (fun s pc scs => PositiveSet.add pc s) successors PositiveSet.empty.
- Definition In := PositiveSet.In.
+ PTree.fold (fun s pc scs => PHeap.insert pc s) successors PHeap.empty.
+ Definition In := PHeap.In.
Lemma add_spec:
forall n n' s, In n' (add n s) <-> n = n' \/ In n' s.
Proof NodeSetForward.add_spec.
-
+
Lemma pick_none:
forall s n, pick s = None -> ~In n s.
Proof.
- intros until n; unfold pick. caseEq (PositiveSet.min_elt s); intros.
+ intros until n; unfold pick. caseEq (PHeap.findMin s); intros.
congruence.
- apply PositiveSet.min_elt_3. auto.
+ apply PHeap.findMin_empty. auto.
Qed.
Lemma pick_some:
forall s n s', pick s = Some(n, s') ->
forall n', In n' s <-> n = n' \/ In n' s'.
Proof.
- intros until s'; unfold pick. caseEq (PositiveSet.min_elt s); intros.
- inversion H0; clear H0; subst.
- split; intros.
- destruct (peq n n'). auto. right. apply PositiveSet.remove_2; assumption.
- elim H0; intro. subst n'. apply PositiveSet.min_elt_1. auto.
- apply PositiveSet.remove_3 with n; assumption.
+ intros until s'; unfold pick. caseEq (PHeap.findMin s); intros.
+ inv H0.
+ generalize (PHeap.In_deleteMin s n n' H). unfold In. intuition.
congruence.
Qed.
diff --git a/backend/LTL.v b/backend/LTL.v
index 2eff67c..a68352f 100644
--- a/backend/LTL.v
+++ b/backend/LTL.v
@@ -290,4 +290,4 @@ Definition successors_instr (i: instruction) : list node :=
end.
Definition successors (f: function): PTree.t (list node) :=
- PTree.map (fun pc i => successors_instr i) f.(fn_code).
+ PTree.map1 successors_instr f.(fn_code).
diff --git a/backend/Linearizeproof.v b/backend/Linearizeproof.v
index df75000..abc497e 100644
--- a/backend/Linearizeproof.v
+++ b/backend/Linearizeproof.v
@@ -128,7 +128,7 @@ Proof.
assert (LBoolean.ge reach!!pc' reach!!pc).
change (reach!!pc) with ((fun pc r => r) pc (reach!!pc)).
eapply DS.fixpoint_solution. eexact H.
- unfold Kildall.successors_list, successors. rewrite PTree.gmap.
+ unfold Kildall.successors_list, successors. rewrite PTree.gmap1.
rewrite H0; auto.
elim H3; intro. congruence. auto.
intros. apply PMap.gi.
diff --git a/backend/RTL.v b/backend/RTL.v
index 1c309a0..208c7b1 100644
--- a/backend/RTL.v
+++ b/backend/RTL.v
@@ -368,7 +368,7 @@ Definition successors_instr (i: instruction) : list node :=
end.
Definition successors (f: function) : PTree.t (list node) :=
- PTree.map (fun pc i => successors_instr i) f.(fn_code).
+ PTree.map1 successors_instr f.(fn_code).
(** Transformation of a RTL function instruction by instruction.
This applies a given transformation function to all instructions
diff --git a/backend/RTLgen.v b/backend/RTLgen.v
index e918449..a9c8f97 100644
--- a/backend/RTLgen.v
+++ b/backend/RTLgen.v
@@ -591,7 +591,7 @@ Fixpoint transl_stmt (map: mapping) (s: stmt) (nd: node)
do n1 <- reserve_instr;
do n2 <- transl_stmt map sbody n1 nexits ngoto nret rret;
do xx <- update_instr n1 (Inop n2);
- ret n1
+ add_instr (Inop n2)
| Sblock sbody =>
transl_stmt map sbody nd (nd :: nexits) ngoto nret rret
| Sexit n =>
diff --git a/backend/RTLgenproof.v b/backend/RTLgenproof.v
index b49b671..24f8c1a 100644
--- a/backend/RTLgenproof.v
+++ b/backend/RTLgenproof.v
@@ -1069,7 +1069,7 @@ Proof.
inv H2. eapply IHs2; eauto.
(* loop *)
intros. inversion H1; subst.
- eapply IHs; eauto. econstructor; eauto.
+ eapply IHs; eauto. econstructor; eauto. econstructor; eauto.
(* block *)
intros. inv H1.
eapply IHs; eauto. econstructor; eauto.
@@ -1216,6 +1216,7 @@ Proof.
left. apply plus_one. eapply exec_Inop; eauto.
econstructor; eauto.
econstructor; eauto.
+ econstructor; eauto.
(* block *)
inv TS.
diff --git a/backend/RTLgenspec.v b/backend/RTLgenspec.v
index 44e7c41..9b2e63e 100644
--- a/backend/RTLgenspec.v
+++ b/backend/RTLgenspec.v
@@ -885,9 +885,10 @@ Inductive tr_stmt (c: code) (map: mapping):
tr_stmt c map sfalse nfalse nd nexits ngoto nret rret ->
tr_condition c map nil a ns ntrue nfalse ->
tr_stmt c map (Sifthenelse a strue sfalse) ns nd nexits ngoto nret rret
- | tr_Sloop: forall sbody ns nd nexits ngoto nret rret nloop,
- tr_stmt c map sbody nloop ns nexits ngoto nret rret ->
+ | tr_Sloop: forall sbody ns nd nexits ngoto nret rret nloop nend,
+ tr_stmt c map sbody nloop nend nexits ngoto nret rret ->
c!ns = Some(Inop nloop) ->
+ c!nend = Some(Inop nloop) ->
tr_stmt c map (Sloop sbody) ns nd nexits ngoto nret rret
| tr_Sblock: forall sbody ns nd nexits ngoto nret rret,
tr_stmt c map sbody ns nd (nd :: nexits) ngoto nret rret ->
@@ -1294,7 +1295,7 @@ Proof.
econstructor.
apply tr_stmt_incr with s1; auto.
eapply IHstmt; eauto with rtlg.
- eauto with rtlg.
+ eauto with rtlg. eauto with rtlg.
