diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-02-04 16:16:17 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-02-04 16:16:17 +0000 |
commit | 77d3c45aa0928420a083a8d25ec52d5f7f3e6c77 (patch) | |
tree | bdcd23495d968354a29030f9e30468d8425d0a58 /lib | |
parent | d8188fcae32c17ceaa17cf98f2d0e46c95b685fe (diff) |
Some more properties. Refactored some proofs.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2109 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Integers.v | 128 |
1 files changed, 107 insertions, 21 deletions
diff --git a/lib/Integers.v b/lib/Integers.v index 9844ed1..a76049b 100644 --- a/lib/Integers.v +++ b/lib/Integers.v @@ -1398,6 +1398,16 @@ Proof. unfold z; auto. Qed. +Lemma Z_of_bits_equal: + forall f x, + (forall i, 0 <= i < Z_of_nat wordsize -> f i = bits_of_Z wordsize (unsigned x) i) -> + repr (Z_of_bits wordsize f 0) = x. +Proof. + intros. transitivity (repr (Z_of_bits wordsize (bits_of_Z wordsize (unsigned x)) 0)). + f_equal. apply Z_of_bits_exten; intros. apply H. omega. + apply eqm_repr_eq. apply Z_of_bits_of_Z. +Qed. + (** ** Properties of bitwise and, or, xor *) Lemma bitwise_binop_commut: @@ -1427,9 +1437,7 @@ Lemma bitwise_binop_idem: forall x, bitwise_binop f x x = x. Proof. - unfold bitwise_binop; intros. - apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z. - apply eqm_refl2. apply Z_of_bits_exten. auto. + unfold bitwise_binop; intros. apply Z_of_bits_equal; intros. auto. Qed. Theorem and_commut: forall x y, and x y = and y x. @@ -1440,21 +1448,27 @@ Proof (bitwise_binop_assoc andb andb_assoc). Theorem and_zero: forall x, and x zero = zero. Proof. - intros. unfold and, bitwise_binop. - apply eqm_samerepr. eapply eqm_trans. 2: apply Z_of_bits_of_Z. - apply eqm_refl2. apply Z_of_bits_exten. intros. + intros. unfold and, bitwise_binop. apply Z_of_bits_equal; intros. rewrite unsigned_zero. rewrite bits_of_Z_zero. apply andb_b_false. Qed. +Corollary and_zero_l: forall x, and zero x = zero. +Proof. + intros. rewrite and_commut. apply and_zero. +Qed. + Theorem and_mone: forall x, and x mone = x. Proof. - intros. unfold and, bitwise_binop. - apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z. - apply eqm_refl2. apply Z_of_bits_exten; intros. + intros. unfold and, bitwise_binop. apply Z_of_bits_equal; intros. rewrite unsigned_mone. rewrite bits_of_Z_mone. apply andb_b_true. omega. Qed. +Corollary and_mone_l: forall x, and mone x = x. +Proof. + intros. rewrite and_commut. apply and_mone. +Qed. + Theorem and_idem: forall x, and x x = x. Proof. intros. apply (bitwise_binop_idem andb). destruct a; auto. @@ -1468,21 +1482,27 @@ Proof (bitwise_binop_assoc orb orb_assoc). Theorem or_zero: forall x, or x zero = x. Proof. - intros. unfold or, bitwise_binop. - apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z. - apply eqm_refl2. apply Z_of_bits_exten. intros. + intros. unfold or, bitwise_binop. apply Z_of_bits_equal; intros. rewrite unsigned_zero. rewrite bits_of_Z_zero. apply orb_b_false. Qed. +Corollary or_zero_l: forall x, or zero x = x. +Proof. + intros. rewrite or_commut. apply or_zero. +Qed. + Theorem or_mone: forall x, or x mone = mone. Proof. - intros. unfold or, bitwise_binop. - apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z. - apply eqm_refl2. apply Z_of_bits_exten. intros. + intros. unfold or, bitwise_binop. apply Z_of_bits_equal; intros. rewrite unsigned_mone. rewrite bits_of_Z_mone. apply orb_b_true. omega. Qed. +Corollary or_mone_l: forall x, or mone x = mone. +Proof. + intros. rewrite or_commut. apply or_mone. +Qed. + Theorem