summaryrefslogtreecommitdiff
path: root/powerpc
diff options
context:
space:
mode:
authorGravatar xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2009-11-01 16:51:47 +0000
committerGravatar xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2009-11-01 16:51:47 +0000
commit3ccc93675292bf9a44ac0d7111d3f44981e1f56d (patch)
tree2879f37d1625e035f21134bc2307fce427531ce4 /powerpc
parent033aa0555a209fa3e825b1eeb8a5fc00ff8163e3 (diff)
Preliminary support for small data area in PowerPC port.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@1163 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'powerpc')
-rw-r--r--powerpc/Asm.v26
-rw-r--r--powerpc/Asmgen.v7
-rw-r--r--powerpc/Asmgenproof.v89
-rw-r--r--powerpc/Asmgenproof1.v98
-rw-r--r--powerpc/PrintAsm.ml53
5 files changed, 177 insertions, 96 deletions
diff --git a/powerpc/Asm.v b/powerpc/Asm.v
index ab70072..bea5f5c 100644
--- a/powerpc/Asm.v
+++ b/powerpc/Asm.v
@@ -57,16 +57,18 @@ Lemma freg_eq: forall (x y: freg), {x=y} + {x<>y}.
Proof. decide equality. Defined.
(** Symbolic constants. Immediate operands to an arithmetic instruction
- or an indexed memory access can be either integer literals
+ or an indexed memory access can be either integer literals,
or the low or high 16 bits of a symbolic reference (the address
- of a symbol plus a displacement). These symbolic references are
+ of a symbol plus a displacement), or a 16-bit offset from the
+ small data area register. These symbolic references are
resolved later by the linker.
*)
Inductive constant: Type :=
| Cint: int -> constant
| Csymbol_low: ident -> int -> constant
- | Csymbol_high: ident -> int -> constant.
+ | Csymbol_high: ident -> int -> constant
+ | Csymbol_sda: ident -> int -> constant.
(** A note on constants: while immediate operands to PowerPC
instructions must be representable in 16 bits (with
@@ -413,6 +415,19 @@ Axiom low_half_type:
Axiom high_half_type:
forall v, Val.has_type (high_half v) Tint.
+(** The function below axiomatizes how the linker builds the
+ small data area. *)
+
+Parameter symbol_is_small_data: ident -> int -> bool.
+Parameter small_data_area_base: genv -> val.
+Parameter small_data_area_offset: genv -> ident -> int -> val.
+
+Axiom small_data_area_addressing:
+ forall id ofs,
+ symbol_is_small_data id ofs = true ->
+ Val.add (small_data_area_base ge) (small_data_area_offset ge id ofs) =
+ symbol_offset id ofs.
+
(** Armed with the [low_half] and [high_half] functions,
we can define the evaluation of a symbolic constant.
Note that for [const_high], integer constants
@@ -426,6 +441,7 @@ Definition const_low (c: constant) :=
| Cint n => Vint n
| Csymbol_low id ofs => low_half (symbol_offset id ofs)
| Csymbol_high id ofs => Vundef
+ | Csymbol_sda id ofs => small_data_area_offset ge id ofs
end.
Definition const_high (c: constant) :=
@@ -433,6 +449,7 @@ Definition const_high (c: constant) :=
| Cint n => Vint (Int.shl n (Int.repr 16))
| Csymbol_low id ofs => Vundef
| Csymbol_high id ofs => high_half (symbol_offset id ofs)
+ | Csymbol_sda id ofs => Vundef
end.
(** The semantics is purely small-step and defined as a function
@@ -852,7 +869,8 @@ Inductive initial_state (p: program): state -> Prop :=
(Pregmap.init Vundef)
# PC <- (symbol_offset ge p.(prog_main) Int.zero)
# LR <- Vzero
- # GPR1 <- (Vptr Mem.nullptr Int.zero) in
+ # GPR1 <- (Vptr Mem.nullptr Int.zero)
+ # GPR13 <- (small_data_area_base ge) in
initial_state p (State rs0 m0).
