diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2009-11-01 16:51:47 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2009-11-01 16:51:47 +0000 |
commit | 3ccc93675292bf9a44ac0d7111d3f44981e1f56d (patch) | |
tree | 2879f37d1625e035f21134bc2307fce427531ce4 /powerpc | |
parent | 033aa0555a209fa3e825b1eeb8a5fc00ff8163e3 (diff) |
Preliminary support for small data area in PowerPC port.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@1163 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'powerpc')
-rw-r--r-- | powerpc/Asm.v | 26 | ||||
-rw-r--r-- | powerpc/Asmgen.v | 7 | ||||
-rw-r--r-- | powerpc/Asmgenproof.v | 89 | ||||
-rw-r--r-- | powerpc/Asmgenproof1.v | 98 | ||||
-rw-r--r-- | powerpc/PrintAsm.ml | 53 |
5 files changed, 177 insertions, 96 deletions
diff --git a/powerpc/Asm.v b/powerpc/Asm.v index ab70072..bea5f5c 100644 --- a/powerpc/Asm.v +++ b/powerpc/Asm.v @@ -57,16 +57,18 @@ Lemma freg_eq: forall (x y: freg), {x=y} + {x<>y}. Proof. decide equality. Defined. (** Symbolic constants. Immediate operands to an arithmetic instruction - or an indexed memory access can be either integer literals + or an indexed memory access can be either integer literals, or the low or high 16 bits of a symbolic reference (the address - of a symbol plus a displacement). These symbolic references are + of a symbol plus a displacement), or a 16-bit offset from the + small data area register. These symbolic references are resolved later by the linker. *) Inductive constant: Type := | Cint: int -> constant | Csymbol_low: ident -> int -> constant - | Csymbol_high: ident -> int -> constant. + | Csymbol_high: ident -> int -> constant + | Csymbol_sda: ident -> int -> constant. (** A note on constants: while immediate operands to PowerPC instructions must be representable in 16 bits (with @@ -413,6 +415,19 @@ Axiom low_half_type: Axiom high_half_type: forall v, Val.has_type (high_half v) Tint. +(** The function below axiomatizes how the linker builds the + small data area. *) + +Parameter symbol_is_small_data: ident -> int -> bool. +Parameter small_data_area_base: genv -> val. +Parameter small_data_area_offset: genv -> ident -> int -> val. + +Axiom small_data_area_addressing: + forall id ofs, + symbol_is_small_data id ofs = true -> + Val.add (small_data_area_base ge) (small_data_area_offset ge id ofs) = + symbol_offset id ofs. + (** Armed with the [low_half] and [high_half] functions, we can define the evaluation of a symbolic constant. Note that for [const_high], integer constants @@ -426,6 +441,7 @@ Definition const_low (c: constant) := | Cint n => Vint n | Csymbol_low id ofs => low_half (symbol_offset id ofs) | Csymbol_high id ofs => Vundef + | Csymbol_sda id ofs => small_data_area_offset ge id ofs end. Definition const_high (c: constant) := @@ -433,6 +449,7 @@ Definition const_high (c: constant) := | Cint n => Vint (Int.shl n (Int.repr 16)) | Csymbol_low id ofs => Vundef | Csymbol_high id ofs => high_half (symbol_offset id ofs) + | Csymbol_sda id ofs => Vundef end. (** The semantics is purely small-step and defined as a function @@ -852,7 +869,8 @@ Inductive initial_state (p: program): state -> Prop := (Pregmap.init Vundef) # PC <- (symbol_offset ge p.