(* Sblock *)
econstructor.
eapply IHstmt; eauto with rtlg.
diff --git a/driver/Driver.ml b/driver/Driver.ml
index fcdc335..d6d1868 100644
--- a/driver/Driver.ml
+++ b/driver/Driver.ml
@@ -356,6 +356,7 @@ let cmdline_actions =
@ f_opt "madd" option_fmadd
let _ =
+ Gc.set { (Gc.get()) with Gc.minor_heap_size = 524288 };
Cparser.Machine.config := Cparser.Machine.ilp32ll64;
Cparser.Builtins.set C2C.builtins;
CPragmas.initialize();
diff --git a/lib/Heaps.v b/lib/Heaps.v
new file mode 100644
index 0000000..a5c0d61
--- /dev/null
+++ b/lib/Heaps.v
@@ -0,0 +1,570 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the GNU General Public License as published by *)
+(* the Free Software Foundation, either version 2 of the License, or *)
+(* (at your option) any later version. This file is also distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** A heap data structure. *)
+
+(** The implementation uses splay heaps, following C. Okasaki,
+ "Purely functional data structures", section 5.4.
+ One difference: we eliminate duplicate elements.
+ (If an element is already in a heap, inserting it again does nothing.)
+*)
+
+Require Import Coqlib.
+Require Import FSets.
+Require Import Ordered.
+
+Module SplayHeapSet(E: OrderedType).
+
+(** "Raw" implementation. The "is a binary search tree" invariant
+ is proved separately. *)
+
+Module R.
+
+Inductive heap: Type :=
+ | Empty
+ | Node (l: heap) (x: E.t) (r: heap).
+
+Function partition (pivot: E.t) (h: heap) { struct h } : heap * heap :=
+ match h with
+ | Empty => (Empty, Empty)
+ | Node a x b =>
+ match E.compare x pivot with
+ | EQ _ => (a, b)
+ | LT _ =>
+ match b with
+ | Empty => (h, Empty)
+ | Node b1 y b2 =>
+ match E.compare y pivot with
+ | EQ _ => (Node a x b1, b2)
+ | LT _ =>
+ let (small, big) := partition pivot b2
+ in (Node (Node a x b1) y small, big)
+ | GT _ =>
+ let (small, big) := partition pivot b1
+ in (Node a x small, Node big y b2)
+ end
+ end
+ | GT _ =>
+ match a with
+ | Empty => (Empty, h)
+ | Node a1 y a2 =>
+ match E.compare y pivot with
+ | EQ _ => (a1, Node a2 x b)
+ | LT _ =>
+ let (small, big) := partition pivot a2
+ in (Node a1 y small, Node big x b)
+ | GT _ =>
+ let (small, big) := partition pivot a1
+ in (small, Node big y (Node a2 x b))
+ end
+ end
+ end
+ end.
+
+Definition insert (x: E.t) (h: heap) : heap :=
+ let (a, b) := partition x h in Node a x b.
+
+Fixpoint findMin (h: heap) : option E.t :=
+ match h with
+ | Empty => None
+ | Node Empty x b => Some x
+ | Node a x b => findMin a
+ end.
+
+Function deleteMin (h: heap) : heap :=
+ match h with
+ | Empty => Empty
+ | Node Empty x b => b
+ | Node (Node Empty x b) y c => Node b y c
+ | Node (Node a x b) y c => Node (deleteMin a) x (Node b y c)
+ end.
+
+Fixpoint findMax (h: heap) : option E.t :=
+ match h with
+ | Empty => None
+ | Node a x Empty => Some x
+ | Node a x b => findMax b
+ end.
+
+Function deleteMax (h: heap) : heap :=
+ match h with
+ | Empty => Empty
+ | Node b x Empty => b
+ | Node b x (Node c y Empty) => Node b x c
+ | Node a x (Node b y c) => Node (Node a x b) y (deleteMax c)
+ end.
+
+(** Specification *)
+
+Fixpoint In (x: E.t) (h: heap) : Prop :=
+ match h with
+ | Empty => False
+ | Node a y b => In x a \/ E.eq x y \/ In x b
+ end.
+
+(** Invariants *)
+
+Fixpoint lt_heap (h: heap) (x: E.t) : Prop :=
+ match h with
+ | Empty => True
+ | Node a y b => lt_heap a x /\ E.lt y x /\ lt_heap b x
+ end.
+
+Fixpoint gt_heap (h: heap) (x: E.t) : Prop :=
+ match h with
+ | Empty => True
+ | Node a y b => gt_heap a x /\ E.lt x y /\ gt_heap b x
+ end.
+
+Fixpoint bst (h: heap) : Prop :=
+ match h with
+ | Empty => True
+ | Node a x b => bst a /\ bst b /\ lt_heap a x /\ gt_heap b x
+ end.
+
+Definition le (x y: E.t) := E.eq x y \/ E.lt x y.
+
+Lemma le_lt_trans:
+ forall x1 x2 x3, le x1 x2 -> E.lt x2 x3 -> E.lt x1 x3.
+Proof.
+ unfold le; intros; intuition.
+ destruct (E.compare x1 x3).
+ auto.
+ elim (@E.lt_not_eq x2 x3). auto. apply E.eq_trans with x1. apply E.eq_sym; auto. auto.
+ elim (@E.lt_not_eq x2 x1). eapply E.lt_trans; eauto. apply E.eq_sym; auto.
+ eapply E.lt_trans; eauto.
+Qed.
+
+Lemma lt_le_trans:
+ forall x1 x2 x3, E.lt x1 x2 -> le x2 x3 -> E.lt x1 x3.
+Proof.
+ unfold le; intros; intuition.
+ destruct (E.compare x1 x3).
+ auto.
+ elim (@E.lt_not_eq x1 x2). auto. apply E.eq_trans with x3. auto. apply E.eq_sym; auto.
+ elim (@E.lt_not_eq x3 x2). eapply E.lt_trans; eauto. apply E.eq_sym; auto.
+ eapply E.lt_trans; eauto.
+Qed.
+
+Lemma le_trans:
+ forall x1 x2 x3, le x1 x2 -> le x2 x3 -> le x1 x3.
+Proof.
+ intros. destruct H. destruct H0. red; left; eapply E.eq_trans; eauto.
+ red. right. eapply le_lt_trans; eauto. red; auto.
+ red. right. eapply lt_le_trans; eauto.
+Qed.
+
+Lemma lt_heap_trans:
+ forall x y, le x y ->
+ forall h, lt_heap h x -> lt_heap h y.
+Proof.
+ induction h; simpl; intros.
+ auto.
+ intuition. eapply lt_le_trans; eauto.