Inductive final_state: state -> int -> Prop :=
diff --git a/powerpc/Asmgen.v b/powerpc/Asmgen.v
index 5c37a57..05381ea 100644
--- a/powerpc/Asmgen.v
+++ b/powerpc/Asmgen.v
@@ -395,8 +395,11 @@ Definition transl_load_store
| Aindexed2, a1 :: a2 :: nil =>
mk2 (ireg_of a1) (ireg_of a2) :: k
| Aglobal symb ofs, nil =>
- Paddis GPR12 GPR0 (Csymbol_high symb ofs) ::
- mk1 (Csymbol_low symb ofs) GPR12 :: k
+ if symbol_is_small_data symb ofs then
+ mk1 (Csymbol_sda symb ofs) GPR13 :: k
+ else
+ Paddis GPR12 GPR0 (Csymbol_high symb ofs) ::
+ mk1 (Csymbol_low symb ofs) GPR12 :: k
| Abased symb ofs, a1 :: nil =>
if ireg_eq (ireg_of a1) GPR0 then
Pmr GPR12 (ireg_of a1) ::
diff --git a/powerpc/Asmgenproof.v b/powerpc/Asmgenproof.v
index b4176f2..19e1782 100644
--- a/powerpc/Asmgenproof.v
+++ b/powerpc/Asmgenproof.v
@@ -483,7 +483,7 @@ Proof.
case (Int.eq (high_s i) Int.zero). simpl; rewrite H; auto.
simpl; rewrite H; auto.
simpl; rewrite H0; auto.
- simpl; rewrite H; auto.
+ destruct (symbol_is_small_data i i0); simpl; rewrite H; auto.
case (ireg_eq (ireg_of m) GPR0); intro; simpl; rewrite H; auto.
case (Int.eq (high_s i) Int.zero); simpl; rewrite H; auto.
Qed.
@@ -593,13 +593,13 @@ Inductive match_states: Machconcr.state -> Asm.state -> Prop :=
(WTF: wt_function f)
(INCL: incl c f.(fn_code))
(AT: transl_code_at_pc (rs PC) fb f c)
- (AG: agree ms sp rs),
+ (AG: agree tge ms sp rs),
match_states (Machconcr.State s fb sp c ms m)
(Asm.State rs m)
| match_states_call:
forall s fb ms m rs
(STACKS: match_stack s)
- (AG: agree ms (parent_sp s) rs)
+ (AG: agree tge ms (parent_sp s) rs)
(ATPC: rs PC = Vptr fb Int.zero)
(ATLR: rs LR = parent_ra s),
match_states (Machconcr.Callstate s fb ms m)
@@ -607,7 +607,7 @@ Inductive match_states: Machconcr.state -> Asm.state -> Prop :=
| match_states_return:
forall s ms m rs
(STACKS: match_stack s)
- (AG: agree ms (parent_sp s) rs)
+ (AG: agree tge ms (parent_sp s) rs)
(ATPC: rs PC = parent_ra s),
match_states (Machconcr.Returnstate s ms m)
(Asm.State rs m).
@@ -621,7 +621,7 @@ Lemma exec_straight_steps:
transl_code_at_pc (rs1 PC) fb f c1 ->
(exists rs2,
exec_straight tge (transl_function f) (transl_code f c1) rs1 m1 (transl_code f c2) rs2 m2
- /\ agree ms2 sp rs2) ->
+ /\ agree tge ms2 sp rs2) ->
exists st',
plus step tge (State rs1 m1) E0 st' /\
match_states (Machconcr.State s fb sp c2 ms2 m2) st'.
@@ -683,7 +683,7 @@ Proof.
unfold load_stack in H.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI. inversion WTI.
- rewrite (sp_val _ _ _ AG) in H.
+ rewrite (sp_val _ _ _ _ AG) in H.
assert (NOTE: GPR1 <> GPR0). congruence.
generalize (loadind_correct tge (transl_function f) GPR1 ofs ty
dst (transl_code f c) rs m v H H1 NOTE).
@@ -691,7 +691,7 @@ Proof.
left; eapply exec_straight_steps; eauto with coqlib.
simpl. exists rs2; split. auto.
apply agree_exten_2 with (rs#(preg_of dst) <- v).
- auto with ppcgen.
+ apply agree_set_mreg. auto.
intros. case (preg_eq r0 (preg_of dst)); intro.
subst r0. rewrite Pregmap.gss. auto.
rewrite Pregmap.gso; auto.
@@ -709,8 +709,8 @@ Proof.
unfold store_stack in H.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI. inversion WTI.
- rewrite (sp_val _ _ _ AG) in H.
- rewrite (preg_val ms sp rs) in H; auto.
+ rewrite (sp_val _ _ _ _ AG) in H.
+ rewrite (preg_val tge ms sp rs) in H; auto.
assert (NOTE: GPR1 <> GPR0). congruence.
generalize (storeind_correct tge (transl_function f) GPR1 ofs ty
src (transl_code f c) rs m m' H H1 NOTE).
