diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-12-20 13:05:53 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-12-20 13:05:53 +0000 |
commit | 7698300cfe2d3f944ce2e1d4a60a263620487718 (patch) | |
tree | 74292bb5f65bc797906b5c768df2e2e937e869b6 /powerpc | |
parent | c511207bd0f25c4199770233175924a725526bd3 (diff) |
Merge of branch value-analysis.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2381 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'powerpc')
-rw-r--r-- | powerpc/CombineOp.v | 8 | ||||
-rw-r--r-- | powerpc/CombineOpproof.v | 80 | ||||
-rw-r--r-- | powerpc/ConstpropOp.vp | 186 | ||||
-rw-r--r-- | powerpc/ConstpropOpproof.v | 422 | ||||
-rw-r--r-- | powerpc/NeedOp.v | 160 | ||||
-rw-r--r-- | powerpc/Op.v | 10 | ||||
-rw-r--r-- | powerpc/ValueAOp.v | 160 |
7 files changed, 595 insertions, 431 deletions
diff --git a/powerpc/CombineOp.v b/powerpc/CombineOp.v index 5cb7630..6ad6987 100644 --- a/powerpc/CombineOp.v +++ b/powerpc/CombineOp.v @@ -17,13 +17,7 @@ Require Import Coqlib. Require Import AST. Require Import Integers. Require Import Op. -Require SelectOp. - -Definition valnum := positive. - -Inductive rhs : Type := - | Op: operation -> list valnum -> rhs - | Load: memory_chunk -> addressing -> list valnum -> rhs. +Require Import CSEdomain. Section COMBINE. diff --git a/powerpc/CombineOpproof.v b/powerpc/CombineOpproof.v index 0e328df..4d8fed7 100644 --- a/powerpc/CombineOpproof.v +++ b/powerpc/CombineOpproof.v @@ -21,8 +21,8 @@ Require Import Memory. Require Import Op. Require Import Registers. Require Import RTL. +Require Import CSEdomain. Require Import CombineOp. -Require Import CSE. Section COMBINE. @@ -30,9 +30,21 @@ Variable ge: genv. Variable sp: val. Variable m: mem. Variable get: valnum -> option rhs. -Variable valu: valnum -> val. -Hypothesis get_sound: forall v rhs, get v = Some rhs -> equation_holds valu ge sp m v rhs. +Variable valu: valuation. +Hypothesis get_sound: forall v rhs, get v = Some rhs -> rhs_eval_to valu ge sp m rhs (valu v). +Lemma get_op_sound: + forall v op vl, get v = Some (Op op vl) -> eval_operation ge sp op (map valu vl) m = Some (valu v). +Proof. + intros. exploit get_sound; eauto. intros REV; inv REV; auto. +Qed. + +Ltac UseGetSound := + match goal with + | [ H: get _ = Some _ |- _ ] => + let x := fresh "EQ" in (generalize (get_op_sound _ _ _ H); intros x; simpl in x; FuncInv) + end. + Lemma combine_compimm_ne_0_sound: forall x cond args, combine_compimm_ne_0 get x = Some(cond, args) -> @@ -41,12 +53,11 @@ Lemma combine_compimm_ne_0_sound: Proof. intros until args. functional induction (combine_compimm_ne_0 get x); intros EQ; inv EQ. (* of cmp *) - exploit get_sound; eauto. unfold equation_holds. simpl. intro EQ; inv EQ. + UseGetSound. rewrite <- H. destruct (eval_condition cond (map valu args) m); simpl; auto. destruct b; auto. (* of and *) - exploit get_sound; eauto. unfold equation_holds; simpl. - destruct args; try discriminate. destruct args; try discriminate. simpl. - intros EQ; inv EQ. destruct (valu v); simpl; auto. + UseGetSound. rewrite <- H. + destruct v; simpl; auto. Qed. Lemma combine_compimm_eq_0_sound: @@ -57,13 +68,11 @@ Lemma combine_compimm_eq_0_sound: Proof. intros until args. functional induction (combine_compimm_eq_0 get x); intros EQ; inv EQ. (* of cmp *) - exploit get_sound; eauto. unfold equation_holds. simpl. intro EQ; inv EQ. + UseGetSound. rewrite <- H. rewrite eval_negate_condition. destruct (eval_condition c (map valu args) m); simpl; auto. destruct b; auto. (* of and *) - exploit get_sound; eauto. unfold equation_holds; simpl. - destruct args; try discriminate. destruct args; try discriminate. simpl. - intros EQ; inv EQ. destruct (valu v); simpl; auto. + UseGetSound. rewrite <- H. destruct v; auto. Qed. Lemma combine_compimm_eq_1_sound: @@ -74,7 +83,7 @@ Lemma combine_compimm_eq_1_sound: Proof. intros until args. functional induction (combine_compimm_eq_1 get x); intros EQ; inv EQ. (* of cmp *) - exploit get_sound; eauto. unfold equation_holds. simpl. intro EQ; inv EQ. + UseGetSound. rewrite <- H. destruct (eval_condition cond (map valu args) m); simpl; auto. destruct b; auto. Qed. @@ -86,7 +95,7 @@ Lemma combine_compimm_ne_1_sound: Proof. intros until args. functional induction (combine_compimm_ne_1 get x); intros EQ; inv EQ. (* of cmp *) - exploit get_sound; eauto. unfold equation_holds. simpl. intro EQ; inv EQ. + UseGetSound. rewrite <- H. rewrite eval_negate_condition. destruct (eval_condition c (map valu args) m); simpl; auto. destruct b; auto. Qed. @@ -122,8 +131,7 @@ Theorem combine_addr_sound: Proof. intros. functional inversion H; subst. (* indexed - addimm *) - exploit get_sound; eauto. unfold equation_holds; simpl; intro EQ. FuncInv. - rewrite <- H0. rewrite Val.add_assoc. auto. + UseGetSound. simpl; rewrite <- H0. rewrite Val.add_assoc. auto. Qed. Theorem combine_op_sound: @@ -133,45 +141,41 @@ Theorem combine_op_sound: Proof. intros. functional inversion H; subst. (* addimm - addimm *) - exploit get_sound; eauto. unfold equation_holds; simpl; intros. FuncInv. - rewrite <- H1. rewrite Val.add_assoc. auto. + UseGetSound; simpl. rewrite <- H0. rewrite Val.add_assoc. auto. (* addimm - subimm *) Opaque Val.sub. - exploit get_sound; eauto. unfold equation_holds; simpl; intros. FuncInv. - rewrite <- H1. change (Vint (Int.add m0 n)) with (Val.add (Vint m0) (Vint n)). + UseGetSound; simpl. rewrite <- H0. + change (Vint (Int.add m0 n)) with (Val.add (Vint m0) (Vint n)). rewrite Val.sub_add_l. auto. (* subimm - addimm *) - exploit get_sound; eauto. unfold equation_holds; simpl; intros. FuncInv. - rewrite <- H1. + UseGetSound; simpl. rewrite <- H0. Transparent Val.sub. destruct v; simpl; auto. repeat rewrite Int.sub_add_opp. rewrite Int.add_assoc. rewrite Int.neg_add_distr. decEq. decEq. decEq. apply Int.add_commut. (* andimm - andimm *) + UseGetSound; simpl. generalize (Int.eq_spec p m0); rewrite H7; intros. - exploit get_sound; eauto. unfold equation_holds; simpl; intros. FuncInv. - rewrite <- H2. rewrite Val.and_assoc. simpl. fold p. rewrite H0. auto. - exploit get_sound; eauto. unfold equation_holds; simpl; intros. FuncInv. - rewrite <- H1. rewrite Val.and_assoc. auto. + rewrite <- H0. rewrite Val.and_assoc. simpl. fold p. rewrite H1. auto. + UseGetSound; simpl. + rewrite <- H0. rewrite Val.and_assoc. auto. (* andimm - rolm *) + UseGetSound; simpl. generalize (Int.eq_spec p m0); rewrite H7; intros. - exploit get_sound; eauto. unfold equation_holds; simpl; intros. FuncInv. - rewrite <- H2. destruct v; simpl; auto. unfold Int.rolm. - rewrite Int.and_assoc. fold p; rewrite H0. auto. - exploit get_sound; eauto. unfold equation_holds; simpl; intros. FuncInv. - rewrite <- H1. destruct v; simpl; auto. unfold Int.rolm. rewrite Int.and_assoc. auto. + rewrite <- H0. destruct v; simpl; auto. unfold Int.rolm. + rewrite Int.and_assoc. fold p. rewrite H1. auto. + UseGetSound; simpl. + rewrite <- H0. destruct v; simpl; auto. unfold Int.rolm. + rewrite