diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2012-07-09 13:43:41 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2012-07-09 13:43:41 +0000 |
commit | 576d79403ecb81d2be41e802790a5236f6fcf521 (patch) | |
tree | 7931c9338c6e80019021825f9a28b3116c17ad83 /powerpc | |
parent | c72b9a5bf321bfc05419eae50a5a27be03739bda (diff) |
Micro-optimization of (x & mask) >>s amount into a rolm when mask >= 0.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@1963 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'powerpc')
-rw-r--r-- | powerpc/SelectOp.vp | 19 | ||||
-rw-r--r-- | powerpc/SelectOpproof.v | 28 |
2 files changed, 31 insertions, 16 deletions
diff --git a/powerpc/SelectOp.vp b/powerpc/SelectOp.vp index a1457df..d913958 100644 --- a/powerpc/SelectOp.vp +++ b/powerpc/SelectOp.vp @@ -179,12 +179,6 @@ Definition shlimm (e1: expr) (n2: int) := else Eop Oshl (e1:::Eop (Ointconst n2) Enil:::Enil). -Definition shrimm (e1: expr) (n2: int) := - if Int.eq n2 Int.zero then - e1 - else - Eop (Oshrimm n2) (e1:::Enil). - Definition shruimm (e1: expr) (n2: int) := if Int.eq n2 Int.zero then e1 @@ -193,6 +187,19 @@ Definition shruimm (e1: expr) (n2: int) := else Eop Oshru (e1:::Eop (Ointconst n2) Enil:::Enil). +Nondetfunction shrimm (e1: expr) (n2: int) := + if Int.eq n2 Int.zero then + e1 + else + match e1 with + | Eop (Oandimm mask1) (t1:::Enil) => + if Int.lt mask1 Int.zero + then Eop (Oshrimm n2) (e1:::Enil) + else shruimm e1 n2 + | _ => + Eop (Oshrimm n2) (e1:::Enil) + end. + (** ** Integer multiply *) Definition mulimm_base (n1: int) (e2: expr) := diff --git a/powerpc/SelectOpproof.v b/powerpc/SelectOpproof.v index fa6b560..7d3ae83 100644 --- a/powerpc/SelectOpproof.v +++ b/powerpc/SelectOpproof.v @@ -286,16 +286,6 @@ Proof. TrivialExists. econstructor. eauto. econstructor. EvalOp. simpl; eauto. constructor. auto. Qed. -Theorem eval_shrimm: - forall n, unary_constructor_sound (fun a => shrimm a n) - (fun x => Val.shr x (Vint n)). -Proof. - red; intros. unfold shrimm. - predSpec Int.eq Int.eq_spec n Int.zero. - subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shr_zero; auto. - TrivialExists. -Qed. - Theorem eval_shruimm: forall n, unary_constructor_sound (fun a => shruimm a n) (fun x => Val.shru x (Vint n)). @@ -308,6 +298,24 @@ Proof. TrivialExists. econstructor. eauto. econstructor. EvalOp. simpl; eauto. constructor. auto. Qed. +Theorem eval_shrimm: + forall n, unary_constructor_sound (fun a => shrimm a n) + (fun x => Val.shr x (Vint n)). +Proof. + red; intros until x. unfold shrimm. + predSpec Int.eq Int.eq_spec n Int.zero. + intros. subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shr_zero; auto. + case (shrimm_match a); intros. + destruct (Int.lt mask1 Int.zero) as []_eqn. + TrivialExists. + replace (Val.shr x (Vint n)) with (Val.shru x (Vint n)). + apply eval_shruimm; auto. + destruct x; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto. + decEq. symmetry. InvEval. destruct v1; simpl in H0; inv H0. + apply Int.shr_and_is_shru_and; auto. + TrivialExists. +Qed. + Lemma eval_mulimm_base: forall n, unary_constructor_sound (mulimm_base n) (fun x => Val.mul x (Vint n)). Proof. |