(prog_main) Int.zero) # LR <- Vzero - # GPR1 <- (Vptr Mem.nullptr Int.zero) in + # GPR1 <- (Vptr Mem.nullptr Int.zero) + # GPR13 <- (small_data_area_base ge) in initial_state p (State rs0 m0). Inductive final_state: state -> int -> Prop := diff --git a/powerpc/Asmgen.v b/powerpc/Asmgen.v index 5c37a57..05381ea 100644 --- a/powerpc/Asmgen.v +++ b/powerpc/Asmgen.v @@ -395,8 +395,11 @@ Definition transl_load_store | Aindexed2, a1 :: a2 :: nil => mk2 (ireg_of a1) (ireg_of a2) :: k | Aglobal symb ofs, nil => - Paddis GPR12 GPR0 (Csymbol_high symb ofs) :: - mk1 (Csymbol_low symb ofs) GPR12 :: k + if symbol_is_small_data symb ofs then + mk1 (Csymbol_sda symb ofs) GPR13 :: k + else + Paddis GPR12 GPR0 (Csymbol_high symb ofs) :: + mk1 (Csymbol_low symb ofs) GPR12 :: k | Abased symb ofs, a1 :: nil => if ireg_eq (ireg_of a1) GPR0 then Pmr GPR12 (ireg_of a1) :: diff --git a/powerpc/Asmgenproof.v b/powerpc/Asmgenproof.v index b4176f2..19e1782 100644 --- a/powerpc/Asmgenproof.v +++ b/powerpc/Asmgenproof.v @@ -483,7 +483,7 @@ Proof. case (Int.eq (high_s i) Int.zero). simpl; rewrite H; auto. simpl; rewrite H; auto. simpl; rewrite H0; auto. - simpl; rewrite H; auto. + destruct (symbol_is_small_data i i0); simpl; rewrite H; auto. case (ireg_eq (ireg_of m) GPR0); intro; simpl; rewrite H; auto. case (Int.eq (high_s i) Int.zero); simpl; rewrite H; auto. Qed. @@ -593,13 +593,13 @@ Inductive match_states: Machconcr.state -> Asm.state -> Prop := (WTF: wt_function f) (INCL: incl c f.(fn_code)) (AT: transl_code_at_pc (rs PC) fb f c) - (AG: agree ms sp rs), + (AG: agree tge ms sp rs), match_states (Machconcr.State s fb sp c ms m) (Asm.State rs m) | match_states_call: forall s fb ms m rs (STACKS: match_stack s) - (AG: agree ms (parent_sp s) rs) + (AG: agree tge ms (parent_sp s) rs) (ATPC: rs PC = Vptr fb Int.zero) (ATLR: rs LR = parent_ra s), match_states (Machconcr.Callstate s fb ms m) @@ -607,7 +607,7 @@ Inductive match_states: Machconcr.state -> Asm.state -> Prop := | match_states_return: forall s ms m rs (STACKS: match_stack s) - (AG: agree ms (parent_sp s) rs) + (AG: agree tge ms (parent_sp s) rs) (ATPC: rs PC = parent_ra s), match_states (Machconcr.Returnstate s ms m) (Asm.State rs m). @@ -621,7 +621,7 @@ Lemma exec_straight_steps: transl_code_at_pc (rs1 PC) fb f c1 -> (exists rs2, exec_straight tge (transl_function f) (transl_code f c1) rs1 m1 (transl_code f c2) rs2 m2 - /\ agree ms2 sp rs2) -> + /\ agree tge ms2 sp rs2) -> exists st', plus step tge (State rs1 m1) E0 st' /\ match_states (Machconcr.State s fb sp c2 ms2 m2) st'. @@ -683,7 +683,7 @@ Proof. unfold load_stack in H. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI. inversion WTI. - rewrite (sp_val _ _ _ AG) in H. + rewrite (sp_val _ _ _ _ AG) in H. assert (NOTE: GPR1 <> GPR0). congruence. generalize (loadind_correct tge (transl_function f) GPR1 ofs ty dst (transl_code f c) rs m v H H1 NOTE). @@ -691,7 +691,7 @@ Proof. left; eapply exec_straight_steps; eauto with coqlib. simpl. exists rs2; split. auto. apply agree_exten_2 with (rs#(preg_of dst) <- v). - auto with ppcgen. + apply agree_set_mreg. auto. intros. case (preg_eq r0 (preg_of dst)); intro. subst r0. rewrite Pregmap.gss. auto. rewrite Pregmap.gso; auto. @@ -709,8 +709,8 @@ Proof. unfold store_stack in H. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI. inversion WTI. - rewrite (sp_val _ _ _ AG) in H. - rewrite (preg_val ms sp rs) in H; auto. + rewrite (sp_val _ _ _ _ AG) in H. + rewrite (preg_val tge ms sp rs) in H; auto. assert (NOTE: GPR1 <> GPR0). congruence. generalize (storeind_correct tge (transl_function f) GPR1 ofs ty src (transl_code f c) rs m m' H H1 NOTE). @@ -738,7 +738,7 @@ Proof. (loadind GPR12 ofs ty dst (transl_code f c)) rs2 m). simpl. apply exec_straight_one. simpl. unfold load1. rewrite gpr_or_zero_not_zero; auto with ppcgen. - unfold const_low. rewrite <- (sp_val ms sp rs); auto. + unfold const_low. rewrite <- (sp_val tge ms sp rs); auto. unfold load_stack in H0. simpl chunk_of_type in H0. rewrite H0. reflexivity. reflexivity. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). @@ -818,7 +818,7 @@ Proof. exists (nextinstr (rs2#(ireg_of dst) <- v)). split. eapply exec_straight_trans. eexact EX1. apply exec_straight_one. simpl. - rewrite <- (ireg_val _ _ _ dst AG1);auto. rewrite Regmap.gss. + rewrite <- (ireg_val _ _ _ _ dst AG1);auto. rewrite Regmap.gss. rewrite EQ1. reflexivity. reflexivity. eauto with ppcgen. Qed. @@ -881,13 +881,13 @@ Proof. rewrite RA_EQ. change (rs3 LR) with (Val.add (Val.add (rs PC) Vone) Vone). rewrite <- H5. reflexivity. - assert (AG3: agree ms sp rs3). + assert (AG3: agree tge ms sp rs3). unfold rs3, rs2; auto 8 with ppcgen. left; exists (State rs3 m); split. apply plus_left with E0 (State rs2 m) E0. econstructor. eauto. apply functions_transl. eexact H0. eapply find_instr_tail. eauto. - simpl. rewrite <- (ireg_val ms sp rs); auto. + simpl. rewrite <- (ireg_val tge ms sp rs); auto. apply star_one. econstructor. change (rs2 PC) with (Val.add (rs PC) Vone). rewrite <- H5. simpl. auto. @@ -910,7 +910,7 @@ Proof. rewrite RA_EQ. change (rs2 LR) with (Val.add (rs PC) Vone). rewrite <- H5. reflexivity. - assert (AG2: agree ms sp rs2). + assert (AG2: agree tge ms sp rs2). unfold rs2; auto 8 with ppcgen. left; exists (State rs2 m); split. apply plus_one. econstructor. @@ -953,16 +953,16 @@ Proof. (transl_code f (Mtailcall sig (inl ident m0) :: c)) rs m (Pbctr :: transl_code f c) rs5 (free m stk)). simpl. apply exec_straight_step with rs2 m. - simpl. rewrite <- (ireg_val _ _ _ _ AG H6). reflexivity. reflexivity. + simpl. rewrite <- (ireg_val _ _ _ _ _ AG H6). reflexivity. reflexivity. apply exec_straight_step with rs3 m. simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low. - change (rs2 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG). + change (rs2 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ _ AG). simpl. unfold load_stack in H2. simpl in H2. rewrite H2. reflexivity. discriminate. reflexivity. apply exec_straight_step with rs4 m. simpl. reflexivity. reflexivity. apply exec_straight_one. - simpl. change (rs4 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG). + simpl. change (rs4 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ _ AG). unfold load_stack in H1; simpl in H1. simpl. rewrite H1. reflexivity. reflexivity. left; exists (State rs6 (free m stk)); split. @@ -977,12 +977,12 @@ Proof. simpl. reflexivity. traceEq. (* match states *) econstructor; eauto. - assert (AG4: agree ms (Vptr stk soff) rs4). + assert (AG4: agree tge ms (Vptr stk soff) rs4). unfold rs4, rs3, rs2; auto 10 with ppcgen. - assert (AG5: agree ms (parent_sp