Int.and_assoc. auto. (* orimm *) - exploit get_sound; eauto. unfold equation_holds; simpl; intros. FuncInv. - rewrite <- H1. rewrite Val.or_assoc. auto. + UseGetSound; simpl. rewrite <- H0. rewrite Val.or_assoc. auto. (* xorimm *) - exploit get_sound; eauto. unfold equation_holds; simpl; intros. FuncInv. - rewrite <- H1. rewrite Val.xor_assoc. auto. + UseGetSound; simpl. rewrite <- H0. rewrite Val.xor_assoc. auto. (* rolm - andimm *) - exploit get_sound; eauto. unfold equation_holds; simpl; intros. FuncInv. - rewrite <- H1. rewrite <- Val.rolm_zero. rewrite Val.rolm_rolm. + UseGetSound; simpl. rewrite <- H0. + rewrite <- Val.rolm_zero. rewrite Val.rolm_rolm. rewrite (Int.add_commut Int.zero). rewrite Int.add_zero. auto. (* rolm - rolm *) - exploit get_sound; eauto. unfold equation_holds; simpl; intros. FuncInv. - rewrite <- H1. rewrite Val.rolm_rolm. auto. + UseGetSound; simpl. rewrite <- H0. rewrite Val.rolm_rolm. auto. (* cmp *) simpl. decEq; decEq. eapply combine_cond_sound; eauto. Qed. diff --git a/powerpc/ConstpropOp.vp b/powerpc/ConstpropOp.vp index 9bee4db..9dbaa78 100644 --- a/powerpc/ConstpropOp.vp +++ b/powerpc/ConstpropOp.vp @@ -10,8 +10,8 @@ (* *) (* *********************************************************************) -(** Static analysis and strength reduction for operators - and conditions. This is the machine-dependent part of [Constprop]. *) +(** Strength reduction for operators and conditions. + This is the machine-dependent part of [Constprop]. *) Require Import Coqlib. Require Import AST. @@ -19,138 +19,7 @@ Require Import Integers. Require Import Floats. Require Import Op. Require Import Registers. - -(** * Static analysis *) - -(** To each pseudo-register at each program point, the static analysis - associates a compile-time approximation taken from the following set. *) - -Inductive approx : Type := - | Novalue: approx (** No value possible, code is unreachable. *) - | Unknown: approx (** All values are possible, - no compile-time information is available. *) - | I: int -> approx (** A known integer value. *) - | F: float -> approx (** A known floating-point value. *) - | L: int64 -> approx (** A know 64-bit integer value. *) - | G: ident -> int -> approx - (** The value is the address of the given global - symbol plus the given integer offset. *) - | S: int -> approx. (** The value is the stack pointer plus the offset. *) - -(** We now define the abstract interpretations of conditions and operators - over this set of approximations. For instance, the abstract interpretation - of the operator [Oaddf] applied to two expressions [a] and [b] is - [F(Float.add f g)] if [a] and [b] have static approximations [Vfloat f] - and [Vfloat g] respectively, and [Unknown] otherwise. - - The static approximations are defined by large pattern-matchings over - the approximations of the results. We write these matchings in the - indirect style described in file [SelectOp] to avoid excessive - duplication of cases in proofs. *) - -Nondetfunction eval_static_condition (cond: condition) (vl: list approx) := - match cond, vl with - | Ccomp c, I n1 :: I n2 :: nil => Some(Int.cmp c n1 n2) - | Ccompu c, I n1 :: I n2 :: nil => Some(Int.cmpu c n1 n2) - | Ccompimm c n, I n1 :: nil => Some(Int.cmp c n1 n) - | Ccompuimm c n, I n1 :: nil => Some(Int.cmpu c n1 n) - | Ccompf c, F n1 :: F n2 :: nil => Some(Float.cmp c n1 n2) - | Cnotcompf c, F n1 :: F n2 :: nil => Some(negb(Float.cmp c n1 n2)) - | Cmaskzero n, I n1 :: nil => Some(Int.eq (Int.and n1 n) Int.zero) - | Cmasknotzero n, I n1::nil => Some(negb(Int.eq (Int.and n1 n) Int.zero)) - | _, _ => None - end. - -Definition eval_static_condition_val (cond: condition) (vl: list approx) := - match eval_static_condition cond vl with - | None => Unknown - | Some b => I(if b then Int.one else Int.zero) - end. - -Definition eval_static_intoffloat (f: float) := - match Float.intoffloat f with Some x => I x | None => Unknown end. - -Parameter propagate_float_constants: unit -> bool. - -Nondetfunction eval_static_operation (op: operation) (vl: list approx) := - match op, vl with - | Omove, v1::nil => v1 - | Ointconst n, nil => I n - | Ofloatconst n, nil => if propagate_float_constants tt then F n else Unknown - | Oaddrsymbol s n, nil => G s n - | Oaddrstack n, nil => S n - | Ocast8signed, I n1 :: nil => I(Int.sign_ext 8 n1) - | Ocast16signed, I n1 :: nil => I(Int.sign_ext 16 n1) - | Oadd, I n1 :: I n2 :: nil => I(Int.add n1 n2) - | Oadd, G s1 n1 :: I n2 :: nil => G s1 (Int.add n1 n2) - | Oadd, I n1 :: G s2 n2 :: nil => G s2 (Int.add n1 n2) - | Oadd, S n1 :: I n2 :: nil => S (Int.add n1 n2) - | Oadd, I n1 :: S n2 :: nil => S (Int.add n1 n2) - | Oaddimm n, I n1 :: nil => I (Int.add n1 n) - | Oaddimm n, G s1 n1 :: nil => G s1 (Int.add n1 n) - | Oaddimm n, S n1 :: nil => S (Int.add n1 n) - | Oaddsymbol s ofs, I n :: nil => G s (Int.add ofs n) - | Osub, I n1 :: I n2 :: nil => I(Int.sub n1 n2) - | Osub, G s1 n1 :: I n2 :: nil => G s1 (Int.sub n1 n2) - | Osub, S n1 :: I n2 :: nil => S (Int.sub n1 n2) - | Osubimm n, I n1 :: nil => I (Int.sub n n1) - | Omul, I n1 :: I n2 :: nil => I(Int.mul n1 n2) - | Omulimm n, I n1 :: nil => I(Int.mul n1 n) - | Omulhs, I n1 :: I n2 :: nil => I(Int.mulhs n1 n2) - | Omulhu, I n1 :: I n2 :: nil => I(Int.mulhu n1 n2) - | Odiv, I n1 :: I n2 :: nil => - if Int.eq n2 Int.zero then Unknown else - if Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone then Unknown - else I(Int.divs n1 n2) - | Odivu, I n1 :: I n2 :: nil => - if Int.eq n2 Int.zero then Unknown else I(Int.divu n1 n2) - | Oand, I n1 :: I n2 :: nil => I(Int.and n1 n2) - | Oandimm n, I n1 :: nil => I(Int.and n1 n) - | Oor, I n1 :: I n2 :: nil => I(Int.or n1 n2) - | Oorimm n, I n1 :: nil => I(Int.or n1 n) - | Oxor, I n1 :: I n2 :: nil => I(Int.xor n1 n2) - | Oxorimm n, I n1 :: nil => I(Int.xor n1 n) - | Onand, I n1 :: I n2 :: nil => I(Int.xor (Int.and n1 n2) Int.mone) - | Onor, I n1 :: I n2 :: nil => I(Int.xor (Int.or n1 n2) Int.mone) - | Onxor, I n1 :: I n2 :: nil => I(Int.xor (Int.xor n1 n2) Int.mone) - | Oshl, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shl n1 n2) else Unknown - | Oshr, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shr n1 n2) else Unknown - | Oshrimm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.shr n1 n) else Unknown - | Oshrximm n, I n1 :: nil => if Int.ltu n (Int.repr 31) then I(Int.shrx n1 n) else Unknown - | Oshru, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shru n1 n2) else Unknown - | Orolm amount mask, I n1 :: nil => I(Int.rolm n1 amount mask) - | Oroli amount mask, I n1 :: I n2 :: nil => I(Int.or (Int.and n1 (Int.not mask)) (Int.rolm n2 amount mask)) - | Onegf, F n1 :: nil => F(Float.neg n1) - | Oabsf, F n1 :: nil => F(Float.abs n1) - | Oaddf, F n1 :: F n2 :: nil => F(Float.add n1 n2) - | Osubf, F n1 :: F n2 :: nil => F(Float.sub n1 n2) - | Omulf, F n1 :: F n2 :: nil => F(Float.mul n1 n2) - | Odivf, F n1 :: F n2 :: nil => F(Float.div n1 n2) - | Osingleoffloat, F n1 :: nil => F(Float.singleoffloat