@@ -738,7 +738,7 @@ Proof.
(loadind GPR12 ofs ty dst (transl_code f c)) rs2 m).
simpl. apply exec_straight_one.
simpl. unfold load1. rewrite gpr_or_zero_not_zero; auto with ppcgen.
- unfold const_low. rewrite <- (sp_val ms sp rs); auto.
+ unfold const_low. rewrite <- (sp_val tge ms sp rs); auto.
unfold load_stack in H0. simpl chunk_of_type in H0.
rewrite H0. reflexivity. reflexivity.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
@@ -818,7 +818,7 @@ Proof.
exists (nextinstr (rs2#(ireg_of dst) <- v)).
split. eapply exec_straight_trans. eexact EX1.
apply exec_straight_one. simpl.
- rewrite <- (ireg_val _ _ _ dst AG1);auto. rewrite Regmap.gss.
+ rewrite <- (ireg_val _ _ _ _ dst AG1);auto. rewrite Regmap.gss.
rewrite EQ1. reflexivity. reflexivity.
eauto with ppcgen.
Qed.
@@ -881,13 +881,13 @@ Proof.
rewrite RA_EQ.
change (rs3 LR) with (Val.add (Val.add (rs PC) Vone) Vone).
rewrite <- H5. reflexivity.
- assert (AG3: agree ms sp rs3).
+ assert (AG3: agree tge ms sp rs3).
unfold rs3, rs2; auto 8 with ppcgen.
left; exists (State rs3 m); split.
apply plus_left with E0 (State rs2 m) E0.
econstructor. eauto. apply functions_transl. eexact H0.
eapply find_instr_tail. eauto.
- simpl. rewrite <- (ireg_val ms sp rs); auto.
+ simpl. rewrite <- (ireg_val tge ms sp rs); auto.
apply star_one. econstructor.
change (rs2 PC) with (Val.add (rs PC) Vone). rewrite <- H5.
simpl. auto.
@@ -910,7 +910,7 @@ Proof.
rewrite RA_EQ.
change (rs2 LR) with (Val.add (rs PC) Vone).
rewrite <- H5. reflexivity.
- assert (AG2: agree ms sp rs2).
+ assert (AG2: agree tge ms sp rs2).
unfold rs2; auto 8 with ppcgen.
left; exists (State rs2 m); split.
apply plus_one. econstructor.
@@ -953,16 +953,16 @@ Proof.
(transl_code f (Mtailcall sig (inl ident m0) :: c)) rs m
(Pbctr :: transl_code f c) rs5 (free m stk)).
simpl. apply exec_straight_step with rs2 m.
- simpl. rewrite <- (ireg_val _ _ _ _ AG H6). reflexivity. reflexivity.
+ simpl. rewrite <- (ireg_val _ _ _ _ _ AG H6). reflexivity. reflexivity.
apply exec_straight_step with rs3 m.
simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
- change (rs2 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
+ change (rs2 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ _ AG).
simpl. unfold load_stack in H2. simpl in H2. rewrite H2.
reflexivity. discriminate. reflexivity.
apply exec_straight_step with rs4 m.
simpl. reflexivity. reflexivity.
apply exec_straight_one.
- simpl. change (rs4 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
+ simpl. change (rs4 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ _ AG).
unfold load_stack in H1; simpl in H1.
simpl. rewrite H1. reflexivity. reflexivity.
left; exists (State rs6 (free m stk)); split.
@@ -977,12 +977,12 @@ Proof.
simpl. reflexivity. traceEq.
(* match states *)
econstructor; eauto.
- assert (AG4: agree ms (Vptr stk soff) rs4).
+ assert (AG4: agree tge ms (Vptr stk soff) rs4).
unfold rs4, rs3, rs2; auto 10 with ppcgen.
- assert (AG5: agree ms (parent_sp s) rs5).
- unfold rs5. apply agree_nextinstr.
- split. reflexivity. intros. inv AG4. rewrite H12.
- rewrite Pregmap.gso; auto with ppcgen.
+ assert (AG5: agree tge ms (parent_sp s) rs5).
+ unfold rs5. apply agree_nextinstr. destruct AG4 as [X [Y Z]].
+ split. reflexivity. split. rewrite <- Y. reflexivity.
+ intros. rewrite Z. rewrite Pregmap.gso; auto with ppcgen.
unfold rs6; auto with ppcgen.
change (rs6 PC) with (ms m0).
generalize H. destruct (ms m0); try congruence.