+Qed.
+
+Lemma gt_heap_trans:
+ forall x y, le y x ->
+ forall h, gt_heap h x -> gt_heap h y.
+Proof.
+ induction h; simpl; intros.
+ auto.
+ intuition. eapply le_lt_trans; eauto.
+Qed.
+
+(** Properties of [partition] *)
+
+Lemma In_partition:
+ forall x pivot, ~E.eq x pivot ->
+ forall h, bst h -> (In x h <-> In x (fst (partition pivot h)) \/ In x (snd (partition pivot h))).
+Proof.
+ intros x pivot NEQ h0. functional induction (partition pivot h0); simpl; intros.
+ tauto.
+ intuition. elim NEQ. eapply E.eq_trans; eauto.
+ intuition.
+ intuition. elim NEQ. eapply E.eq_trans; eauto.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+ intuition.
+ intuition. elim NEQ. eapply E.eq_trans; eauto.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+Qed.
+
+Lemma partition_lt:
+ forall x pivot h,
+ lt_heap h x -> lt_heap (fst (partition pivot h)) x /\ lt_heap (snd (partition pivot h)) x.
+Proof.
+ intros x pivot h0. functional induction (partition pivot h0); simpl.
+ tauto.
+ tauto.
+ tauto.
+ tauto.
+ rewrite e3 in IHp; simpl in IHp. tauto.
+ rewrite e3 in IHp; simpl in IHp. tauto.
+ tauto.
+ tauto.
+ rewrite e3 in IHp; simpl in IHp. tauto.
+ rewrite e3 in IHp; simpl in IHp. tauto.
+Qed.
+
+Lemma partition_gt:
+ forall x pivot h,
+ gt_heap h x -> gt_heap (fst (partition pivot h)) x /\ gt_heap (snd (partition pivot h)) x.
+Proof.
+ intros x pivot h0. functional induction (partition pivot h0); simpl.
+ tauto.
+ tauto.
+ tauto.
+ tauto.
+ rewrite e3 in IHp; simpl in IHp. tauto.
+ rewrite e3 in IHp; simpl in IHp. tauto.
+ tauto.
+ tauto.
+ rewrite e3 in IHp; simpl in IHp. tauto.
+ rewrite e3 in IHp; simpl in IHp. tauto.
+Qed.
+
+Lemma partition_split:
+ forall pivot h,
+ bst h -> lt_heap (fst (partition pivot h)) pivot /\ gt_heap (snd (partition pivot h)) pivot.
+Proof.
+ intros pivot h0. functional induction (partition pivot h0); simpl.
+ tauto.
+ intuition. eapply lt_heap_trans; eauto. red; auto. eapply gt_heap_trans; eauto. red; left; apply E.eq_sym; auto.
+ intuition. eapply lt_heap_trans; eauto. red; auto.
+ intuition. eapply lt_heap_trans; eauto. red; auto.
+ eapply lt_heap_trans; eauto. red; auto.
+ apply gt_heap_trans with y; auto. red. left; apply E.eq_sym; auto.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+ eapply lt_heap_trans; eauto. red; auto.
+ eapply lt_heap_trans; eauto. red; auto.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+ eapply lt_heap_trans; eauto. red; auto.
+ apply gt_heap_trans with y; eauto. red; auto.
+ intuition. eapply gt_heap_trans; eauto. red; auto.
+ intuition. apply lt_heap_trans with y; eauto. red; auto.
+ eapply gt_heap_trans; eauto. red; left; apply E.eq_sym; auto.
+ eapply gt_heap_trans; eauto. red; auto.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+ apply lt_heap_trans with y; eauto. red; auto.
+ eapply gt_heap_trans; eauto. red; auto.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+ apply gt_heap_trans with y; eauto. red; auto.
+ apply gt_heap_trans with x; eauto. red; auto.
+Qed.
+
+Lemma partition_bst:
+ forall pivot h,
+ bst h ->
+ bst (fst (partition pivot h)) /\ bst (snd (partition pivot h)).
+Proof.
+ intros pivot h0. functional induction (partition pivot h0); simpl.
+ tauto.
+ tauto.
+ tauto.
+ tauto.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+ apply lt_heap_trans with x; auto. red; auto.
+ generalize (partition_gt y pivot b2 H7). rewrite e3; simpl. tauto.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+ generalize (partition_gt x pivot b1 H3). rewrite e3; simpl. tauto.
+ generalize (partition_lt y pivot b1 H4). rewrite e3; simpl. tauto.
+ tauto.
+ tauto.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+ generalize (partition_gt y pivot a2 H6). rewrite e3; simpl. tauto.
+ generalize (partition_lt x pivot a2 H8). rewrite e3; simpl. tauto.
+ rewrite e3 in IHp; simpl in IHp. intuition.
+ generalize (partition_lt y pivot a1 H3). rewrite e3; simpl. tauto.
+ apply gt_heap_trans with x; auto. red. auto.
+Qed.
+
+(** Properties of [insert] *)
+
+Lemma insert_bst:
+ forall x h, bst h -> bst (insert x h).
+Proof.
+ intros.
+ unfold insert. case_eq (partition x h). intros a b EQ; simpl.
+ generalize (partition_bst x h H).
+ generalize (partition_split x h H).
+ rewrite EQ; simpl. tauto.
+Qed.
+
+Lemma In_insert:
+ forall x h y, bst h -> (In y (insert x h) <-> E.eq y x \/ In y h).
+Proof.
+ intros. unfold insert.
+ case_eq (partition x h). intros a b EQ; simpl.
+ assert (E.eq y x \/ ~E.eq y x).
+ destruct (E.compare y x); auto.
+ right; red; intros. elim (E.lt_not_eq l). apply E.eq_sym; auto.
+ destruct H0.
+ tauto.
+ generalize (In_partition y x H0 h H). rewrite EQ; simpl. tauto.
+Qed.
+
+(** Properties of [findMin] and [deleteMin] *)
+
+Lemma deleteMin_lt:
+ forall x h, lt_heap h x -> lt_heap (deleteMin h) x.
+Proof.
+ intros x h0. functional induction (deleteMin h0); simpl; intros.
+ auto.
+ tauto.
+ tauto.
+ intuition.
+Qed.
+
+Lemma deleteMin_bst:
+ forall h, bst h -> bst (deleteMin h).
+Proof.
+ intros h0. functional induction (deleteMin h0); simpl; intros.
+ auto.
+ tauto.