n1) - | Ointoffloat, F n1 :: nil => eval_static_intoffloat n1 - | Ofloatofwords, I n1 :: I n2 :: nil => if propagate_float_constants tt then F(Float.from_words n1 n2) else Unknown - | Omakelong, I n1 :: I n2 :: nil => L(Int64.ofwords n1 n2) - | Olowlong, L n :: nil => I(Int64.loword n) - | Ohighlong, L n :: nil => I(Int64.hiword n) - | Ocmp c, vl => eval_static_condition_val c vl - | _, _ => Unknown - end. - -Nondetfunction eval_static_addressing (addr: addressing) (vl: list approx) := - match addr, vl with - | Aindexed n, I n1::nil => I (Int.add n1 n) - | Aindexed n, G id ofs::nil => G id (Int.add ofs n) - | Aindexed n, S ofs::nil => S (Int.add ofs n) - | Aindexed2, I n1::I n2::nil => I (Int.add n1 n2) - | Aindexed2, G id ofs::I n2::nil => G id (Int.add ofs n2) - | Aindexed2, I n1::G id ofs::nil => G id (Int.add ofs n1) - | Aindexed2, S ofs::I n2::nil => S (Int.add ofs n2) - | Aindexed2, I n1::S ofs::nil => S (Int.add ofs n1) - | Aglobal id ofs, nil => G id ofs - | Abased id ofs, I n1::nil => G id (Int.add ofs n1) - | Ainstack ofs, nil => S ofs - | _, _ => Unknown - end. +Require Import ValueDomain. (** * Operator strength reduction *) @@ -162,7 +31,7 @@ Nondetfunction eval_static_addressing (addr: addressing) (vl: list approx) := Section STRENGTH_REDUCTION. Nondetfunction cond_strength_reduction - (cond: condition) (args: list reg) (vl: list approx) := + (cond: condition) (args: list reg) (vl: list aval) := match cond, args, vl with | Ccomp c, r1 :: r2 :: nil, I n1 :: v2 :: nil => (Ccompimm (swap_comparison c) n1, r2 :: nil) @@ -230,10 +99,12 @@ Definition make_divuimm (n: int) (r1 r2: reg) := | None => (Odivu, r1 :: r2 :: nil) end. -Definition make_andimm (n: int) (r: reg) := - if Int.eq n Int.zero - then (Ointconst Int.zero, nil) +Definition make_andimm (n: int) (r: reg) (a: aval) := + if Int.eq n Int.zero then (Ointconst Int.zero, nil) else if Int.eq n Int.mone then (Omove, r :: nil) + else if match a with Uns m => Int.eq (Int.zero_ext m (Int.not n)) Int.zero + | _ => false end + then (Omove, r :: nil) else (Oandimm n, r :: nil). Definition make_orimm (n: int) (r: reg) := @@ -251,19 +122,33 @@ Definition make_mulfimm (n: float) (r r1 r2: reg) := then (Oaddf, r :: r :: nil) else (Omulf, r1 :: r2 :: nil). +Definition make_cast8signed (r: reg) (a: aval) := + if vincl a (Sgn 8) then (Omove, r :: nil) else (Ocast8signed, r :: nil). +Definition make_cast16signed (r: reg) (a: aval) := + if vincl a (Sgn 16) then (Omove, r :: nil) else (Ocast16signed, r :: nil). +Definition make_singleoffloat (r: reg) (a: aval) := + if vincl a Fsingle && generate_float_constants tt + then (Omove, r :: nil) + else (Osingleoffloat, r :: nil). + Nondetfunction op_strength_reduction - (op: operation) (args: list reg) (vl: list approx) := + (op: operation) (args: list reg) (vl: list aval) := match op, args, vl with + | Ocast8signed, r1 :: nil, v1 :: nil => make_cast8signed r1 v1 + | Ocast16signed, r1 :: nil, v1 :: nil => make_cast16signed r1 v1 | Oadd, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_addimm n1 r2 | Oadd, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_addimm n2 r1 + | Oadd, r1 :: r2 :: nil, Ptr(Gl s n1) :: v2 :: nil => (Oaddsymbol s n1, r2 :: nil) + | Oadd, r1 :: r2 :: nil, v1 :: Ptr(Gl s n1) :: nil => (Oaddsymbol s n1, r1 :: nil) | Osub, r1 :: r2 :: nil, I n1 :: v2 :: nil => (Osubimm n1, r2 :: nil) | Osub, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_addimm (Int.neg n2) r1 | Omul, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_mulimm n1 r2 r1 | Omul, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_mulimm n2 r1 r2 | Odiv, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_divimm n2 r1 r2 | Odivu, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_divuimm n2 r1 r2 - | Oand, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_andimm n1 r2 - | Oand, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_andimm n2 r1 + | Oand, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_andimm n1 r2 v2 + | Oand, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_andimm n2 r1 v1 + | Oandimm n, r1 :: nil, v1 :: nil => make_andimm n r1 v1 | Oor, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_orimm n1 r2 | Oor, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_orimm n2 r1 | Oxor, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_xorimm n1 r2 @@ -271,6 +156,7 @@ Nondetfunction op_strength_reduction | Oshl, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shlimm n2 r1 r2 | Oshr, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shrimm n2 r1 r2 | Oshru, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shruimm n2 r1 r2 + | Osingleoffloat, r1 :: nil, v1 :: nil => make_singleoffloat r1 v1 | Ocmp c, args, vl => let (c', args') := cond_strength_reduction c args vl in (Ocmp c', args') | Omulf, r1 :: r2 :: nil, v1 :: F n2 :: nil => make_mulfimm n2 r1 r1 r2 @@ -279,19 +165,19 @@ Nondetfunction op_strength_reduction end. Nondetfunction addr_strength_reduction - (addr: addressing) (args: list reg) (vl: list approx) := + (addr: addressing) (args: list reg) (vl: list aval) := match addr, args, vl with - | Aindexed2, r1 :: r2 :: nil, G symb n1 :: I n2 :: nil => + | Aindexed2, r1 :: r2 :: nil, Ptr(Gl symb n1) :: I n2 :: nil => (Aglobal symb (Int.add n1 n2), nil) - | Aindexed2, r1 :: r2 :: nil, I n1 :: G symb n2 :: nil => + | Aindexed2, r1 :: r2 :: nil, I n1 :: Ptr(Gl symb n2) :: nil => (Aglobal symb (Int.add n1 n2), nil) - | Aindexed2, r1 :: r2 :: nil, S n1 :: I n2 :: nil => + | Aindexed2, r1 :: r2 :: nil, Ptr(Stk n1) :: I n2 :: nil => (Ainstack (Int.add n1 n2), nil) - | Aindexed2, r1 :: r2 :: nil, I n1 :: S n2 :: nil => + | Aindexed2, r1 :: r2 :: nil, I n1 :: Ptr(Stk n2) :: nil => (Ainstack (Int.add n1 n2), nil) - | Aindexed2, r1 :: r2 :: nil, G symb n1 :: v2 :: nil => + | Aindexed2, r1 :: r2 :: nil, Ptr(Gl symb n1) :: v2 :: nil => (Abased symb n1, r2 :: nil) - | Aindexed2, r1 :: r2 :: nil, v1 :: G symb n2 :: nil => + | Aindexed2, r1 :: r2 :: nil, v1 :: Ptr(Gl symb n2) :: nil => (Abased symb n2, r1 :: nil) | Aindexed2, r1 :: r2 :: nil, I n1 :: v2 :: nil => (Aindexed n1, r2 :: nil) @@ -299,9 +185,9 @@ Nondetfunction addr_strength_reduction (Aindexed n2, r1 :: nil) | Abased symb ofs, r1 :: nil, I n1 :: nil => (Aglobal symb (Int.add ofs n1), nil) - | Aindexed n, r1 :: nil, G symb n1 :: nil => + | Aindexed n, r1 :: nil, Ptr(Gl symb n1) :: nil => (Aglobal symb (Int.add n1 n), nil) - | Aindexed n, r1 :: nil, S n1 :: nil => + | Aindexed n, r1 :: nil, Ptr(Stk n1) :: nil => (Ainstack (Int.add n1 n), nil) | _, _, _ => (addr, args) diff --git a/powerpc/ConstpropOpproof.v b/powerpc/ConstpropOpproof.v index 2aba9c2..e7dd3a4 100644 --- a/powerpc/ConstpropOpproof.v +++ b/powerpc/ConstpropOpproof.v @@ -10,7 +10,7 @@ (* *) (* *********************************************************************) -(** Correctness proof for constant propagation (processor-dependent part). *) +(** Correctness proof for operator strength reduction. *) Require Import