@@ -997,13 +997,13 @@ Proof.
(Pbs i :: transl_code f c) rs4 (free m stk)).
simpl. apply exec_straight_step with rs2 m.
simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
- rewrite <- (sp_val _ _ _ AG).
+ rewrite <- (sp_val _ _ _ _ AG).
simpl. unfold load_stack in H2. simpl in H2. rewrite H2.
reflexivity. discriminate. reflexivity.
apply exec_straight_step with rs3 m.
simpl. reflexivity. reflexivity.
apply exec_straight_one.
- simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
+ simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ _ AG).
unfold load_stack in H1; simpl in H1.
simpl. rewrite H1. reflexivity. reflexivity.
left; exists (State rs5 (free m stk)); split.
@@ -1019,12 +1019,12 @@ Proof.
reflexivity. traceEq.
(* match states *)
econstructor; eauto.
- assert (AG3: agree ms (Vptr stk soff) rs3).
+ assert (AG3: agree tge ms (Vptr stk soff) rs3).
unfold rs3, rs2; auto 10 with ppcgen.
- assert (AG4: agree ms (parent_sp s) rs4).
- unfold rs4. apply agree_nextinstr.
- split. reflexivity. intros. inv AG3. rewrite H12.
- rewrite Pregmap.gso; auto with ppcgen.
+ assert (AG4: agree tge ms (parent_sp s) rs4).
+ unfold rs4. apply agree_nextinstr. destruct AG3 as [X [Y Z]].
+ split. reflexivity. split. rewrite <- Y. reflexivity.
+ intros. rewrite Z. rewrite Pregmap.gso; auto with ppcgen.
unfold rs5; auto with ppcgen.
Qed.
@@ -1148,10 +1148,10 @@ Proof.
simpl. apply exec_straight_three with rs2 m rs3 m.
simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
unfold load_stack in H1. simpl in H1.
- rewrite <- (sp_val _ _ _ AG). simpl. rewrite H1.
+ rewrite <- (sp_val _ _ _ _ AG). simpl. rewrite H1.
reflexivity. discriminate.
unfold rs3. change (parent_ra s) with rs2#GPR12. reflexivity.
- simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
+ simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ _ AG).
simpl.
unfold load_stack in H0. simpl in H0.
rewrite H0. reflexivity.
@@ -1172,12 +1172,13 @@ Proof.
reflexivity. traceEq.
(* match states *)
econstructor; eauto.
- assert (AG3: agree ms (Vptr stk soff) rs3).
+ assert (AG3: agree tge ms (Vptr stk soff) rs3).
unfold rs3, rs2; auto 10 with ppcgen.
- assert (AG4: agree ms (parent_sp s) rs4).
- split. reflexivity. intros. unfold rs4.
- rewrite nextinstr_inv. rewrite Pregmap.gso.
- elim AG3; auto. auto with ppcgen. auto with ppcgen.
+ assert (AG4: agree tge ms (parent_sp s) rs4).
+ destruct AG3 as [X [Y Z]].
+ split. reflexivity. split. rewrite <- Y; reflexivity.
+ intros. unfold rs4. rewrite nextinstr_inv. rewrite Pregmap.gso. auto.
+ auto with ppcgen. auto with ppcgen.
unfold rs5; auto with ppcgen.
Qed.
@@ -1212,7 +1213,7 @@ Proof.
apply exec_straight_three with rs2 m2 rs3 m2.
unfold exec_instr. rewrite H0. fold sp.
unfold store_stack in H1. simpl chunk_of_type in H1.
- rewrite <- (sp_val _ _ _ AG). rewrite H1. reflexivity.
+ rewrite <- (sp_val _ _ _ _ AG). rewrite H1. reflexivity.
simpl. change (rs2 LR) with (rs LR). rewrite ATLR. reflexivity.
simpl. unfold store1. rewrite gpr_or_zero_not_zero.
unfold const_low. change (rs3 GPR1) with sp. change (rs3 GPR12) with (parent_ra s).
@@ -1227,12 +1228,13 @@ Proof.
eapply code_tail_next_int; auto.
change (Int.unsigned Int.zero) with 0.
unfold transl_function. constructor.
- assert (AG2: agree ms sp rs2).
- split. reflexivity.
+ assert (AG2: agree tge ms sp rs2).
+ destruct AG as [X [Y Z]].
+ split. reflexivity. split. rewrite <- Y; reflexivity.
intros. unfold rs2. rewrite nextinstr_inv.