+ tauto.
+ intuition.
+ apply deleteMin_lt; auto.
+ apply gt_heap_trans with y; auto. red; auto.
+Qed.
+
+Lemma In_deleteMin:
+ forall y x h,
+ findMin h = Some x ->
+ (In y h <-> E.eq y x \/ In y (deleteMin h)).
+Proof.
+ intros y x h0. functional induction (deleteMin h0); simpl; intros.
+ congruence.
+ inv H. tauto.
+ inv H. tauto.
+ destruct a. contradiction. tauto.
+Qed.
+
+Lemma gt_heap_In:
+ forall x y h, gt_heap h x -> In y h -> E.lt x y.
+Proof.
+ induction h; simpl; intros.
+ contradiction.
+ intuition. apply lt_le_trans with x0; auto. red. left. apply E.eq_sym; auto.
+Qed.
+
+Lemma findMin_min:
+ forall x h, findMin h = Some x -> bst h -> forall y, In y h -> le x y.
+Proof.
+ induction h; simpl; intros.
+ contradiction.
+ destruct h1.
+ inv H. simpl in *. intuition.
+ red; left; apply E.eq_sym; auto.
+ red; right. eapply gt_heap_In; eauto.
+ assert (le x x1).
+ apply IHh1; auto. tauto. simpl. right; left; apply E.eq_refl.
+ intuition.
+ apply le_trans with x1. auto. apply le_trans with x0. simpl in H4. red; tauto.
+ red; left; apply E.eq_sym; auto.
+ apply le_trans with x1. auto. apply le_trans with x0. simpl in H4. red; tauto.
+ red; right. eapply gt_heap_In; eauto.
+Qed.
+
+Lemma findMin_empty:
+ forall h, h <> Empty -> findMin h <> None.
+Proof.
+ induction h; simpl; intros.
+ congruence.
+ destruct h1. congruence. apply IHh1. congruence.
+Qed.
+
+(** Properties of [findMax] and [deleteMax]. *)
+
+Lemma deleteMax_gt:
+ forall x h, gt_heap h x -> gt_heap (deleteMax h) x.
+Proof.
+ intros x h0. functional induction (deleteMax h0); simpl; intros.
+ auto.
+ tauto.
+ tauto.
+ intuition.
+Qed.
+
+Lemma deleteMax_bst:
+ forall h, bst h -> bst (deleteMax h).
+Proof.
+ intros h0. functional induction (deleteMax h0); simpl; intros.
+ auto.
+ tauto.
+ tauto.
+ intuition.
+ apply lt_heap_trans with x; auto. red; auto.
+ apply deleteMax_gt; auto.
+Qed.
+
+Lemma In_deleteMax:
+ forall y x h,
+ findMax h = Some x ->
+ (In y h <-> E.eq y x \/ In y (deleteMax h)).
+Proof.
+ intros y x h0. functional induction (deleteMax h0); simpl; intros.
+ congruence.
+ inv H. tauto.
+ inv H. tauto.
+ destruct c. contradiction. tauto.
+Qed.
+
+Lemma lt_heap_In:
+ forall x y h, lt_heap h x -> In y h -> E.lt y x.
+Proof.
+ induction h; simpl; intros.
+ contradiction.
+ intuition. apply le_lt_trans with x0; auto. red. left. apply E.eq_sym; auto.
+Qed.
+
+Lemma findMax_max:
+ forall x h, findMax h = Some x -> bst h -> forall y, In y h -> le y x.
+Proof.
+ induction h; simpl; intros.
+ contradiction.
+ destruct h2.
+ inv H. simpl in *. intuition.
+ red; right. eapply lt_heap_In; eauto.
+ red; left. auto.
+ assert (le x1 x).
+ apply IHh2; auto. tauto. simpl. right; left; apply E.eq_refl.
+ intuition.
+ apply le_trans with x1; auto. apply le_trans with x0.
+ red; right. eapply lt_heap_In; eauto.
+ simpl in H6. red; tauto.
+ apply le_trans with x1; auto. apply le_trans with x0.
+ red; auto.
+ simpl in H6. red; tauto.
+Qed.
+
+Lemma findMax_empty:
+ forall h, h <> Empty -> findMax h <> None.
+Proof.
+ induction h; simpl; intros.
+ congruence.
+ destruct h2. congruence. apply IHh2. congruence.
+Qed.
+
+End R.
+
+(** Wrapping in a dependent type *)
+
+Definition t := { h: R.heap | R.bst h }.
+
+(** Operations *)
+
+Program Definition empty : t := R.Empty.
+
+Program Definition insert (x: E.t) (h: t) : t := R.insert x h.
+Next Obligation. apply R.insert_bst. apply proj2_sig. Qed.
+
+Program Definition findMin (h: t) : option E.t := R.findMin h.
+
+Program Definition deleteMin (h: t) : t := R.deleteMin h.
+Next Obligation. apply R.deleteMin_bst. apply proj2_sig. Qed.
+
+Program Definition findMax (h: t) : option E.t := R.findMax h.
+
+Program Definition deleteMax (h: t) : t := R.deleteMax h.
+Next Obligation. apply R.deleteMax_bst. apply proj2_sig. Qed.
+
+(** Membership (for specification) *)
+
+Program Definition In (x: E.t) (h: t) : Prop := R.In x h.
+
+(** Properties of [empty] *)
+
+Lemma In_empty: forall x, ~In x empty.
+Proof.
+ intros; red; intros.
+ red in H. simpl in H. tauto.
+Qed.
+
+(** Properties of [insert] *)
+
+Lemma In_insert:
+ forall x h y,
+ In y (insert x h) <-> E.eq y x \/ In y h.
+Proof.
+ intros. unfold In, insert; simpl. apply R.In_insert. apply proj2_sig.
+Qed.
+
+(** Properties of [findMin] *)
+
+Lemma findMin_empty:
+ forall h y, findMin h = None -> ~In y h.
+Proof.
+ unfold findMin, In; intros; simpl.
+ destruct (proj1_sig h).
+ simpl. tauto.
+ exploit R.findMin_empty; eauto. congruence.
+Qed.
+
+Lemma findMin_min:
+ forall h x y, findMin h = Some x -> In y h -> E.eq x y \/ E.lt x y.
+Proof.
+ unfold findMin, In; simpl. intros.
+ change (R.le x y). eapply R.findMin_min; eauto. apply proj2_sig.
+Qed.