Coqlib. Require Import AST. @@ -23,168 +23,8 @@ Require Import Events. Require Import Op. Require Import Registers. Require Import RTL. +Require Import ValueDomain. Require Import ConstpropOp. -Require Import Constprop. - -(** * Correctness of the static analysis *) - -Section ANALYSIS. - -Variable ge: genv. -Variable sp: val. - -(** We first show that the dataflow analysis is correct with respect - to the dynamic semantics: the approximations (sets of values) - of a register at a program point predicted by the static analysis - are a superset of the values actually encountered during concrete - executions. We formalize this correspondence between run-time values and - compile-time approximations by the following predicate. *) - -Definition val_match_approx (a: approx) (v: val) : Prop := - match a with - | Unknown => True - | I p => v = Vint p - | F p => v = Vfloat p - | L p => v = Vlong p - | G symb ofs => v = symbol_address ge symb ofs - | S ofs => v = Val.add sp (Vint ofs) - | _ => False - end. - -Inductive val_list_match_approx: list approx -> list val -> Prop := - | vlma_nil: - val_list_match_approx nil nil - | vlma_cons: - forall a al v vl, - val_match_approx a v -> - val_list_match_approx al vl -> - val_list_match_approx (a :: al) (v :: vl). - -Ltac SimplVMA := - match goal with - | H: (val_match_approx (I _) ?v) |- _ => - simpl in H; (try subst v); SimplVMA - | H: (val_match_approx (F _) ?v) |- _ => - simpl in H; (try subst v); SimplVMA - | H: (val_match_approx (L _) ?v) |- _ => - simpl in H; (try subst v); SimplVMA - | H: (val_match_approx (G _ _) ?v) |- _ => - simpl in H; (try subst v); SimplVMA - | H: (val_match_approx (S _) ?v) |- _ => - simpl in H; (try subst v); SimplVMA - | _ => - idtac - end. - -Ltac InvVLMA := - match goal with - | H: (val_list_match_approx nil ?vl) |- _ => - inv H - | H: (val_list_match_approx (?a :: ?al) ?vl) |- _ => - inv H; SimplVMA; InvVLMA - | _ => - idtac - end. - -(** We then show that [eval_static_operation] is a correct abstract - interpretations of [eval_operation]: if the concrete arguments match - the given approximations, the concrete results match the - approximations returned by [eval_static_operation]. *) - -Lemma eval_static_condition_correct: - forall cond al vl m b, - val_list_match_approx al vl -> - eval_static_condition cond al = Some b -> - eval_condition cond vl m = Some b. -Proof. - intros until b. - unfold eval_static_condition. - case (eval_static_condition_match cond al); intros; - InvVLMA; simpl; congruence. -Qed. - -Remark shift_symbol_address: - forall symb ofs n, - symbol_address ge symb (Int.add ofs n) = Val.add (symbol_address ge symb ofs) (Vint n). -Proof. - unfold symbol_address; intros. destruct (Genv.find_symbol ge symb); auto. -Qed. - -Lemma eval_static_operation_correct: - forall op al vl m v, - val_list_match_approx al vl -> - eval_operation ge sp op vl m = Some v -> - val_match_approx (eval_static_operation op al) v. -Proof. - intros until v. - unfold eval_static_operation. - case (eval_static_operation_match op al); intros; - InvVLMA; simpl in *; FuncInv; try subst v; auto. - - destruct (propagate_float_constants tt); simpl; auto. - - rewrite shift_symbol_address; auto. - - rewrite Int.add_commut. rewrite shift_symbol_address. rewrite Val.add_commut. auto. - - rewrite Int.add_commut; auto. - - rewrite Val.add_assoc. rewrite Int.add_commut. auto. - - change (Val.add (Vint n1) (Val.add sp (Vint n2)) = Val.add sp (Vint (Int.add n1 n2))). - rewrite Val.add_permut. auto. - - rewrite shift_symbol_address; auto. - - rewrite Val.add_assoc; auto. - - rewrite shift_symbol_address; auto. - - unfold symbol_address. destruct (Genv.find_symbol ge s1); auto. - - rewrite Val.sub_add_opp. rewrite Val.add_assoc. simpl. rewrite Int.sub_add_opp. auto. - - destruct (Int.eq n2 Int.zero). inv H0. - destruct (Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone); inv H0; simpl; auto. - destruct (Int.eq n2 Int.zero); inv H0; simpl; auto. - - destruct (Int.ltu n2 Int.iwordsize); simpl; auto. - destruct (Int.ltu n2 Int.iwordsize); simpl; auto. - destruct (Int.ltu n Int.iwordsize); simpl; auto. - destruct (Int.ltu n (Int.repr 31)); inv H0. simpl; auto. - destruct (Int.ltu n2 Int.iwordsize); simpl; auto. - - unfold eval_static_intoffloat. destruct (Float.intoffloat n1); simpl in H0; inv H0. - simpl; auto. - - destruct (propagate_float_constants tt); simpl; auto. - - unfold eval_static_condition_val, Val.of_optbool. - destruct (eval_static_condition c vl0) eqn:?. - rewrite (eval_static_condition_correct _ _ _ m _ H Heqo). - destruct b; simpl; auto. - simpl; auto. -Qed. - -Lemma eval_static_addressing_correct: - forall addr al vl v, - val_list_match_approx al vl -> - eval_addressing ge sp addr vl = Some v -> - val_match_approx (eval_static_addressing addr al) v. -Proof. - intros until v. unfold eval_static_addressing. - case (eval_static_addressing_match addr al); intros; - InvVLMA; simpl in *; FuncInv; try subst v; auto. - rewrite shift_symbol_address; auto. - rewrite Val.add_assoc. auto. - repeat rewrite shift_symbol_address. auto. - fold (Val.add (Vint n1) (symbol_address ge id ofs)). - repeat rewrite shift_symbol_address. apply Val.add_commut. - repeat rewrite Val.add_assoc. auto. - fold (Val.add (Vint n1) (Val.add sp (Vint ofs))). - rewrite Val.add_permut. decEq. rewrite Val.add_commut. auto. - rewrite shift_symbol_address. auto. -Qed. (** * Correctness of strength reduction *) @@ -196,51 +36,91 @@ Qed. Section STRENGTH_REDUCTION. -Variable app: D.t. +Variable bc: block_classification. +Variable ge: genv. +Hypothesis GENV: genv_match bc ge. +Variable sp: block. +Hypothesis STACK: bc sp = BCstack. +Variable ae: AE.t. Variable rs: regset. Variable m: mem. -Hypothesis MATCH: forall r, val_match_approx (approx_reg app r) rs#r. +Hypothesis MATCH: ematch bc rs ae. + +Lemma match_G: + forall r id ofs, + AE.get r ae = Ptr(Gl id ofs) -> Val.lessdef rs#r (symbol_address ge id ofs). +Proof. + intros. apply vmatch_ptr_gl with bc; auto. rewrite <- H. apply MATCH. +Qed. + +Lemma match_S: + forall r ofs, + AE.get r ae = Ptr(Stk ofs) -> Val.lessdef rs#r (Vptr sp ofs). +Proof. + intros. apply vmatch_ptr_stk with bc; auto. rewrite <- H. apply MATCH. +Qed. Ltac InvApproxRegs := match goal with | [ H: _ :: _ = _ :: _ |- _ ] => injection H; clear H; intros; InvApproxRegs - | [ H: ?v = approx_reg app ?r |- _ ] => + | [ H: ?v = AE.get ?r ae |- _ ] => generalize (MATCH r); rewrite <- H; clear H; intro; InvApproxRegs | _ => idtac end. +Ltac SimplVM := + match goal with + | [ H: vmatch _ ?v (I ?n) |- _ ] => + let E := fresh in + assert (E: v = Vint n) by (inversion H; auto); + rewrite E in *; clear H; SimplVM + | [ H: vmatch _ ?v (F ?n) |- _ ] => + let E := fresh in + assert (E: v = Vfloat n) by (inversion H; auto); + rewrite E in *; clear H; SimplVM + | [ H: vmatch _ ?v (Ptr(Gl ?id ?ofs)) |- _ ] => + let E := fresh in + assert (E: Val.lessdef v (Op.symbol_address ge id ofs)) by (eapply vmatch_ptr_gl; eauto); + clear