- repeat (rewrite Pregmap.gso). elim AG; auto.
+ repeat (rewrite Pregmap.gso). auto.
auto with ppcgen. auto with ppcgen. auto with ppcgen.
- assert (AG4: agree ms sp rs4).
+ assert (AG4: agree tge ms sp rs4).
unfold rs4, rs3; auto with ppcgen.
left; exists (State rs4 m3); split.
(* execution *)
@@ -1308,7 +1310,8 @@ Proof.
with (Vptr fb Int.zero).
rewrite (Genv.init_mem_transf_partial _ _ TRANSF).
econstructor; eauto. constructor.
- split. auto. intros. repeat rewrite Pregmap.gso; auto with ppcgen.
+ split. auto. split. auto.
+ intros. repeat rewrite Pregmap.gso; auto with ppcgen.
unfold symbol_offset.
rewrite (transform_partial_program_main _ _ TRANSF).
rewrite symbols_preserved. unfold ge; rewrite H0. auto.
@@ -1320,7 +1323,7 @@ Lemma transf_final_states:
Proof.
intros. inv H0. inv H. constructor. auto.
compute in H1.
- rewrite (ireg_val _ _ _ R3 AG) in H1. auto. auto.
+ rewrite (ireg_val _ _ _ _ R3 AG) in H1. auto. auto.
Qed.
Theorem transf_program_correct:
diff --git a/powerpc/Asmgenproof1.v b/powerpc/Asmgenproof1.v
index 38525c9..226c175 100644
--- a/powerpc/Asmgenproof1.v
+++ b/powerpc/Asmgenproof1.v
@@ -188,18 +188,30 @@ Lemma preg_of_not_GPR1:
Proof.
intro. case r; discriminate.
Qed.
-Hint Resolve preg_of_not_GPR1: ppcgen.
+Lemma preg_of_not_GPR13:
+ forall r, preg_of r <> GPR13.
+Proof.
+ intro. case r; discriminate.
+Qed.
+
+Hint Resolve preg_of_not_GPR1 preg_of_not_GPR13: ppcgen.
(** Agreement between Mach register sets and PPC register sets. *)
+Section AGREEMENT.
+
+Variable ge: genv.
+
Definition agree (ms: Mach.regset) (sp: val) (rs: Asm.regset) :=
- rs#GPR1 = sp /\ forall r: mreg, ms r = rs#(preg_of r).
+ rs#GPR1 = sp /\
+ rs#GPR13 = small_data_area_base ge /\
+ forall r: mreg, ms r = rs#(preg_of r).
Lemma preg_val:
forall ms sp rs r,
agree ms sp rs -> ms r = rs#(preg_of r).
Proof.
- intros. elim H. auto.
+ intros. destruct H as [A [B C]]. auto.
Qed.
Lemma ireg_val:
@@ -208,8 +220,8 @@ Lemma ireg_val:
mreg_type r = Tint ->
ms r = rs#(ireg_of r).
Proof.
- intros. elim H; intros.
- generalize (H2 r). unfold preg_of. rewrite H0. auto.
+ intros. rewrite (preg_val ms sp rs); auto.
+ unfold preg_of. rewrite H0. auto.
Qed.
Lemma freg_val:
@@ -218,8 +230,8 @@ Lemma freg_val:
mreg_type r = Tfloat ->
ms r = rs#(freg_of r).
Proof.
- intros. elim H; intros.
- generalize (H2 r). unfold preg_of. rewrite H0. auto.
+ intros. rewrite (preg_val ms sp rs); auto.
+ unfold preg_of. rewrite H0. auto.
Qed.
Lemma sp_val:
@@ -227,7 +239,15 @@ Lemma sp_val:
agree ms sp rs ->
sp = rs#GPR1.
Proof.
- intros. elim H; auto.
+ intros. destruct H as [A [B C]]. auto.
+Qed.
+
+Lemma gpr13_val:
+ forall ms sp rs,
+ agree ms sp rs ->
+ small_data_area_base ge = rs#GPR13.
+Proof.
+ intros. destruct H as [A [B C]]. auto.
Qed.
Lemma agree_exten_1:
@@ -236,8 +256,9 @@ Lemma agree_exten_1:
(forall r, is_data_reg r -> rs'#r = rs#r) ->
agree ms sp rs'.
Proof.
- unfold agree; intros. elim H; intros.
- split. rewrite H0. auto. exact I.
+ unfold agree; intros. destruct H as [A [B C]].