+
+(** Properties of [deleteMin]. *)
+
+Lemma In_deleteMin:
+ forall h x y,
+ findMin h = Some x ->
+ (In y h <-> E.eq y x \/ In y (deleteMin h)).
+Proof.
+ unfold findMin, In; simpl; intros.
+ apply R.In_deleteMin. auto.
+Qed.
+
+(** Properties of [findMax] *)
+
+Lemma findMax_empty:
+ forall h y, findMax h = None -> ~In y h.
+Proof.
+ unfold findMax, In; intros; simpl.
+ destruct (proj1_sig h).
+ simpl. tauto.
+ exploit R.findMax_empty; eauto. congruence.
+Qed.
+
+Lemma findMax_max:
+ forall h x y, findMax h = Some x -> In y h -> E.eq y x \/ E.lt y x.
+Proof.
+ unfold findMax, In; simpl. intros.
+ change (R.le y x). eapply R.findMax_max; eauto. apply proj2_sig.
+Qed.
+
+(** Properties of [deleteMax]. *)
+
+Lemma In_deleteMax:
+ forall h x y,
+ findMax h = Some x ->
+ (In y h <-> E.eq y x \/ In y (deleteMax h)).
+Proof.
+ unfold findMax, In; simpl; intros.
+ apply R.In_deleteMax. auto.
+Qed.
+
+End SplayHeapSet.
+
+(** Instantiation over type [positive] *)
+
+Module PHeap := SplayHeapSet(OrderedPositive).
+
+
diff --git a/lib/Lattice.v b/lib/Lattice.v
index a185c43..c200fc8 100644
--- a/lib/Lattice.v
+++ b/lib/Lattice.v
@@ -35,12 +35,11 @@ Module Type SEMILATTICE.
Variable ge: t -> t -> Prop.
Hypothesis ge_refl: forall x y, eq x y -> ge x y.
Hypothesis ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
- Hypothesis ge_compat: forall x x' y y', eq x x' -> eq y y' -> ge x y -> ge x' y'.
Variable bot: t.
Hypothesis ge_bot: forall x, ge x bot.
Variable lub: t -> t -> t.
- Hypothesis lub_commut: forall x y, eq (lub x y) (lub y x).
Hypothesis ge_lub_left: forall x y, ge (lub x y) x.
+ Hypothesis ge_lub_right: forall x y, ge (lub x y) y.
End SEMILATTICE.
@@ -57,6 +56,8 @@ End SEMILATTICE_WITH_TOP.
(** * Semi-lattice over maps *)
+Set Implicit Arguments.
+
(** Given a semi-lattice with top [L], the following functor implements
a semi-lattice structure over finite maps from positive numbers to [L.t].
The default value for these maps is either [L.top] or [L.bot]. *)
@@ -156,11 +157,6 @@ Proof.
unfold ge; intros. apply L.ge_trans with (get p y); auto.
Qed.
-Lemma ge_compat: forall x x' y y', eq x x' -> eq y y' -> ge x y -> ge x' y'.
-Proof.
- unfold eq,ge; intros. eapply L.ge_compat; eauto.
-Qed.
-
Definition bot := Bot_except (PTree.empty L.t).
Lemma get_bot: forall p, get p bot = L.bot.
@@ -185,6 +181,232 @@ Proof.
unfold ge; intros. rewrite get_top. apply L.ge_top.
Qed.
+(** A [combine] operation over the type [PTree.t L.t] that attempts
+ to share its result with its arguments. *)
+
+Section COMBINE.
+
+Variable f: option L.t -> option L.t -> option L.t.
+Hypothesis f_none_none: f None None = None.
+
+Definition opt_eq (ox oy: option L.t) : Prop :=
+ match ox, oy with
+ | None, None => True
+ | Some x, Some y => L.eq x y
+ | _, _ => False
+ end.
+
+Lemma opt_eq_refl: forall ox, opt_eq ox ox.
+Proof.
+ intros. unfold opt_eq. destruct ox. apply L.eq_refl. auto.
+Qed.
+
+Lemma opt_eq_sym: forall ox oy, opt_eq ox oy -> opt_eq oy ox.
+Proof.
+ unfold opt_eq. destruct ox; destruct oy; auto. apply L.eq_sym.
+Qed.
+
+Lemma opt_eq_trans: forall ox oy oz, opt_eq ox oy -> opt_eq oy oz -> opt_eq ox oz.
+Proof.
+ unfold opt_eq. destruct ox; destruct oy; destruct oz; intuition.
+ eapply L.eq_trans; eauto.
+Qed.
+
+Definition opt_beq (ox oy: option L.t) : bool :=
+ match ox, oy with
+ | None, None => true
+ | Some x, Some y => L.beq x y
+ | _, _ => false
+ end.
+
+Lemma opt_beq_correct:
+ forall ox oy, opt_beq ox oy = true -> opt_eq ox oy.
+Proof.
+ unfold opt_beq, opt_eq. destruct ox; destruct oy; try congruence.
+ intros. apply L.beq_correct; auto.
+ auto.
+Qed.
+
+Definition tree_eq (m1 m2: PTree.t L.t) : Prop :=
+ forall i, opt_eq (PTree.get i m1) (PTree.get i m2).
+
+Lemma tree_eq_refl: forall m, tree_eq m m.
+Proof. intros; red; intros; apply opt_eq_refl. Qed.
+
+Lemma tree_eq_sym: forall m1 m2, tree_eq m1 m2 -> tree_eq m2 m1.
+Proof. intros; red; intros; apply opt_eq_sym; auto. Qed.
+
+Lemma tree_eq_trans: forall m1 m2 m3, tree_eq m1 m2 -> tree_eq m2 m3 -> tree_eq m1 m3.
+Proof. intros; red; intros; apply opt_eq_trans with (PTree.get i m2); auto. Qed.
+
+Lemma tree_eq_node:
+ forall l1 o1 r1 l2 o2 r2,
+ tree_eq l1 l2 -> tree_eq r1 r2 -> opt_eq o1 o2 ->
+ tree_eq (PTree.Node l1 o1 r1) (PTree.Node l2 o2 r2).
+Proof.
+ intros; red; intros. destruct i; simpl; auto.
+Qed.
+
+Lemma tree_eq_node':
+ forall l1 o1 r1 l2 o2 r2,
+ tree_eq l1 l2 -> tree_eq r1 r2 -> opt_eq o1 o2 ->
+ tree_eq (PTree.Node l1 o1 r1) (PTree.Node' l2 o2 r2).