H; SimplVM + | [ H: vmatch _ ?v (Ptr(Stk ?ofs)) |- _ ] => + let E := fresh in + assert (E: Val.lessdef v (Vptr sp ofs)) by (eapply vmatch_ptr_stk; eauto); + clear H; SimplVM + | _ => idtac + end. + Lemma cond_strength_reduction_correct: forall cond args vl, - vl = approx_regs app args -> + vl = map (fun r => AE.get r ae) args -> let (cond', args') := cond_strength_reduction cond args vl in eval_condition cond' rs##args' m = eval_condition cond rs##args m. Proof. intros until vl. unfold cond_strength_reduction. - case (cond_strength_reduction_match cond args vl); simpl; intros; InvApproxRegs; SimplVMA. - rewrite H0. apply Val.swap_cmp_bool. - rewrite H. auto. - rewrite H0. apply Val.swap_cmpu_bool. - rewrite H. auto. - auto. + case (cond_strength_reduction_match cond args vl); simpl; intros; InvApproxRegs; SimplVM. +- apply Val.swap_cmp_bool. +- auto. +- apply Val.swap_cmpu_bool. +- auto. +- auto. Qed. Lemma make_addimm_correct: forall n r, let (op, args) := make_addimm n r in - exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.add rs#r (Vint n)) v. + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.add rs#r (Vint n)) v. Proof. intros. unfold make_addimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. exists (rs#r); split; auto. destruct (rs#r); simpl; auto; rewrite Int.add_zero; auto. exists (Val.add rs#r (Vint n)); auto. Qed. - + Lemma make_shlimm_correct: forall n r1 r2, rs#r2 = Vint n -> let (op, args) := make_shlimm n r1 r2 in - exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.shl rs#r1 (Vint n)) v. + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.shl rs#r1 (Vint n)) v. Proof. intros; unfold make_shlimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. @@ -254,7 +134,7 @@ Lemma make_shrimm_correct: forall n r1 r2, rs#r2 = Vint n -> let (op, args) := make_shrimm n r1 r2 in - exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.shr rs#r1 (Vint n)) v. + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.shr rs#r1 (Vint n)) v. Proof. intros; unfold make_shrimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. @@ -268,7 +148,7 @@ Lemma make_shruimm_correct: forall n r1 r2, rs#r2 = Vint n -> let (op, args) := make_shruimm n r1 r2 in - exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.shru rs#r1 (Vint n)) v. + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.shru rs#r1 (Vint n)) v. Proof. intros; unfold make_shruimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. @@ -282,7 +162,7 @@ Lemma make_mulimm_correct: forall n r1 r2, rs#r2 = Vint n -> let (op, args) := make_mulimm n r1 r2 in - exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.mul rs#r1 (Vint n)) v. + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.mul rs#r1 (Vint n)) v. Proof. intros; unfold make_mulimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. @@ -301,7 +181,7 @@ Lemma make_divimm_correct: Val.divs rs#r1 rs#r2 = Some v -> rs#r2 = Vint n -> let (op, args) := make_divimm n r1 r2 in - exists w, eval_operation ge sp op rs##args m = Some w /\ Val.lessdef v w. + exists w, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some w /\ Val.lessdef v w. Proof. intros; unfold make_divimm. destruct (Int.is_power2 n) eqn:?. @@ -316,7 +196,7 @@ Lemma make_divuimm_correct: Val.divu rs#r1 rs#r2 = Some v -> rs#r2 = Vint n -> let (op, args) := make_divuimm n r1 r2 in - exists w, eval_operation ge sp op rs##args m = Some w /\ Val.lessdef v w. + exists w, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some w /\ Val.lessdef v w. Proof. intros; unfold make_divuimm. destruct (Int.is_power2 n) eqn:?. @@ -330,22 +210,35 @@ Proof. Qed. Lemma make_andimm_correct: - forall n r, - let (op, args) := make_andimm n r in - exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.and rs#r (Vint n)) v. + forall n r x, + vmatch bc rs#r x -> + let (op, args) := make_andimm n r x in + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.and rs#r (Vint n)) v. Proof. intros; unfold make_andimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst n. exists (Vint Int.zero); split; auto. destruct (rs#r); simpl; auto. rewrite Int.and_zero; auto. predSpec Int.eq Int.eq_spec n Int.mone; intros. subst n. exists (rs#r); split; auto. destruct (rs#r); simpl; auto. rewrite Int.and_mone; auto. + destruct (match x with Uns k => Int.eq (Int.zero_ext k (Int.not n)) Int.zero + | _ => false end) eqn:UNS. + destruct x; try congruence. + exists (rs#r); split; auto. + inv H; auto. simpl. replace (Int.and i n) with i; auto. + generalize (Int.eq_spec (Int.zero_ext n0 (Int.not n)) Int.zero); rewrite UNS; intro EQ. + Int.bit_solve. destruct (zlt i0 n0). + replace (Int.testbit n i0) with (negb (Int.testbit Int.zero i0)). + rewrite Int.bits_zero. simpl. rewrite andb_true_r. auto. + rewrite <- EQ. rewrite Int.bits_zero_ext by omega. rewrite zlt_true by auto. + rewrite Int.bits_not by auto. apply negb_involutive. + rewrite H5 by auto. auto. econstructor; split; eauto. auto. Qed. Lemma make_orimm_correct: forall n r, let (op, args) := make_orimm n r in - exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.or rs#r (Vint n)) v. + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.or rs#r (Vint n)) v. Proof. intros; unfold make_orimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. @@ -358,7 +251,7 @@ Qed. Lemma make_xorimm_correct: forall n r, let (op, args) := make_xorimm n r in - exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.xor rs#r (Vint n)) v. + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.xor rs#r (Vint n)) v. Proof. intros; unfold make_xorimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. @@ -370,7 +263,7 @@ Lemma make_mulfimm_correct: forall n r1 r2, rs#r2 = Vfloat n -> let (op, args) := make_mulfimm n r1 r1 r2 in - exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.mulf rs#r1 rs#r2) v. + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.mulf rs#r1 rs#r2) v. Proof. intros; unfold make_mulfimm. destruct (Float.eq_dec n (Float.floatofint (Int.repr 2))); intros. @@ -383,7 +276,7 @@ Lemma make_mulfimm_correct_2: forall n r1 r2, rs#r1 = Vfloat n -> let (op, args) := make_mulfimm n r2 r1 r2 in - exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.mulf rs#r1 rs#r2) v. + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.mulf rs#r1 rs#r2) v. Proof. intros; unfold make_mulfimm. destruct (Float.eq_dec n (Float.floatofint (Int.repr 2))); intros. @@ -393,81 +286,146 @@ Proof. simpl. econstructor; split; eauto. Qed. +Lemma make_cast8signed_correct: + forall r x, + vmatch bc rs#r x -> + let (op, args) := make_cast8signed r x in + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.sign_ext 8 rs#r) v. +Proof. + intros; unfold make_cast8signed. destruct (vincl x (Sgn 8)) eqn:INCL. + exists rs#r; split; auto. + assert (V: vmatch bc rs#r (Sgn 8)). + { eapply vmatch_ge; eauto. apply vincl_ge; auto. } + inv V; simpl; auto. rewrite is_sgn_sign_ext in H3 by auto. rewrite H3; auto. + econstructor; split; simpl; eauto. +Qed. + +Lemma make_cast16signed_correct: + forall r x, + vmatch bc rs#r x -> + let (op, args) := make_cast16signed r x in + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.sign_ext 16 rs#r) v. +Proof. + intros; unfold make_cast16signed. destruct (vincl x (Sgn 16)) eqn:INCL. + exists rs#r; split; auto. + assert (V: vmatch bc rs#r (Sgn 16)). + { eapply vmatch_ge; eauto. apply vincl_ge; auto. } + inv V; simpl; auto. rewrite is_sgn_sign_ext in H3 by auto. rewrite H3; auto. + econstructor; split; simpl; eauto. +Qed. + +Lemma make_singleoffloat_correct: + forall r x, + vmatch bc rs#r x -> + let (op, args) := make_singleoffloat r x in + exists v, eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v /\ Val.lessdef (Val.singleoffloat rs#r) v. +Proof. + intros; unfold make_singleoffloat. + destruct (vincl x Fsingle && generate_float_constants tt) eqn:INCL. + InvBooleans. exists rs#r; split; auto. + assert (V: vmatch bc rs#r Fsingle). + { eapply vmatch_ge; eauto. apply vincl_ge; auto. } + inv V; simpl; auto. rewrite Float.singleoffloat_of_single by auto. auto. + econstructor; split; simpl; eauto. +Qed. + Lemma op_strength_reduction_correct: forall op args vl v, - vl = approx_regs app args -> - eval_operation ge sp op rs##args m = Some v -> + vl = map (fun r => AE.get r ae) args -> + eval_operation ge (Vptr sp Int.zero) op rs##args m = Some v -> let (op', args') := op_strength_reduction op args vl in - exists w, eval_operation ge sp op' rs##args' m = Some w /\ Val.lessdef v w. + exists w, eval_operation ge (Vptr sp Int.zero) op' rs##args' m = Some w /\ Val.lessdef v w. Proof. intros until v; unfold op_strength_reduction; case (op_strength_reduction_match op args vl); simpl; intros. +(* cast8signed *) + InvApproxRegs; SimplVM; inv H0. apply make_cast8signed_correct; auto. +(* cast8signed *) + InvApproxRegs; SimplVM; inv H0. apply make_cast16signed_correct; auto. (* add *) - InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.add_commut. apply make_addimm_correct. - InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_addimm_correct. + InvApproxRegs; SimplVM; inv H0. fold (Val.add (Vint n1) rs#r2). rewrite Val.add_commut. apply make_addimm_correct. + InvApproxRegs; SimplVM; inv H0. apply make_addimm_correct. + InvApproxRegs; SimplVM; inv H0. econstructor; split; eauto. apply Val.add_lessdef; auto. + InvApproxRegs; SimplVM; inv H0. econstructor; split; eauto. rewrite Val.add_commut. apply Val.add_lessdef; auto. (* sub *) - InvApproxRegs; SimplVMA. inv H0. rewrite H1. econstructor; split; eauto. - InvApproxRegs; SimplVMA. inv H0. rewrite H. rewrite Val.sub_add_opp. apply make_addimm_correct. + InvApproxRegs; SimplVM; inv H0. fold (Val.sub (Vint n1) rs#r2). econstructor; split; eauto. + InvApproxRegs; SimplVM; inv H0. rewrite Val.sub_add_opp. apply make_addimm_correct. (* mul *) - InvApproxRegs; SimplVMA. inv H0. rewrite H1. rewrite Val.mul_commut. apply make_mulimm_correct; auto. - InvApproxRegs; SimplVMA. inv H0. rewrite H. apply make_mulimm_correct; auto. + InvApproxRegs; SimplVM; inv H0. fold (Val.mul (Vint n1) rs#r2). rewrite Val.mul_commut. apply make_mulimm_correct; auto. + InvApproxRegs; SimplVM; inv H0. apply make_mulimm_correct; auto. (* divs *) - assert (rs#r2 = Vint n2). clear H0. InvApproxRegs; SimplVMA; auto. + assert (rs#r2 = Vint n2). clear H0. InvApproxRegs; SimplVM; auto. apply make_divimm_correct; auto. (* divu *) - assert (rs#r2 = Vint n2). clear H0. InvApproxRegs; SimplVMA; auto. + assert (rs#r2 = Vint n2). clear H0. InvApproxRegs; SimplVM; auto. apply make_divuimm_correct; auto. (* and *) - InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.and_commut. apply make_andimm_correct. - InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_andimm_correct. + InvApproxRegs; SimplVM; inv H0. fold (Val.and (Vint n1) rs#r2). rewrite Val.and_commut. apply make_andimm_correct; auto. + InvApproxRegs; SimplVM; inv H0. apply make_andimm_correct. auto. + inv H; inv H0. apply make_andimm_correct. auto. (* or *) - InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.or_commut. apply make_orimm_correct. - InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_orimm_correct. + InvApproxRegs; SimplVM; inv H0. fold (Val.or (Vint n1) rs#r2). rewrite Val.or_commut. apply make_orimm_correct. + InvApproxRegs; SimplVM; inv H0. apply make_orimm_correct. (* xor *) - InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.xor_commut. apply make_xorimm_correct. - InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_xorimm_correct. + InvApproxRegs; SimplVM; inv H0. fold (Val.xor (Vint n1) rs#r2). rewrite Val.xor_commut. apply make_xorimm_correct. + InvApproxRegs; SimplVM; inv H0. apply make_xorimm_correct. (* shl *) - InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_shlimm_correct; auto. + InvApproxRegs; SimplVM; inv H0. apply make_shlimm_correct; auto. (* shr *) - InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_shrimm_correct; auto. + InvApproxRegs; SimplVM; inv H0. apply make_shrimm_correct; auto. (* shru *) - InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_shruimm_correct; auto. + InvApproxRegs; SimplVM; inv H0. apply make_shruimm_correct; auto. +(* singleoffloat *) + InvApproxRegs; SimplVM; inv H0. apply make_singleoffloat_correct; auto. (* cmp *) generalize (cond_strength_reduction_correct c args0 vl0). destruct (cond_strength_reduction c args0 vl0) as [c' args']; intros. rewrite <- H1 in H0; auto. econstructor; split; eauto. (* mulf *) - inv H0. assert (rs#r2 = Vfloat n2). InvApproxRegs; SimplVMA; auto. - apply make_mulfimm_correct; auto. - inv H0. assert (rs#r1 = Vfloat n1). InvApproxRegs; SimplVMA; auto. - apply make_mulfimm_correct_2; auto. + InvApproxRegs; SimplVM; inv H0. rewrite <- H2. apply make_mulfimm_correct; auto. + InvApproxRegs; SimplVM; inv H0. fold (Val.mulf (Vfloat n1) rs#r2). + rewrite <- H2. apply make_mulfimm_correct_2; auto. (* default *) exists v; auto. Qed. - + +Remark shift_symbol_address: + forall symb ofs n, + Op.symbol_address ge symb (Int.add ofs n) = Val.add (Op.symbol_address ge symb ofs) (Vint n). +Proof. + unfold Op.symbol_address; intros. destruct (Genv.find_symbol ge symb); auto. +Qed. + Lemma addr_strength_reduction_correct: - forall addr args vl, - vl = approx_regs app args -> + forall addr args vl res, + vl = map (fun r => AE.get r ae) args -> + eval_addressing ge (Vptr sp Int.zero) addr rs##args = Some res -> let (addr', args') := addr_strength_reduction addr args vl in - eval_addressing ge sp addr' rs##args' = eval_addressing ge sp addr rs##args. + exists res', eval_addressing ge (Vptr sp Int.zero) addr' rs##args' = Some res' /\ Val.lessdef res res'. Proof. - intros until vl. unfold addr_strength_reduction. - destruct (addr_strength_reduction_match addr args vl); simpl; intros; InvApproxRegs; SimplVMA. - rewrite H; rewrite H0. rewrite shift_symbol_address. auto. - rewrite H; rewrite H0. rewrite Int.add_commut. rewrite shift_symbol_address. rewrite Val.add_commut; auto. - rewrite H; rewrite H0. rewrite