+ split. rewrite H0. auto. exact I.
+ split. rewrite H0. auto. exact I.
intros. rewrite H0. auto. apply preg_of_is_data_reg.
Qed.
@@ -263,8 +284,9 @@ Lemma agree_set_mreg:
agree ms sp rs ->
agree (Regmap.set r v ms) sp (rs#(preg_of r) <- v).
Proof.
- unfold agree; intros. elim H; intros; clear H.
+ unfold agree; intros. destruct H as [A [B C]].
split. rewrite Pregmap.gso. auto. apply sym_not_eq. apply preg_of_not_GPR1.
+ split. rewrite Pregmap.gso. auto. apply sym_not_eq. apply preg_of_not_GPR13.
intros. unfold Regmap.set. case (RegEq.eq r0 r); intro.
subst r0. rewrite Pregmap.gss. auto.
rewrite Pregmap.gso. auto. red; intro.
@@ -317,15 +339,9 @@ Lemma agree_set_mireg_twice:
mreg_type r = Tint ->
agree (Regmap.set r v ms) sp (rs #(ireg_of r) <- v' #(ireg_of r) <- v).
Proof.
- intros. replace (IR (ireg_of r)) with (preg_of r). elim H; intros.
- split. repeat (rewrite Pregmap.gso; auto with ppcgen).
- intros. case (mreg_eq r r0); intro.
- subst r0. rewrite Regmap.gss. rewrite Pregmap.gss. auto.
- assert (preg_of r <> preg_of r0).
- red; intro. elim n. apply preg_of_injective. auto.
- rewrite Regmap.gso; auto.
- repeat (rewrite Pregmap.gso; auto).
- unfold preg_of. rewrite H0. auto.
+ intros. apply agree_exten_1 with (rs#(ireg_of r) <- v).
+ apply agree_set_mireg. apply agree_set_mreg. auto. auto.
+ intros. unfold Pregmap.set. destruct (PregEq.eq r0 (ireg_of r)); auto.
Qed.
Hint Resolve agree_set_mireg_twice: ppcgen.
@@ -335,10 +351,12 @@ Lemma agree_set_twice_mireg:
mreg_type r = Tint ->
agree (Regmap.set r v ms) sp (rs#(ireg_of r) <- v).
Proof.
- intros. elim H; intros.
- split. rewrite Pregmap.gso. auto.
- generalize (ireg_of_not_GPR1 r); congruence.
- intros. generalize (H2 r0).
+ intros. destruct H as [A [B C]].
+ split. rewrite Pregmap.gso; auto.
+ generalize (preg_of_not_GPR1 r). unfold preg_of. rewrite H0. congruence.
+ split. rewrite Pregmap.gso; auto.
+ generalize (preg_of_not_GPR13 r). unfold preg_of. rewrite H0. congruence.
+ intros. generalize (C r0).
case (mreg_eq r0 r); intro.
subst r0. repeat rewrite Regmap.gss. unfold preg_of; rewrite H0.
rewrite Pregmap.gss. auto.
@@ -466,11 +484,6 @@ Qed.
(** * Execution of straight-line code *)
-Section STRAIGHTLINE.
-
-Variable ge: genv.
-Variable fn: code.
-
(** Straight-line code is composed of PPC instructions that execute
in sequence (no branches, no function calls and returns).
The following inductive predicate relates the machine states
@@ -478,6 +491,8 @@ Variable fn: code.
Instructions are taken from the first list instead of being fetched
from memory. *)
+Variable fn: code.
+
Inductive exec_straight: code -> regset -> mem ->
code -> regset -> mem -> Prop :=
| exec_straight_one:
@@ -1474,6 +1489,11 @@ Proof.
apply H0.
simpl. repeat (rewrite (ireg_val ms sp rs); auto). auto.
(* Aglobal *)
+ case_eq (symbol_is_small_data i i0); intro SISD.
+ eapply H; eauto.
+ simpl. rewrite <- (gpr13_val _ _ _ H1).
+ rewrite small_data_area_addressing; auto.
+ discriminate.
set (rs1 := nextinstr (rs#GPR12 <- (const_high ge (Csymbol_high i i0)))).
assert (ADDR: eval_addressing_total ge sp (Aglobal i i0) ms##nil =
Val.add rs1#GPR12 (const_low ge (Csymbol_low i i0))).
@@ -1619,7 +1639,7 @@ Proof.
unfold store1. rewrite gpr_or_zero_not_zero; auto.
repeat rewrite B.
rewrite <- (eval_addressing_weaken _ _ _ _ H3) in H4.