s) rs5). - unfold rs5. apply agree_nextinstr. - split. reflexivity. intros. inv AG4. rewrite H12. - rewrite Pregmap.gso; auto with ppcgen. + assert (AG5: agree tge ms (parent_sp s) rs5). + unfold rs5. apply agree_nextinstr. destruct AG4 as [X [Y Z]]. + split. reflexivity. split. rewrite <- Y. reflexivity. + intros. rewrite Z. rewrite Pregmap.gso; auto with ppcgen. unfold rs6; auto with ppcgen. change (rs6 PC) with (ms m0). generalize H. destruct (ms m0); try congruence. @@ -997,13 +997,13 @@ Proof. (Pbs i :: transl_code f c) rs4 (free m stk)). simpl. apply exec_straight_step with rs2 m. simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low. - rewrite <- (sp_val _ _ _ AG). + rewrite <- (sp_val _ _ _ _ AG). simpl. unfold load_stack in H2. simpl in H2. rewrite H2. reflexivity. discriminate. reflexivity. apply exec_straight_step with rs3 m. simpl. reflexivity. reflexivity. apply exec_straight_one. - simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG). + simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ _ AG). unfold load_stack in H1; simpl in H1. simpl. rewrite H1. reflexivity. reflexivity. left; exists (State rs5 (free m stk)); split. @@ -1019,12 +1019,12 @@ Proof. reflexivity. traceEq. (* match states *) econstructor; eauto. - assert (AG3: agree ms (Vptr stk soff) rs3). + assert (AG3: agree tge ms (Vptr stk soff) rs3). unfold rs3, rs2; auto 10 with ppcgen. - assert (AG4: agree ms (parent_sp s) rs4). - unfold rs4. apply agree_nextinstr. - split. reflexivity. intros. inv AG3. rewrite H12. - rewrite Pregmap.gso; auto with ppcgen. + assert (AG4: agree tge ms (parent_sp s) rs4). + unfold rs4. apply agree_nextinstr. destruct AG3 as [X [Y Z]]. + split. reflexivity. split. rewrite <- Y. reflexivity. + intros. rewrite Z. rewrite Pregmap.gso; auto with ppcgen. unfold rs5; auto with ppcgen. Qed. @@ -1148,10 +1148,10 @@ Proof. simpl. apply exec_straight_three with rs2 m rs3 m. simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low. unfold load_stack in H1. simpl in H1. - rewrite <- (sp_val _ _ _ AG). simpl. rewrite H1. + rewrite <- (sp_val _ _ _ _ AG). simpl. rewrite H1. reflexivity. discriminate. unfold rs3. change (parent_ra s) with rs2#GPR12. reflexivity. - simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG). + simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ _ AG). simpl. unfold load_stack in H0. simpl in H0. rewrite H0. reflexivity. @@ -1172,12 +1172,13 @@ Proof. reflexivity. traceEq. (* match states *) econstructor; eauto. - assert (AG3: agree ms (Vptr stk soff) rs3). + assert (AG3: agree tge ms (Vptr stk soff) rs3). unfold rs3, rs2; auto 10 with ppcgen. - assert (AG4: agree ms (parent_sp s) rs4). - split. reflexivity. intros. unfold rs4. - rewrite nextinstr_inv. rewrite Pregmap.gso. - elim AG3; auto. auto with ppcgen. auto with ppcgen. + assert (AG4: agree tge ms (parent_sp s) rs4). + destruct AG3 as [X [Y Z]]. + split. reflexivity. split. rewrite <- Y; reflexivity. + intros. unfold rs4. rewrite nextinstr_inv. rewrite Pregmap.gso. auto. + auto with ppcgen. auto with ppcgen. unfold rs5; auto with ppcgen. Qed. @@ -1212,7 +1213,7 @@ Proof. apply exec_straight_three with rs2 m2 rs3 m2. unfold exec_instr. rewrite H0. fold sp. unfold store_stack in H1. simpl chunk_of_type in H1. - rewrite <- (sp_val _ _ _ AG). rewrite H1. reflexivity. + rewrite <- (sp_val _ _ _ _ AG). rewrite H1. reflexivity. simpl. change (rs2 LR) with (rs LR). rewrite ATLR. reflexivity. simpl. unfold store1. rewrite gpr_or_zero_not_zero. unfold const_low. change (rs3 GPR1) with sp. change (rs3 GPR12) with (parent_ra s). @@ -1227,12 +1228,13 @@ Proof. eapply code_tail_next_int; auto. change (Int.unsigned Int.zero) with 0. unfold transl_function. constructor. - assert (AG2: agree ms sp rs2). - split. reflexivity. + assert (AG2: agree tge ms sp rs2). + destruct AG as [X [Y Z]]. + split. reflexivity. split. rewrite <- Y; reflexivity. intros. unfold rs2. rewrite nextinstr_inv. - repeat (rewrite Pregmap.gso). elim AG; auto. + repeat (rewrite Pregmap.gso). auto. auto with ppcgen. auto with ppcgen. auto with ppcgen. - assert (AG4: agree ms sp rs4). + assert (AG4: agree tge ms sp rs4). unfold rs4, rs3; auto with ppcgen. left; exists (State rs4 m3); split. (* execution *) @@ -1308,7 +1310,8 @@ Proof. with (Vptr fb Int.zero). rewrite (Genv.init_mem_transf_partial _ _ TRANSF). econstructor; eauto. constructor. - split. auto. intros. repeat rewrite Pregmap.gso; auto with ppcgen. + split. auto. split. auto. + intros. repeat rewrite Pregmap.gso; auto with ppcgen. unfold symbol_offset. rewrite (transform_partial_program_main _ _ TRANSF). rewrite symbols_preserved. unfold ge; rewrite H0. auto. @@ -1320,7 +1323,7 @@ Lemma transf_final_states: Proof. intros. inv H0. inv H. constructor. auto. compute in H1. - rewrite (ireg_val _ _ _ R3 AG) in H1. auto. auto. + rewrite (ireg_val _ _ _ _ R3 AG) in H1. auto. auto. Qed. Theorem transf_program_correct: diff --git a/powerpc/Asmgenproof1.v b/powerpc/Asmgenproof1.v index 38525c9..226c175 100644 --- a/powerpc/Asmgenproof1.v +++ b/powerpc/Asmgenproof1.v @@ -188,18 +188,30 @@ Lemma preg_of_not_GPR1: Proof. intro. case r; discriminate. Qed. -Hint Resolve preg_of_not_GPR1: ppcgen. +Lemma preg_of_not_GPR13: + forall r, preg_of r <> GPR13. +Proof. + intro. case r; discriminate. +Qed. + +Hint Resolve preg_of_not_GPR1 preg_of_not_GPR13: ppcgen. (** Agreement between Mach register sets and PPC register sets. *) +Section AGREEMENT. + +Variable ge: genv. + Definition agree (ms: Mach.regset) (sp: val) (rs: Asm.regset) := - rs#GPR1 = sp /\ forall r: mreg, ms r = rs#(preg_of r). + rs#GPR1 = sp /\ + rs#GPR13 = small_data_area_base ge /\ + forall r: mreg, ms r = rs#(preg_of r). Lemma preg_val: forall ms sp rs r, agree ms sp rs -> ms r = rs#(preg_of r). Proof. - intros. elim H. auto. + intros. destruct H as [A [B C]]. auto. Qed. Lemma ireg_val: @@ -208,8 +220,8 @@ Lemma ireg_val: mreg_type r = Tint -> ms r = rs#(ireg_of r). Proof. - intros. elim H; intros. - generalize (H2 r). unfold preg_of. rewrite H0. auto. + intros. rewrite (preg_val ms sp rs); auto. + unfold preg_of. rewrite H0. auto. Qed. Lemma freg_val: @@ -218,8 +230,8 @@ Lemma freg_val: mreg_type r = Tfloat -> ms r = rs#(freg_of r). Proof. - intros. elim H; intros. - generalize (H2 r). unfold preg_of. rewrite H0. auto. + intros. rewrite (preg_val ms sp rs); auto. + unfold preg_of. rewrite H0. auto. Qed. Lemma sp_val: @@ -227,7 +239,15 @@ Lemma sp_val: agree ms sp rs -> sp = rs#GPR1. Proof. - intros. elim H; auto. + intros. destruct H as [A [B C]]. auto. +Qed. + +Lemma gpr13_val: + forall ms sp rs, + agree ms sp rs -> + small_data_area_base ge = rs#GPR13. +Proof. + intros. destruct H as [A [B C]]. auto. Qed. Lemma agree_exten_1: @@ -236,8 +256,9 @@ Lemma agree_exten_1: (forall r, is_data_reg r -> rs'#r = rs#r) -> agree ms sp rs'. Proof. - unfold agree; intros. elim H; intros. - split. rewrite H0. auto. exact I. + unfold agree; intros. destruct H as [A [B C]]. + split. rewrite H0. auto. exact I. + split. rewrite H0. auto. exact I. intros. rewrite H0. auto. apply preg_of_is_data_reg. Qed. @@ -263,8 +284,9 @@ Lemma agree_set_mreg: agree ms sp rs -> agree (Regmap.set r v ms) sp (rs#(preg_of r) <- v). Proof. - unfold agree; intros. elim H; intros; clear H. + unfold agree; intros. destruct H as [A [B C]]. split. rewrite Pregmap.gso. auto. apply sym_not_eq. apply preg_of_not_GPR1. + split. rewrite Pregmap.gso. auto. apply sym_not_eq. apply preg_of_not_GPR13. intros. unfold Regmap.set. case (RegEq.eq r0 r); intro. subst r0. rewrite Pregmap.gss. auto. rewrite Pregmap.gso. auto. red; intro. @@ -317,15 +339,9 @@ Lemma agree_set_mireg_twice: mreg_type r = Tint -> agree (Regmap.set r v ms) sp (rs #(ireg_of r) <- v' #(ireg_of r) <- v). Proof. - intros. replace (IR (ireg_of r)) with (preg_of r). elim H; intros. - split. repeat (rewrite Pregmap.gso; auto with ppcgen). - intros. case (mreg_eq r r0); intro. - subst r0. rewrite Regmap.gss. rewrite Pregmap.gss. auto. - assert (preg_of r <> preg_of r0). - red; intro. elim n. apply preg_of_injective. auto. - rewrite Regmap.gso; auto. - repeat (rewrite Pregmap.gso; auto). - unfold preg_of. rewrite H0. auto. + intros. apply agree_exten_1 with (rs#(ireg_of r) <- v). + apply agree_set_mireg. apply agree_set_mreg. auto. auto. + intros. unfold Pregmap.set. destruct (PregEq.eq r0 (ireg_of r)); auto. Qed. Hint Resolve agree_set_mireg_twice: ppcgen. @@ -335,10 +351,12 @@ Lemma agree_set_twice_mireg: mreg_type r = Tint -> agree (Regmap.set r v ms) sp (rs#(ireg_of r) <- v). Proof. - intros. elim H; intros. - split. rewrite Pregmap.gso. auto. - generalize (ireg_of_not_GPR1 r); congruence. - intros. generalize (H2 r0). + intros. destruct H as [A [B C]]. + split. rewrite Pregmap.gso; auto. + generalize (preg_of_not_GPR1 r). unfold preg_of. rewrite H0. congruence. + split. rewrite Pregmap.gso; auto. + generalize (preg_of_not_GPR13 r). unfold preg_of. rewrite H0. congruence. + intros. generalize (C r0). case (mreg_eq r0 r); intro. subst r0. repeat rewrite Regmap.gss. unfold preg_of; rewrite H0. rewrite Pregmap.gss. auto. @@ -466,11 +484,6 @@ Qed. (** * Execution of straight-line code *) -Section STRAIGHTLINE. - -Variable ge: genv. -Variable fn: code. - (** Straight-line code is composed of PPC instructions that execute in sequence (no branches, no function calls and returns). The following inductive predicate relates the machine states @@ -478,6 +491,8 @@ Variable fn: code. Instructions are taken from the first list instead of being fetched from memory. *) +Variable fn: code. + Inductive exec_straight: code -> regset -> mem -> code -> regset -> mem -> Prop := | exec_straight_one: @@ -1474,6 +1489,11 @@ Proof. apply H0. simpl. repeat (rewrite (ireg_val ms sp rs); auto). auto. (* Aglobal *) + case_eq (symbol_is_small_data i i0); intro SISD. + eapply H; eauto. + simpl. rewrite <- (gpr13_val _ _ _ H1). + rewrite small_data_area_addressing; auto. + discriminate. set (rs1 := nextinstr (rs#GPR12 <- (const_high ge (Csymbol_high i i0)))). assert (ADDR: eval_addressing_total ge sp (Aglobal i i0) ms##nil = Val.add rs1#GPR12 (const_low ge (Csymbol_low i i0))). @@ -1619,7 +1639,7 @@ Proof. unfold store1. rewrite gpr_or_zero_not_zero; auto. repeat rewrite B. rewrite <- (eval_addressing_weaken _ _ _ _ H3) in H4. - rewrite H5 in H4. elim H6; intros. rewrite H9 in H4. + rewrite H5 in H4. rewrite (preg_val _ _ _ src H6) in H4. rewrite H4. auto. apply preg_of_not. simpl. tauto. discriminate. @@ -1631,7 +1651,7 @@ Proof. split. apply exec_straight_one. rewrite A. unfold store2. repeat rewrite B. rewrite <- (eval_addressing_weaken _ _ _ _ H3) in H4. - rewrite H5 in H4. elim H6; intros. rewrite H8 in H4. + rewrite H5 in H4. rewrite (preg_val _ _ _ src H6) in H4. rewrite H4. auto. apply preg_of_not. simpl. tauto. discriminate. discriminate. @@ -1641,6 +1661,18 @@ Proof. auto. auto. Qed. +End AGREEMENT. -End STRAIGHTLINE. - +(* Re-export hints. *) +Hint Resolve agree_set_mreg: ppcgen. +Hint Resolve agree_set_mireg: ppcgen. +Hint Resolve agree_set_mfreg: ppcgen. +Hint Resolve agree_set_other: ppcgen. +Hint Resolve agree_nextinstr: ppcgen. +Hint Resolve agree_set_mireg_twice: ppcgen. +Hint Resolve agree_set_twice_mireg: ppcgen. +Hint Resolve agree_set_commut: ppcgen. +Hint Resolve agree_nextinstr_commut: ppcgen. +Hint Resolve nextinstr_inv: ppcgen. +Hint Resolve nextinstr_set_preg: ppcgen. +Hint Resolve gpr_or_zero_not_zero gpr_or_zero_zero: ppcgen. diff --git a/powerpc/PrintAsm.ml b/powerpc/PrintAsm.ml index 3c8d82b..a5415f8 100644 --- a/powerpc/PrintAsm.ml +++ b/powerpc/PrintAsm.ml @@ -110,6 +110,8 @@ let constant oc cst = | Linux|Diab -> fprintf oc "(%a)@ha" symbol_offset (s, camlint_of_coqint n) end + | Csymbol_sda(s, n) -> + assert false (* treated specially in ireg_with_offset below *) let num_crbit = function | CRbit_0 -> 0 @@ -162,27 +164,44 @@ let creg oc r = | MacOS|Diab -> fprintf oc "cr%d" r | Linux -> fprintf oc "%d" r +let ireg_with_offset oc (r, cst) = + match cst with + | Csymbol_sda(s, n) -> + begin match target with + | MacOS -> + assert false + | Linux -> + fprintf oc "(%a)@sdarel(%a)" symbol_offset (s, camlint_of_coqint n) ireg r + | Diab -> + fprintf oc "(%a)@sdarx(r0)" symbol_offset (s, camlint_of_coqint n) + end + | _ -> + fprintf oc "%a(%a)" constant cst ireg r + let section oc name = fprintf oc " %s\n" name (* Names of sections *) -let (text, data, const_data, float_literal) = +let (text, data, const_data, sdata, float_literal) = match target with | MacOS -> (".text", ".data", ".const", + ".data", (* unused *) ".const_data") | Linux -> (".text", ".data", ".rodata", + ".section .sdata,\"aw\",@progbits", ".section .rodata.cst8,\"aM\",@progbits,8") | Diab -> (".text", ".data", ".data", (* to check *) + ".sdata", (* to check *) ".data") (* to check *) (* Encoding masks for rlwinm instructions *) @@ -349,11 +368,11 @@ let print_instruction oc labels = function fprintf oc "%a: .long 0x43300000, 0x00000000\n" label lbl; section oc text | Plbz(r1, c, r2) -> - fprintf oc " lbz %a, %a(%a)\n" ireg r1 constant c ireg r2 + fprintf oc " lbz %a, %a\n" ireg r1 ireg_with_offset (r2, c) | Plbzx(r1, r2, r3) -> fprintf