Val.add_assoc; auto. - rewrite H; rewrite H0. rewrite Val.add_permut; auto. - rewrite H0. auto. - rewrite H. rewrite Val.add_commut. auto. - rewrite H0. rewrite Val.add_commut; auto. - rewrite H; auto. - rewrite H. rewrite shift_symbol_address. auto. - rewrite H. rewrite shift_symbol_address. auto. - rewrite H. rewrite Val.add_assoc. auto. - auto. + intros until res. unfold addr_strength_reduction. + destruct (addr_strength_reduction_match addr args vl); simpl; + intros VL EA; InvApproxRegs; SimplVM; try (inv EA). +- rewrite shift_symbol_address. econstructor; split; eauto. apply Val.add_lessdef; auto. +- fold (Val.add (Vint n1) rs#r2). rewrite Int.add_commut. rewrite shift_symbol_address. rewrite Val.add_commut. + econstructor; split; eauto. apply Val.add_lessdef; auto. +- rewrite Int.add_zero_l. + change (Vptr sp (Int.add n1 n2)) with (Val.add (Vptr sp n1) (Vint n2)). + econstructor; split; eauto. apply Val.add_lessdef; auto. +- fold (Val.add (Vint n1) rs#r2). rewrite Int.add_zero_l. rewrite Int.add_commut. + change (Vptr sp (Int.add n2 n1)) with (Val.add (Vptr sp n2) (Vint n1)). + rewrite Val.add_commut. econstructor; split; eauto. apply Val.add_lessdef; auto. +- econstructor; split; eauto. apply Val.add_lessdef; auto. +- rewrite Val.add_commut. econstructor; split; eauto. apply Val.add_lessdef; auto. +- fold (Val.add (Vint n1) rs#r2). + rewrite Val.add_commut. econstructor; split; eauto. +- econstructor; split; eauto. +- rewrite shift_symbol_address. econstructor; split; eauto. +- rewrite shift_symbol_address. econstructor; split; eauto. apply Val.add_lessdef; auto. +- rewrite Int.add_zero_l. + change (Vptr sp (Int.add n1 n)) with (Val.add (Vptr sp n1) (Vint n)). + econstructor; split; eauto. apply Val.add_lessdef; auto. +- exists res; auto. Qed. End STRENGTH_REDUCTION. - -End ANALYSIS. - diff --git a/powerpc/NeedOp.v b/powerpc/NeedOp.v new file mode 100644 index 0000000..63323eb --- /dev/null +++ b/powerpc/NeedOp.v @@ -0,0 +1,160 @@ +Require Import Coqlib. +Require Import AST. +Require Import Integers. +Require Import Floats. +Require Import Values. +Require Import Memory. +Require Import Globalenvs. +Require Import Op. +Require Import NeedDomain. +Require Import RTL. + +(** Neededness analysis for PowerPC operators *) + +Definition needs_of_condition (cond: condition): nval := + match cond with + | Cmaskzero n | Cmasknotzero n => maskzero n + | _ => All + end. + +Definition needs_of_operation (op: operation) (nv: nval): nval := + match op with + | Omove => nv + | Ointconst n => Nothing + | Ofloatconst n => Nothing + | Oaddrsymbol id ofs => Nothing + | Oaddrstack ofs => Nothing + | Ocast8signed => sign_ext 8 nv + | Ocast16signed => sign_ext 16 nv + | Oadd => modarith nv + | Oaddimm n => modarith nv + | Omul => modarith nv + | Omulimm n => modarith nv + | Oand => bitwise nv + | Oandimm n => andimm nv n + | Oor => bitwise nv + | Oorimm n => orimm nv n + | Oxor => bitwise nv + | Oxorimm n => bitwise nv + | Onot => bitwise nv + | Onand => bitwise nv + | Onor => bitwise nv + | Onxor => bitwise nv + | Oandc => bitwise nv + | Oorc => bitwise nv + | Oshrimm n => shrimm nv n + | Orolm amount mask => rolm nv amount mask + | Osingleoffloat => singleoffloat nv + | Ocmp c => needs_of_condition c + | _ => default nv + end. + +Definition operation_is_redundant (op: operation) (nv: nval): bool := + match op with + | Ocast8signed => sign_ext_redundant 8 nv + | Ocast16signed => sign_ext_redundant 16 nv + | Oandimm n => andimm_redundant nv n + | Oorimm n => orimm_redundant nv n + | Orolm amount mask => rolm_redundant nv amount mask + | Osingleoffloat => singleoffloat_redundant nv + | _ => false + end. + +Ltac InvAgree := + match goal with + | [H: vagree_list nil _ _ |- _ ] => inv H; InvAgree + | [H: vagree_list (_::_) _ _ |- _ ] => inv H; InvAgree + | [H: list_forall2 _ nil _ |- _ ] => inv H; InvAgree + | [H: list_forall2 _ (_::_) _ |- _ ] => inv H; InvAgree + | _ => idtac + end. + +Ltac TrivialExists := + match goal with + | [ |- exists v, Some ?x = Some v /\ _ ] => exists x; split; auto + | _ => idtac + end. + +Section SOUNDNESS. + +Variable ge: genv. +Variable sp: block. +Variables m m': mem. +Hypothesis PERM: forall b ofs k p, Mem.perm m b ofs k p -> Mem.perm m' b ofs k p. + +Lemma needs_of_condition_sound: + forall cond args b args', + eval_condition cond args m = Some b -> + vagree_list args args' (needs_of_condition cond) -> + eval_condition cond args' m' = Some b. +Proof. + intros. destruct cond; simpl in H; + try (eapply default_needs_of_condition_sound; eauto; fail); + simpl in *; FuncInv; InvAgree. +- eapply maskzero_sound; eauto. +- destruct (Val.maskzero_bool v i) as [b'|] eqn:MZ; try discriminate. + erewrite maskzero_sound; eauto. +Qed. + +Lemma needs_of_operation_sound: + forall op args v nv args', + eval_operation ge (Vptr sp Int.zero) op args m = Some v -> + vagree_list args args' (needs_of_operation op nv) -> + nv <> Nothing -> + exists v', + eval_operation ge (Vptr sp Int.zero) op args' m' = Some v' + /\ vagree v v' nv. +Proof. + unfold needs_of_operation; intros; destruct op; try (eapply default_needs_of_operation_sound; eauto; fail); + simpl in *; FuncInv; InvAgree; TrivialExists. +- auto with na. +- auto with na. +- auto with na. +- auto with na. +- apply sign_ext_sound; auto. compute; auto. +- apply sign_ext_sound; auto. compute; auto. +- apply add_sound; auto. +- apply add_sound; auto with na. +- apply mul_sound; auto. +- apply mul_sound; auto with na. +- apply and_sound; auto. +- apply andimm_sound; auto. +- apply or_sound; auto. +- apply orimm_sound; auto. +- apply xor_sound; auto. +- apply xor_sound; auto with na. +- apply notint_sound; auto. +- apply notint_sound. apply and_sound; rewrite bitwise_idem; auto. +- apply notint_sound. apply or_sound; rewrite bitwise_idem; auto. +- apply notint_sound. apply xor_sound; rewrite bitwise_idem; auto. +- apply and_sound; auto. apply notint_sound; rewrite bitwise_idem; auto. +- apply or_sound; auto. apply notint_sound; rewrite bitwise_idem; auto. +- apply shrimm_sound; auto. +- apply rolm_sound; auto. +- apply singleoffloat_sound; auto. +- destruct (eval_condition c args m) as [b|] eqn:EC; simpl in H2. + erewrite needs_of_condition_sound by eauto. + subst v; simpl. auto with na. + subst v; auto with na. +Qed. + +Lemma operation_is_redundant_sound: + forall op nv arg1 args v arg1', + operation_is_redundant op nv = true -> + eval_operation ge (Vptr sp Int.zero) op (arg1 :: args) m = Some v -> + vagree arg1 arg1' (needs_of_operation op nv) -> + vagree v arg1' nv. +Proof. + intros. destruct op; simpl in *; try discriminate; FuncInv; subst. +- apply sign_ext_redundant_sound; auto. omega. +- apply sign_ext_redundant_sound; auto. omega. +- apply andimm_redundant_sound; auto. +- apply orimm_redundant_sound; auto. +- apply rolm_redundant_sound; auto. +- apply singleoffloat_redundant_sound; auto. +Qed. + +End SOUNDNESS. + + + diff --git a/powerpc/Op.v b/powerpc/Op.v index dbc474e..3545b18 100644 --- a/powerpc/Op.v +++ b/powerpc/Op.v @@ -166,8 +166,8 @@ Definition eval_condition (cond: condition) (vl: list val) (m: mem): option bool | Ccompuimm c n, v1 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint n) | Ccompf c, v1 :: v2 :: nil => Val.cmpf_bool c v1 v2 | Cnotcompf c, v1 :: v2 :: nil => option_map negb (Val.cmpf_bool c v1 v2) - | Cmaskzero n, Vint n1 :: nil => Some (Int.eq (Int.and n1 n) Int.zero) - | Cmasknotzero n, Vint n1 :: nil => Some (negb (Int.eq (Int.and n1 n) Int.zero)) + | Cmaskzero n, v1 :: nil => Val.maskzero_bool v1 n + | Cmasknotzero n, v1 :: nil => option_map negb (Val.maskzero_bool v1 n) | _, _ => None end. @@ -452,8 +452,8 @@ Proof. repeat (destruct vl; auto). apply Val.negate_cmpu_bool. repeat (destruct vl; auto). repeat (destruct vl; auto). destruct (Val.cmpf_bool c v v0); auto. destruct b; auto. - destruct vl; auto. destruct v; auto. destruct vl; auto. - destruct vl; auto. destruct v; auto. destruct vl; auto. simpl. rewrite negb_involutive. auto. + repeat (destruct vl; auto). + repeat (destruct vl; auto). destruct (Val.maskzero_bool v i) as [[]|]; auto. Qed. (** Shifting stack-relative references. This is used in [Stacking]. *) @@ -747,6 +747,8 @@ Proof. eauto 3 using val_cmpu_bool_inject, Mem.valid_pointer_implies. inv H3; inv H2; simpl in H0; inv H0; auto. inv H3; inv H2; simpl in H0; inv H0; auto. + inv H3; try discriminate; auto. + inv H3; try discriminate; auto. Qed. Ltac TrivialExists := diff --git a/powerpc/ValueAOp.v b/powerpc/ValueAOp.v new file mode 100644 index 0000000..12cb8e4 --- /dev/null +++ b/powerpc/ValueAOp.v @@ -0,0 +1,160 @@ +Require Import Coqlib. +Require Import AST. +Require Import Integers. +Require Import Floats. +Require Import Values. +Require Import Memory. +Require Import Globalenvs. +Require Import Op. +Require Import ValueDomain. +Require Import RTL. + +(** Value analysis for PowerPC operators *) + +Definition eval_static_condition (cond: condition) (vl: list aval): abool := + match cond, vl with + | Ccomp c, v1 :: v2 :: nil => cmp_bool c v1 v2 + | Ccompu c, v1 :: v2 :: nil => cmpu_bool c v1 v2 + | Ccompimm c n, v1 :: nil => cmp_bool c v1 (I n) + | Ccompuimm c n, v1 :: nil => cmpu_bool c v1 (I n) + | Ccompf c, v1 :: v2 :: nil => cmpf_bool c v1 v2 + | Cnotcompf c, v1 :: v2 :: nil => cnot (cmpf_bool c v1 v2) + | Cmaskzero n, v1 :: nil => maskzero v1 n + | Cmasknotzero n, v1 :: nil => cnot (maskzero v1 n) + | _, _ => Bnone + end. + +Definition eval_static_addressing (addr: addressing) (vl: list aval): aval := + match addr, vl with + | Aindexed n, v1::nil => add v1 (I n) + | Aindexed2, v1::v2::nil => add v1 v2 + | Aglobal s ofs, nil => Ptr (Gl s ofs) + | Abased s ofs, v1::nil => add (Ptr (Gl s ofs)) v1 + | Ainstack ofs, nil => Ptr(Stk ofs) + | _, _ => Vbot + end. + +Definition eval_static_operation (op: operation) (vl: list aval): aval := + match op, vl with + | Omove, v1::nil => v1 + | Ointconst n, nil => I n + | Ofloatconst n, nil => if propagate_float_constants tt then F n else ftop + | Oaddrsymbol id ofs, nil => Ptr (Gl id ofs) + | Oaddrstack ofs, nil => Ptr (Stk ofs) + | Ocast8signed, v1 :: nil => sign_ext 8 v1 + | Ocast16signed, v1 :: nil => sign_ext 16 v1 + | Oadd, v1::v2::nil => add v1 v2 + | Oaddimm n, v1::nil => add v1 (I n) + | Oaddsymbol id ofs, v1::nil => add (Ptr (Gl id ofs)) v1 + | Osub, v1::v2::nil => sub v1 v2 + | Osubimm n, v1::nil => sub (I n) v1 + | Omul, v1::v2::nil => mul v1 v2 + | Omulimm n, v1::nil => mul v1 (I n) + | Omulhs, v1::v2::nil => mulhs v1 v2 + | Omulhu, v1::v2::nil => mulhu v1 v2 + | Odiv, v1::v2::nil => divs v1 v2 + | Odivu, v1::v2::nil => divu v1 v2 + | Oand, v1::v2::nil => and v1 v2 + | Oandimm n, v1::nil => and v1 (I n) + | Oor, v1::v2::nil => or v1 v2 + | Oorimm n, v1::nil => or v1 (I n) + | Oxor, v1::v2::nil => xor v1 v2 + | Oxorimm n, v1::nil => xor v1 (I n) + | Onot, v1::nil => notint v1 + | Onand, v1::v2::nil => notint(and v1 v2) + | Onor, v1::v2::nil => notint(or v1 v2) + | Onxor, v1::v2::nil => notint(xor v1 v2) + | Oandc, v1::v2::nil => and v1 (notint v2) + | Oorc, v1::v2::nil => or v1 (notint v2) + | Oshl, v1::v2::nil => shl v1 v2 + | Oshr, v1::v2::nil => shr v1 v2 + | Oshrimm n, v1::nil => shr v1 (I n) + | Oshrximm n, v1::nil => shrx v1 (I n) + | Oshru, v1::v2::nil => shru v1 v2 + | Orolm amount mask, v1::nil => rolm v1 amount mask + | Oroli amount mask, v1::v2::nil => or (and v1 (I (Int.not mask))) (rolm v2 amount mask) + | Onegf, v1::nil => negf v1 + | Oabsf, v1::nil => absf v1 + | Oaddf, v1::v2::nil => addf v1 v2 + | Osubf, v1::v2::nil => subf v1 v2 + | Omulf, v1::v2::nil => mulf v1 v2 + | Odivf, v1::v2::nil => divf v1 v2 + | Osingleoffloat, v1::nil => singleoffloat v1 + | Ointoffloat, v1::nil => intoffloat v1 + | Ofloatofwords, v1::v2::nil => floatofwords v1 v2 + | Omakelong, v1::v2::nil => longofwords v1 v2 + | Olowlong, v1::nil => loword v1 + | Ohighlong, v1::nil => hiword v1 + | Ocmp c, _ => of_optbool (eval_static_condition c vl) + | _, _ => Vbot + end. + +Section SOUNDNESS. + +Variable bc: block_classification. +Variable ge: genv. +Hypothesis GENV: genv_match bc ge. +Variable sp: block. +Hypothesis STACK: bc sp = BCstack. + +Theorem eval_static_condition_sound: + forall cond vargs m aargs, + list_forall2 (vmatch bc) vargs aargs -> + cmatch (eval_condition cond vargs m) (eval_static_condition cond aargs). +Proof. + intros until aargs; intros VM. + inv VM. + destruct cond; auto with va. + inv H0. + destruct cond; simpl; eauto with va. + inv H2. + destruct cond; simpl; eauto with va. + destruct cond; auto with va. +Qed. + +Lemma symbol_address_sound: + forall id ofs, + vmatch bc (symbol_address ge id ofs) (Ptr (Gl id ofs)). +Proof. + intros; apply symbol_address_sound; apply GENV. +Qed. + +Hint Resolve symbol_address_sound: va. + +Ltac InvHyps := + match goal with + | [H: None = Some _ |- _ ] => discriminate + | [H: Some _ = Some _ |- _] => inv H + | [H1: match ?vl with nil => _ | _ :: _ => _ end = Some _ , + H2: list_forall2 _ ?vl _ |- _ ] => inv H2; InvHyps + | _ => idtac + end. + +Theorem eval_static_addressing_sound: + forall addr vargs vres aargs, + eval_addressing ge (Vptr sp Int.zero) addr vargs = Some vres -> + list_forall2 (vmatch bc) vargs aargs -> + vmatch bc vres (eval_static_addressing addr aargs). +Proof. + unfold eval_addressing, eval_static_addressing; intros; + destruct addr; InvHyps; eauto with va. + rewrite Int.add_zero_l; auto with va. +Qed. + +Theorem eval_static_operation_sound: + forall op vargs m vres aargs, + eval_operation ge (Vptr sp Int.zero) op vargs m = Some vres -> + list_forall2 (vmatch bc) vargs aargs -> + vmatch bc vres (eval_static_operation op aargs). +Proof. + unfold eval_operation, eval_static_operation; intros; + destruct op; InvHyps; eauto with va. + destruct (propagate_float_constants tt); constructor. + rewrite Int.add_zero_l; eauto with va. + fold (Val.sub (Vint i) a1). auto with va. + apply floatofwords_sound; auto. + apply of_optbool_sound. eapply eval_static_condition_sound; eauto. +Qed. + +End SOUNDNESS. + |