- rewrite H5 in H4. elim H6; intros. rewrite H9 in H4.
+ rewrite H5 in H4. rewrite (preg_val _ _ _ src H6) in H4.
rewrite H4. auto.
apply preg_of_not. simpl. tauto.
discriminate.
@@ -1631,7 +1651,7 @@ Proof.
split. apply exec_straight_one. rewrite A.
unfold store2. repeat rewrite B.
rewrite <- (eval_addressing_weaken _ _ _ _ H3) in H4.
- rewrite H5 in H4. elim H6; intros. rewrite H8 in H4.
+ rewrite H5 in H4. rewrite (preg_val _ _ _ src H6) in H4.
rewrite H4. auto.
apply preg_of_not. simpl. tauto.
discriminate. discriminate.
@@ -1641,6 +1661,18 @@ Proof.
auto. auto.
Qed.
+End AGREEMENT.
-End STRAIGHTLINE.
-
+(* Re-export hints. *)
+Hint Resolve agree_set_mreg: ppcgen.
+Hint Resolve agree_set_mireg: ppcgen.
+Hint Resolve agree_set_mfreg: ppcgen.
+Hint Resolve agree_set_other: ppcgen.
+Hint Resolve agree_nextinstr: ppcgen.
+Hint Resolve agree_set_mireg_twice: ppcgen.
+Hint Resolve agree_set_twice_mireg: ppcgen.
+Hint Resolve agree_set_commut: ppcgen.
+Hint Resolve agree_nextinstr_commut: ppcgen.
+Hint Resolve nextinstr_inv: ppcgen.
+Hint Resolve nextinstr_set_preg: ppcgen.
+Hint Resolve gpr_or_zero_not_zero gpr_or_zero_zero: ppcgen.
diff --git a/powerpc/PrintAsm.ml b/powerpc/PrintAsm.ml
index 3c8d82b..a5415f8 100644
--- a/powerpc/PrintAsm.ml
+++ b/powerpc/PrintAsm.ml
@@ -110,6 +110,8 @@ let constant oc cst =
| Linux|Diab ->
fprintf oc "(%a)@ha" symbol_offset (s, camlint_of_coqint n)
end
+ | Csymbol_sda(s, n) ->
+ assert false (* treated specially in ireg_with_offset below *)
let num_crbit = function
| CRbit_0 -> 0
@@ -162,27 +164,44 @@ let creg oc r =
| MacOS|Diab -> fprintf oc "cr%d" r
| Linux -> fprintf oc "%d" r
+let ireg_with_offset oc (r, cst) =
+ match cst with
+ | Csymbol_sda(s, n) ->
+ begin match target with
+ | MacOS ->
+ assert false
+ | Linux ->
+ fprintf oc "(%a)@sdarel(%a)" symbol_offset (s, camlint_of_coqint n) ireg r
+ | Diab ->
+ fprintf oc "(%a)@sdarx(r0)" symbol_offset (s, camlint_of_coqint n)
+ end
+ | _ ->
+ fprintf oc "%a(%a)" constant cst ireg r
+
let section oc name =
fprintf oc " %s\n" name
(* Names of sections *)
-let (text, data, const_data, float_literal) =
+let (text, data, const_data, sdata, float_literal) =
match target with
| MacOS ->
(".text",
".data",
".const",
+ ".data", (* unused *)
".const_data")
| Linux ->
(".text",
".data",
".rodata",
+ ".section .sdata,\"aw\",@progbits",
".section .rodata.cst8,\"aM\",@progbits,8")
| Diab ->
(".text",
".data",
".data", (* to check *)
+ ".sdata", (* to check *)
".data") (* to check *)
(* Encoding masks for rlwinm instructions *)
@@ -349,11 +368,11 @@ let print_instruction oc labels = function
fprintf oc "%a: .long 0x43300000, 0x00000000\n" label lbl;
section oc text
| Plbz(r1, c, r2) ->
- fprintf oc " lbz %a, %a(%a)\n" ireg r1 constant c ireg r2
+ fprintf oc " lbz %a, %a\n" ireg r1 ireg_with_offset (r2, c)
| Plbzx(r1, r2, r3) ->
fprintf oc " lbzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Plfd(r1, c, r2) ->
- fprintf oc " lfd %a, %a(%a)\n" freg r1 constant c ireg r2
+ fprintf oc " lfd %a, %a\n" freg r1 ireg_with_offset (r2, c)
| Plfdx(r1, r2, r3) ->