oc " lbzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3 | Plfd(r1, c, r2) -> - fprintf oc " lfd %a, %a(%a)\n" freg r1 constant c ireg r2 + fprintf oc " lfd %a, %a\n" freg r1 ireg_with_offset (r2, c) | Plfdx(r1, r2, r3) -> fprintf oc " lfdx %a, %a, %a\n" freg r1 ireg r2 ireg r3 | Plfi(r1, c) -> @@ -367,19 +386,19 @@ let print_instruction oc labels = function fprintf oc "%a: .long 0x%lx, 0x%lx\n" label lbl nhi nlo; section oc text | Plfs(r1, c, r2) -> - fprintf oc " lfs %a, %a(%a)\n" freg r1 constant c ireg r2 + fprintf oc " lfs %a, %a\n" freg r1 ireg_with_offset (r2, c) | Plfsx(r1, r2, r3) -> fprintf oc " lfsx %a, %a, %a\n" freg r1 ireg r2 ireg r3 | Plha(r1, c, r2) -> - fprintf oc " lha %a, %a(%a)\n" ireg r1 constant c ireg r2 + fprintf oc " lha %a, %a\n" ireg r1 ireg_with_offset (r2, c) | Plhax(r1, r2, r3) -> fprintf oc " lhax %a, %a, %a\n" ireg r1 ireg r2 ireg r3 | Plhz(r1, c, r2) -> - fprintf oc " lhz %a, %a(%a)\n" ireg r1 constant c ireg r2 + fprintf oc " lhz %a, %a\n" ireg r1 ireg_with_offset (r2, c) | Plhzx(r1, r2, r3) -> fprintf oc " lhzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3 | Plwz(r1, c, r2) -> - fprintf oc " lwz %a, %a(%a)\n" ireg r1 constant c ireg r2 + fprintf oc " lwz %a, %a\n" ireg r1 ireg_with_offset (r2, c) | Plwzx(r1, r2, r3) -> fprintf oc " lwzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3 | Pmfcrbit(r1, bit) -> @@ -426,25 +445,25 @@ let print_instruction oc labels = function | Psrw(r1, r2, r3) -> fprintf oc " srw %a, %a, %a\n" ireg r1 ireg r2 ireg r3 | Pstb(r1, c, r2) -> - fprintf oc " stb %a, %a(%a)\n" ireg r1 constant c ireg r2 + fprintf oc " stb %a, %a\n" ireg r1 ireg_with_offset (r2, c) | Pstbx(r1, r2, r3) -> fprintf oc " stbx %a, %a, %a\n" ireg r1 ireg r2 ireg r3 | Pstfd(r1, c, r2) -> - fprintf oc " stfd %a, %a(%a)\n" freg r1 constant c ireg r2 + fprintf oc " stfd %a, %a\n" freg r1 ireg_with_offset (r2, c) | Pstfdx(r1, r2, r3) -> fprintf oc " stfdx %a, %a, %a\n" freg r1 ireg r2 ireg r3 | Pstfs(r1, c, r2) -> fprintf oc " frsp %a, %a\n" freg FPR13 freg r1; - fprintf oc " stfs %a, %a(%a)\n" freg FPR13 constant c ireg r2 + fprintf oc " stfs %a, %a\n" freg FPR13 ireg_with_offset (r2, c) | Pstfsx(r1, r2, r3) -> fprintf oc " frsp %a, %a\n" freg FPR13 freg r1; fprintf oc " stfsx %a, %a, %a\n" freg FPR13 ireg r2 ireg r3 | Psth(r1, c, r2) -> - fprintf oc " sth %a, %a(%a)\n" ireg r1 constant c ireg r2 + fprintf oc " sth %a, %a\n" ireg r1 ireg_with_offset (r2, c) | Psthx(r1, r2, r3) -> fprintf oc " sthx %a, %a, %a\n" ireg r1 ireg r2 ireg r3 | Pstw(r1, c, r2) -> - fprintf oc " stw %a, %a(%a)\n" ireg r1 constant c ireg r2 + fprintf oc " stw %a, %a\n" ireg r1 ireg_with_offset (r2, c) | Pstwx(r1, r2, r3) -> fprintf oc " stwx %a, %a, %a\n" ireg r1 ireg r2 ireg r3 | Psubfc(r1, r2, r3) -> @@ -681,8 +700,14 @@ let print_var oc (Coq_pair(Coq_pair(name, init_data), _)) = match init_data with | [] -> () | _ -> - section oc - (if Cil2Csyntax.atom_is_readonly name then const_data else data); + let sec = + if Cil2Csyntax.atom_is_small_data name (coqint_of_camlint 0l) then + sdata + else if Cil2Csyntax.atom_is_readonly name then + const_data + else + data in + section oc sec; fprintf oc " .align 3\n"; if not (Cil2Csyntax.atom_is_static name) then fprintf oc " .globl %a\n" symbol name; |