+Proof.
+ intros; red; intros. rewrite PTree.gnode'. apply tree_eq_node; auto.
+Qed.
+
+Lemma tree_eq_node'':
+ forall l1 o1 r1 l2 o2 r2,
+ tree_eq l1 l2 -> tree_eq r1 r2 -> opt_eq o1 o2 ->
+ tree_eq (PTree.Node' l1 o1 r1) (PTree.Node' l2 o2 r2).
+Proof.
+ intros; red; intros. repeat rewrite PTree.gnode'. apply tree_eq_node; auto.
+Qed.
+
+Hint Resolve opt_beq_correct opt_eq_refl opt_eq_sym
+ tree_eq_refl tree_eq_sym
+ tree_eq_node tree_eq_node' tree_eq_node'' : combine.
+
+Inductive changed: Type := Unchanged | Changed (m: PTree.t L.t).
+
+Fixpoint combine_l (m : PTree.t L.t) {struct m} : changed :=
+ match m with
+ | PTree.Leaf =>
+ Unchanged
+ | PTree.Node l o r =>
+ let o' := f o None in
+ match combine_l l, combine_l r with
+ | Unchanged, Unchanged => if opt_beq o' o then Unchanged else Changed (PTree.Node' l o' r)
+ | Unchanged, Changed r' => Changed (PTree.Node' l o' r')
+ | Changed l', Unchanged => Changed (PTree.Node' l' o' r)
+ | Changed l', Changed r' => Changed (PTree.Node' l' o' r')
+ end
+ end.
+
+Lemma combine_l_eq:
+ forall m,
+ tree_eq (match combine_l m with Unchanged => m | Changed m' => m' end)
+ (PTree.xcombine_l f m).
+Proof.
+ induction m; simpl.
+ auto with combine.
+ destruct (combine_l m1) as [ | l']; destruct (combine_l m2) as [ | r'];
+ auto with combine.
+ case_eq (opt_beq (f o None) o); auto with combine.
+Qed.
+
+Fixpoint combine_r (m : PTree.t L.t) {struct m} : changed :=
+ match m with
+ | PTree.Leaf =>
+ Unchanged
+ | PTree.Node l o r =>
+ let o' := f None o in
+ match combine_r l, combine_r r with
+ | Unchanged, Unchanged => if opt_beq o' o then Unchanged else Changed (PTree.Node' l o' r)
+ | Unchanged, Changed r' => Changed (PTree.Node' l o' r')
+ | Changed l', Unchanged => Changed (PTree.Node' l' o' r)
+ | Changed l', Changed r' => Changed (PTree.Node' l' o' r')
+ end
+ end.
+
+Lemma combine_r_eq:
+ forall m,
+ tree_eq (match combine_r m with Unchanged => m | Changed m' => m' end)
+ (PTree.xcombine_r f m).
+Proof.
+ induction m; simpl.
+ auto with combine.
+ destruct (combine_r m1) as [ | l']; destruct (combine_r m2) as [ | r'];
+ auto with combine.
+ case_eq (opt_beq (f None o) o); auto with combine.
+Qed.
+
+Inductive changed2 : Type :=
+ | Same
+ | Same1
+ | Same2
+ | CC(m: PTree.t L.t).
+
+Fixpoint xcombine (m1 m2 : PTree.t L.t) {struct m1} : changed2 :=
+ match m1, m2 with
+ | PTree.Leaf, PTree.Leaf =>
+ Same
+ | PTree.Leaf, _ =>
+ match combine_r m2 with
+ | Unchanged => Same2
+ | Changed m => CC m
+ end
+ | _, PTree.Leaf =>
+ match combine_l m1 with
+ | Unchanged => Same1
+ | Changed m => CC m
+ end
+ | PTree.Node l1 o1 r1, PTree.Node l2 o2 r2 =>
+ let o := f o1 o2 in
+ match xcombine l1 l2, xcombine r1 r2 with
+ | Same, Same =>
+ match opt_beq o o1, opt_beq o o2 with
+ | true, true => Same
+ | true, false => Same1
+ | false, true => Same2
+ | false, false => CC(PTree.Node' l1 o r1)
+ end
+ | Same1, Same | Same, Same1 | Same1, Same1 =>
+ if opt_beq o o1 then Same1 else CC(PTree.Node' l1 o r1)
+ | Same2, Same | Same, Same2 | Same2, Same2 =>
+ if opt_beq o o2 then Same2 else CC(PTree.Node' l2 o r2)
+ | Same1, Same2 => CC(PTree.Node' l1 o r2)
+ | (Same|Same1), CC r => CC(PTree.Node' l1 o r)
+ | Same2, Same1 => CC(PTree.Node' l2 o r1)
+ | Same2, CC r => CC(PTree.Node' l2 o r)
+ | CC l, (Same|Same1) => CC(PTree.Node' l o r1)
+ | CC l, Same2 => CC(PTree.Node' l o r2)
+ | CC l, CC r => CC(PTree.Node' l o r)
+ end
+ end.
+
+Lemma xcombine_eq:
+ forall m1 m2,
+ match xcombine m1 m2 with
+ | Same => tree_eq m1 (PTree.combine f m1 m2) /\ tree_eq m2 (PTree.combine f m1 m2)
+ | Same1 => tree_eq m1 (PTree.combine f m1 m2)
+ | Same2 => tree_eq m2 (PTree.combine f m1 m2)
+ | CC m => tree_eq m (PTree.combine f m1 m2)
+ end.
+Proof.
+Opaque combine_l combine_r PTree.xcombine_l PTree.xcombine_r.
+ induction m1; destruct m2; simpl.
+ split; apply tree_eq_refl.
+ generalize (combine_r_eq (PTree.Node m2_1 o m2_2)).
+ destruct (combine_r (PTree.Node m2_1 o m2_2)); auto.
+ generalize (combine_l_eq (PTree.Node m1_1 o m1_2)).
+ destruct (combine_l (PTree.Node m1_1 o m1_2)); auto.
+ generalize (IHm1_1 m2_1) (IHm1_2 m2_2).
+ destruct (xcombine m1_1 m2_1);
+ destruct (xcombine m1_2 m2_2); auto with combine;
+ intuition; case_eq (opt_beq (f o o0) o); case_eq (opt_beq (f o o0) o0); auto with combine.
+Qed.