fprintf oc " lfdx %a, %a, %a\n" freg r1 ireg r2 ireg r3
| Plfi(r1, c) ->
@@ -367,19 +386,19 @@ let print_instruction oc labels = function
fprintf oc "%a: .long 0x%lx, 0x%lx\n" label lbl nhi nlo;
section oc text
| Plfs(r1, c, r2) ->
- fprintf oc " lfs %a, %a(%a)\n" freg r1 constant c ireg r2
+ fprintf oc " lfs %a, %a\n" freg r1 ireg_with_offset (r2, c)
| Plfsx(r1, r2, r3) ->
fprintf oc " lfsx %a, %a, %a\n" freg r1 ireg r2 ireg r3
| Plha(r1, c, r2) ->
- fprintf oc " lha %a, %a(%a)\n" ireg r1 constant c ireg r2
+ fprintf oc " lha %a, %a\n" ireg r1 ireg_with_offset (r2, c)
| Plhax(r1, r2, r3) ->
fprintf oc " lhax %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Plhz(r1, c, r2) ->
- fprintf oc " lhz %a, %a(%a)\n" ireg r1 constant c ireg r2
+ fprintf oc " lhz %a, %a\n" ireg r1 ireg_with_offset (r2, c)
| Plhzx(r1, r2, r3) ->
fprintf oc " lhzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Plwz(r1, c, r2) ->
- fprintf oc " lwz %a, %a(%a)\n" ireg r1 constant c ireg r2
+ fprintf oc " lwz %a, %a\n" ireg r1 ireg_with_offset (r2, c)
| Plwzx(r1, r2, r3) ->
fprintf oc " lwzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pmfcrbit(r1, bit) ->
@@ -426,25 +445,25 @@ let print_instruction oc labels = function
| Psrw(r1, r2, r3) ->
fprintf oc " srw %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pstb(r1, c, r2) ->
- fprintf oc " stb %a, %a(%a)\n" ireg r1 constant c ireg r2
+ fprintf oc " stb %a, %a\n" ireg r1 ireg_with_offset (r2, c)
| Pstbx(r1, r2, r3) ->
fprintf oc " stbx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pstfd(r1, c, r2) ->
- fprintf oc " stfd %a, %a(%a)\n" freg r1 constant c ireg r2
+ fprintf oc " stfd %a, %a\n" freg r1 ireg_with_offset (r2, c)
| Pstfdx(r1, r2, r3) ->
fprintf oc " stfdx %a, %a, %a\n" freg r1 ireg r2 ireg r3
| Pstfs(r1, c, r2) ->
fprintf oc " frsp %a, %a\n" freg FPR13 freg r1;
- fprintf oc " stfs %a, %a(%a)\n" freg FPR13 constant c ireg r2
+ fprintf oc " stfs %a, %a\n" freg FPR13 ireg_with_offset (r2, c)
| Pstfsx(r1, r2, r3) ->
fprintf oc " frsp %a, %a\n" freg FPR13 freg r1;
fprintf oc " stfsx %a, %a, %a\n" freg FPR13 ireg r2 ireg r3
| Psth(r1, c, r2) ->
- fprintf oc " sth %a, %a(%a)\n" ireg r1 constant c ireg r2
+ fprintf oc " sth %a, %a\n" ireg r1 ireg_with_offset (r2, c)
| Psthx(r1, r2, r3) ->
fprintf oc " sthx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pstw(r1, c, r2) ->
- fprintf oc " stw %a, %a(%a)\n" ireg r1 constant c ireg r2
+ fprintf oc " stw %a, %a\n" ireg r1 ireg_with_offset (r2, c)
| Pstwx(r1, r2, r3) ->
fprintf oc " stwx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Psubfc(r1, r2, r3) ->
@@ -681,8 +700,14 @@ let print_var oc (Coq_pair(Coq_pair(name, init_data), _)) =
match init_data with
| [] -> ()
| _ ->
- section oc
- (if Cil2Csyntax.atom_is_readonly name then const_data else data);
+ let sec =
+ if Cil2Csyntax.atom_is_small_data name (coqint_of_camlint 0l) then
+ sdata
+ else if Cil2Csyntax.atom_is_readonly name then
+ const_data
+ else
+ data in
+ section oc sec;
fprintf oc " .align 3\n";
if not (Cil2Csyntax.atom_is_static name) then
fprintf oc " .globl %a\n" symbol name;