or_idem: forall x, or x x = x. Proof. intros. apply (bitwise_binop_idem orb). destruct a; auto. @@ -1499,6 +1519,49 @@ Proof. apply demorgan1. Qed. +Corollary and_or_distrib_l: + forall x y z, + and (or x y) z = or (and x z) (and y z). +Proof. + intros. rewrite (and_commut (or x y)). rewrite and_or_distrib. f_equal; apply and_commut. +Qed. + +Theorem or_and_distrib: + forall x y z, + or x (and y z) = and (or x y) (or x z). +Proof. + intros; unfold and, or, bitwise_binop. + repeat rewrite unsigned_repr; auto with ints. + decEq; apply Z_of_bits_exten; intros. + repeat rewrite bits_of_Z_of_bits; repeat rewrite Zplus_0_r; auto. + apply orb_andb_distrib_r. +Qed. + +Corollary or_and_distrib_l: + forall x y z, + or (and x y) z = and (or x z) (or y z). +Proof. + intros. rewrite (or_commut (and x y)). rewrite or_and_distrib. f_equal; apply or_commut. +Qed. + +Theorem and_or_absorb: forall x y, and x (or x y) = x. +Proof. + intros; unfold and, or, bitwise_binop. apply Z_of_bits_equal; intros. + rewrite unsigned_repr; auto with ints. rewrite bits_of_Z_of_bits. + assert (forall a b, a && (a || b) = a) by (destruct a; destruct b; auto). + auto. + omega. +Qed. + +Theorem or_and_absorb: forall x y, or x (and x y) = x. +Proof. + intros; unfold and, or, bitwise_binop. apply Z_of_bits_equal; intros. + rewrite unsigned_repr; auto with ints. rewrite bits_of_Z_of_bits. + assert (forall a b, a || (a && b) = a) by (destruct a; destruct b; auto). + auto. + omega. +Qed. + Theorem xor_commut: forall x y, xor x y = xor y x. Proof (bitwise_binop_commut xorb xorb_comm). @@ -1510,17 +1573,18 @@ Qed. Theorem xor_zero: forall x, xor x zero = x. Proof. - intros. unfold xor, bitwise_binop. - apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z. - apply eqm_refl2. apply Z_of_bits_exten. intros. + intros. unfold xor, bitwise_binop. apply Z_of_bits_equal; intros. rewrite unsigned_zero. rewrite bits_of_Z_zero. apply xorb_false. Qed. +Corollary xor_zero_l: forall x, xor zero x = x. +Proof. + intros. rewrite xor_commut. apply xor_zero. +Qed. + Theorem xor_idem: forall x, xor x x = zero. Proof. - intros. unfold xor, bitwise_binop. - apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z. - apply eqm_refl2. apply Z_of_bits_exten. intros. + intros. unfold xor, bitwise_binop. apply Z_of_bits_equal; intros. rewrite unsigned_zero. rewrite bits_of_Z_zero. apply xorb_nilpotent. Qed. @@ -1530,6 +1594,28 @@ Proof. rewrite xor_commut. apply xor_zero. Qed. Theorem xor_one_one: xor one one = zero. Proof. apply xor_idem. Qed. +Theorem xor_zero_equal: forall x y, xor x y = zero -> x = y. +Proof. + unfold xor, bitwise_binop; intros. + set (ux := unsigned x) in *. set (uy := unsigned y) in *. + set (fx := bits_of_Z wordsize ux) in *. + set (fy := bits_of_Z wordsize uy) in *. + assert (forall i, 0 <= i < Z_of_nat wordsize -> fx i = fy i). + intros. + assert (bits_of_Z wordsize (unsigned (repr (Z_of_bits wordsize (fun i => xorb (fx i) (fy i)) 0))) i = false). + rewrite H. rewrite unsigned_zero. apply bits_of_Z_zero. + rewrite unsigned_repr in H1; auto with ints. + rewrite bits_of_Z_of_bits in H1; auto. + destruct (fx i); destruct (fy i); simpl in H1; congruence. + rewrite <- (repr_unsigned x); fold ux. + rewrite <- (repr_unsigned y); fold uy. + apply eqm_samerepr. + eapply eqm_trans. apply eqm_sym. apply Z_of_bits_of_Z. + eapply eqm_trans. 2: apply Z_of_bits_of_Z. + fold fx; fold fy. apply eqm_refl2. + apply Z_of_bits_exten. intros; apply H0; omega. +Qed. + Theorem and_xor_distrib: forall x y z, and x (xor y z) = xor (and x y) (and x z). |