+
+Definition combine (m1 m2: PTree.t L.t) : PTree.t L.t :=
+ match xcombine m1 m2 with
+ | Same|Same1 => m1
+ | Same2 => m2
+ | CC m => m
+ end.
+
+Lemma gcombine:
+ forall m1 m2 i, opt_eq (PTree.get i (combine m1 m2)) (f (PTree.get i m1) (PTree.get i m2)).
+Proof.
+ intros.
+ assert (tree_eq (combine m1 m2) (PTree.combine f m1 m2)).
+ unfold combine.
+ generalize (xcombine_eq m1 m2).
+ destruct (xcombine m1 m2); tauto.
+ eapply opt_eq_trans. apply H. rewrite PTree.gcombine; auto. apply opt_eq_refl.
+Qed.
+
+End COMBINE.
+
Definition opt_lub (x y: L.t) : option L.t :=
let z := L.lub x y in
if L.beq z L.top then None else Some z.
@@ -193,7 +415,7 @@ Definition lub (x y: t) : t :=
match x, y with
| Bot_except m, Bot_except n =>
Bot_except
- (PTree.combine
+ (combine
(fun a b =>
match a, b with
| Some u, Some v => Some (L.lub u v)
@@ -203,7 +425,7 @@ Definition lub (x y: t) : t :=
m n)
| Bot_except m, Top_except n =>
Top_except
- (PTree.combine
+ (combine
(fun a b =>
match a, b with
| Some u, Some v => opt_lub u v
@@ -213,7 +435,7 @@ Definition lub (x y: t) : t :=
m n)
| Top_except m, Bot_except n =>
Top_except
- (PTree.combine
+ (combine
(fun a b =>
match a, b with
| Some u, Some v => opt_lub u v
@@ -223,7 +445,7 @@ Definition lub (x y: t) : t :=
m n)
| Top_except m, Top_except n =>
Top_except
- (PTree.combine
+ (combine
(fun a b =>
match a, b with
| Some u, Some v => opt_lub u v
@@ -232,29 +454,26 @@ Definition lub (x y: t) : t :=
m n)
end.
-Lemma lub_commut:
- forall x y, eq (lub x y) (lub y x).
+Lemma gcombine_top:
+ forall f t1 t2 p,
+ f None None = None ->
+ L.eq (get p (Top_except (combine f t1 t2)))
+ (match f t1!p t2!p with Some x => x | None => L.top end).
Proof.
- intros x y p.
- assert (forall u v,
- L.eq (match opt_lub u v with
- | Some x => x
- | None => L.top end)
- (match opt_lub v u with
- | Some x => x
- | None => L.top
- end)).
- intros. unfold opt_lub.
- case_eq (L.beq (L.lub u v) L.top);
- case_eq (L.beq (L.lub v u) L.top); intros.
- apply L.eq_refl.
- eapply L.eq_trans. apply L.eq_sym. apply L.beq_correct; eauto. apply L.lub_commut.
- eapply L.eq_trans. apply L.lub_commut. apply L.beq_correct; auto.
- apply L.lub_commut.
- destruct x; destruct y; simpl;
- repeat rewrite PTree.gcombine; auto;
- destruct t0!p; destruct t1!p;
- auto; apply L.eq_refl || apply L.lub_commut.
+ intros. simpl. generalize (gcombine f H t1 t2 p). unfold opt_eq.
+ destruct ((combine f t1 t2)!p); destruct (f t1!p t2!p).
+ auto. contradiction. contradiction. intros; apply L.eq_refl.
+Qed.
+
+Lemma gcombine_bot:
+ forall f t1 t2 p,
+ f None None = None ->
+ L.eq (get p (Bot_except (combine f t1 t2)))
+ (match f t1!p t2!p with Some x => x | None => L.bot end).
+Proof.
+ intros. simpl. generalize (gcombine f H t1 t2 p). unfold opt_eq.
+ destruct ((combine f t1 t2)!p); destruct (f t1!p t2!p).
+ auto. contradiction. contradiction. intros; apply L.eq_refl.
Qed.
Lemma ge_lub_left:
@@ -265,31 +484,70 @@ Proof.
intros; unfold opt_lub.
case_eq (L.beq (L.lub u v) L.top); intros. apply L.ge_top. apply L.ge_lub_left.
- unfold ge, get, lub; intros; destruct x; destruct y.
+ unfold ge, lub; intros. destruct x; destruct y.
- rewrite PTree.gcombine; auto.
- destruct t0!p; destruct t1!p.
+ eapply L.ge_trans. apply L.ge_refl. apply gcombine_bot. auto.
+ simpl. destruct t0!p; destruct t1!p.
apply L.ge_lub_left.
apply L.ge_refl. apply L.eq_refl.
apply L.ge_bot.
apply L.ge_refl. apply L.eq_refl.
- rewrite PTree.gcombine; auto.
- destruct t0!p; destruct t1!p.
+ eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
+ simpl. destruct t0!p; destruct t1!p.
auto.
apply L.ge_top.
apply L.ge_bot.
apply L.ge_top.
- rewrite PTree.gcombine; auto.
- destruct t0!p; destruct t1!p.
+ eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
+ simpl. destruct t0!p; destruct t1!p.
+ auto.
+ apply L.ge_refl. apply L.eq_refl.
+ apply L.ge_top.
+ apply L.ge_top.
+
+ eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
+ simpl. destruct t0!p; destruct t1!p.
+ auto.
+ apply L.ge_top.
+ apply L.ge_top.
+ apply L.ge_top.
+Qed.
+
+Lemma ge_lub_right:
+ forall x y, ge (lub x y) y.
+Proof.
+ assert (forall u v,
+ L.ge (match opt_lub u v with Some x => x | None => L.top end) v).
+ intros; unfold opt_lub.
+ case_eq (L.beq (L.lub u v) L.top); intros. apply L.ge_top. apply L.ge_lub_right.
+
+ unfold ge, lub; intros. destruct x; destruct y.
+
+ eapply L.ge_trans. apply L.ge_refl. apply gcombine_bot. auto.
+ simpl. destruct t0!p; destruct t1!p.
+ apply L.ge_lub_right.
+ apply L.ge_bot.
+ apply L.ge_refl. apply L.eq_refl.
+ apply L.ge_refl. apply L.eq_refl.
+
+ eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
+ simpl. destruct t0!p; destruct t1!p.
auto.
+ apply L.ge_top.
apply L.ge_refl. apply L.eq_refl.
apply L.ge_top.
+
+ eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
+ simpl. destruct t0!p; destruct t1!p.
+ auto.
+ apply L.ge_bot.
+ apply L.ge_top.
apply L.ge_top.
- rewrite PTree.gcombine; auto.
- destruct t0!p; destruct t1!p.
+ eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
+ simpl. destruct t0!p; destruct t1!p.
auto.
apply L.ge_top.
apply L.ge_top.
@@ -303,7 +561,7 @@ End LPMap.
(** Given a set [S: FSetInterface.S], the following functor
implements a semi-lattice over these sets, ordered by inclusion. *)
-Module LFSet (S: FSetInterface.S) <: SEMILATTICE.
+Module LFSet (S: FSetInterface.WS) <: SEMILATTICE.
Definition t := S.t.
@@ -323,10 +581,6 @@ Module LFSet (S: FSetInterface.S) <: SEMILATTICE.
Proof.
unfold ge, S.Subset; intros. eauto.
Qed.
- Lemma ge_compat: forall x x' y y', eq x x' -> eq y y' -> ge x y -> ge x' y'.
- Proof.
- unfold ge, eq, S.Subset, S.Equal; intros. firstorder.
- Qed.
Definition bot: t := S.empty.
Lemma ge_bot: forall x, ge x bot.
@@ -335,18 +589,17 @@ Module LFSet (S: FSetInterface.S) <: SEMILATTICE.
Qed.
Definition lub: t -> t -> t := S.union.
- Lemma lub_commut: forall x y, eq (lub x y) (lub y x).
- Proof.
- unfold lub, eq, S.Equal; intros. split; intro.
- destruct (S.union_1 H). apply S.union_3; auto. apply S.union_2; auto.
- destruct (S.union_1 H). apply S.union_3; auto. apply S.union_2; auto.
- Qed.
Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof.
unfold lub, ge, S.Subset; intros. apply S.union_2; auto.
Qed.
+ Lemma ge_lub_right: forall x y, ge (lub x y) y.
+ Proof.
+ unfold lub, ge, S.Subset; intros. apply S.union_3; auto.
+ Qed.
+
End LFSet.
(** * Flat semi-lattice *)
@@ -403,11 +656,6 @@ Proof.
transitivity t1; auto.
Qed.
-Lemma ge_compat: forall x x' y y', eq x x' -> eq y y' -> ge x y -> ge x' y'.
-Proof.
- unfold eq; intros; congruence.
-Qed.
-
Definition bot: t := Bot.
Lemma ge_bot: forall x, ge x bot.
@@ -431,13 +679,13 @@ Definition lub (x y: t) : t :=
| Inj a, Inj b => if X.eq a b then Inj a else Top
end.
-Lemma lub_commut: forall x y, eq (lub x y) (lub y x).
+Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof.
- unfold eq; destruct x; destruct y; simpl; auto.
- case (X.eq t0 t1); case (X.eq t1 t0); intros; congruence.
+ destruct x; destruct y; simpl; auto.
+ case (X.eq t0 t1); simpl; auto.
Qed.
-Lemma ge_lub_left: forall x y, ge (lub x y) x.
+Lemma ge_lub_right: forall x y, ge (lub x y) y.
Proof.
destruct x; destruct y; simpl; auto.
case (X.eq t0 t1); simpl; auto.
@@ -472,11 +720,6 @@ Proof. unfold ge; tauto. Qed.
Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Proof. unfold ge; intuition congruence. Qed.
-Lemma ge_compat: forall x x' y y', eq x x' -> eq y y' -> ge x y -> ge x' y'.
-Proof.
- unfold eq; intros; congruence.
-Qed.
-
Definition bot := false.
Lemma ge_bot: forall x, ge x bot.
@@ -489,10 +732,10 @@ Proof. unfold ge, top; tauto. Qed.
Definition lub (x y: t) := x || y.
-Lemma lub_commut: forall x y, eq (lub x y) (lub y x).
-Proof. intros; unfold eq, lub. apply orb_comm. Qed.
-
Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof. destruct x; destruct y; compute; tauto. Qed.
+Lemma ge_lub_right: forall x y, ge (lub x y) y.
+Proof. destruct x; destruct y; compute; tauto. Qed.
+
End LBoolean.
diff --git a/lib/Maps.v b/lib/Maps.v
index cdee00c..793c223 100644
--- a/lib/Maps.v
+++ b/lib/Maps.v
@@ -98,6 +98,13 @@ Module Type TREE.
forall (A B: Type) (f: elt -> A -> B) (i: elt) (m: t A),
get i (map f m) = option_map (f i) (get i m).
+ (** Same as [map], but the function does not receive the [elt] argument. *)
+ Variable map1:
+ forall (A B: Type), (A -> B) -> t A -> t B.
+ Hypothesis gmap1:
+ forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
+ get i (map1 f m) = option_map f (get i m).
+
(** Applying a function pairwise to all data of two trees. *)
Variable combine:
forall (A: Type), (option A -> option A -> option A) -> t A -> t A -> t A.
@@ -492,6 +499,19 @@ Module PTree <: TREE.
rewrite append_neutral_l; auto.
Qed.
+ Fixpoint map1 (A B: Type) (f: A -> B) (m: t A) {struct m} : t B :=
+ match m with
+ | Leaf => Leaf
+ | Node l o r => Node (map1 f l) (option_map f o) (map1 f r)
+ end.
+
+ Theorem gmap1:
+ forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
+ get i (map1 f m) = option_map f (get i m).
+ Proof.
+ induction i; intros; destruct m; simpl; auto.
+ Qed.
+
Definition Node' (A: Type) (l: t A) (x: option A) (r: t A): t A :=
match l, x, r with
| Leaf, None, Leaf => Leaf
@@ -1091,13 +1111,13 @@ Module PMap <: MAP.
Qed.
Definition map (A B : Type) (f : A -> B) (m : t A) : t B :=
- (f (fst m), PTree.map (fun _ => f) (snd m)).
+ (f (fst m), PTree.map1 f (snd m)).
Theorem gmap:
forall (A B: Type) (f: A -> B) (i: positive) (m: t A),
get i (map f m) = f(get i m).
Proof.
- intros. unfold map. unfold get. simpl. rewrite PTree.gmap.
+ intros. unfold map. unfold get. simpl. rewrite PTree.gmap1.
unfold option_map. destruct (PTree.get i (snd m)); auto.
Qed.