diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-04-29 17:11:47 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-04-29 17:11:47 +0000 |
commit | 5c84fd4adbcd8a63cc29fb0286cb46f18abde55c (patch) | |
tree | 39c5c7057d4a7da0b674d8427a9e8910927859f7 /lib | |
parent | 540bc673fd0e924c20521bb011de56f11c91c493 (diff) |
Expand 64-bit integer comparisons into 32-bit integer comparisons.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2218 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Integers.v | 94 |
1 files changed, 59 insertions, 35 deletions
diff --git a/lib/Integers.v b/lib/Integers.v index b2598bb..5eb4c82 100644 --- a/lib/Integers.v +++ b/lib/Integers.v @@ -815,6 +815,15 @@ Proof. intros. generalize (eq_spec x y); case (eq x y); intros; congruence. Qed. +Theorem eq_signed: + forall x y, eq x y = if zeq (signed x) (signed y) then true else false. +Proof. + intros. predSpec eq eq_spec x y. + subst x. rewrite zeq_true; auto. + destruct (zeq (signed x) (signed y)); auto. + elim H. rewrite <- (repr_signed x). rewrite <- (repr_signed y). congruence. +Qed. + (** ** Properties of addition *) Theorem add_unsigned: forall x y, add x y = repr (unsigned x + unsigned y). @@ -4121,47 +4130,62 @@ Qed. Lemma decompose_ltu: forall xh xl yh yl, - ltu (ofwords xh xl) (ofwords yh yl) = Int.ltu xh yh || Int.eq xh yh && Int.ltu xl yl. -Proof. - intros. unfold ltu. rewrite ! ofwords_add'. unfold Int.ltu. - destruct (zlt (Int.unsigned xh) (Int.unsigned yh)). - simpl. apply zlt_true. - change (two_power_pos 32) with Int.modulus. + ltu (ofwords xh xl) (ofwords yh yl) = if Int.eq xh yh then Int.ltu xl yl else Int.ltu xh yh. +Proof. + intros. unfold ltu. rewrite ! ofwords_add'. unfold Int.ltu, Int.eq. + destruct (zeq (Int.unsigned xh) (Int.unsigned yh)). + rewrite e. destruct (zlt (Int.unsigned xl) (Int.unsigned yl)). + apply zlt_true; omega. + apply zlt_false; omega. + change (two_p 32) with Int.modulus. generalize (Int.unsigned_range xl) (Int.unsigned_range yl). - change Int.modulus with 4294967296. omega. - unfold Int.eq. destruct (zeq (Int.unsigned xh) (Int.unsigned yh)); simpl. - rewrite e. destruct (zlt (Int.unsigned xl) (Int.unsigned yl)). - apply zlt_true. omega. - apply zlt_false. omega. - apply zlt_false. - change (two_power_pos 32) with Int.modulus. - generalize (Int.unsigned_range xl) (Int.unsigned_range yl). - change Int.modulus with 4294967296. omega. + change Int.modulus with 4294967296. intros. + destruct (zlt (Int.unsigned xh) (Int.unsigned yh)). + apply zlt_true; omega. + apply zlt_false; omega. Qed. -Lemma decompose_lt: +Lemma decompose_leu: forall xh xl yh yl, - lt (ofwords xh xl) (ofwords yh yl) = Int.lt xh yh || Int.eq xh yh && Int.ltu xl yl. + negb (ltu (ofwords yh yl) (ofwords xh xl)) = + if Int.eq xh yh then negb (Int.ltu yl xl) else Int.ltu xh yh. Proof. - intros. unfold lt. rewrite ! ofwords_add''. unfold Int.lt. - destruct (zlt (Int.signed xh) (Int.signed yh)). - simpl. apply zlt_true. - change (two_power_pos 32) with Int.modulus. - generalize (Int.unsigned_range xl) (Int.unsigned_range yl). - change Int.modulus with 4294967296. omega. - replace (Int.eq xh yh) with (proj_sumbool(zeq (Int.signed xh) (Int.signed yh))). - destruct (zeq (Int.signed xh) (Int.signed yh)); simpl. - rewrite e. unfold Int.ltu. destruct (zlt (Int.unsigned xl) (Int.unsigned yl)). - apply zlt_true. omega. - apply zlt_false. omega. - apply zlt_false. - change (two_power_pos 32) with Int.modulus. + intros. rewrite decompose_ltu. rewrite Int.eq_sym. + unfold Int.eq. destruct (zeq (Int.unsigned xh) (Int.unsigned yh)). + auto. + unfold Int.ltu. destruct (zlt (Int.unsigned xh) (Int.unsigned yh)). + rewrite zlt_false by omega; auto. + rewrite zlt_true by omega; auto. +Qed. + +Lemma decompose_lt: + forall xh xl yh yl, + lt (ofwords xh xl) (ofwords yh yl) = if Int.eq xh yh then Int.ltu xl yl else Int.lt xh yh. +Proof. + intros. unfold lt. rewrite ! ofwords_add''. rewrite Int.eq_signed. + destruct (zeq (Int.signed xh) (Int.signed yh)). + rewrite e. unfold Int.ltu. destruct (zlt (Int.unsigned xl) (Int.unsigned yl)). + apply zlt_true; omega. + apply zlt_false; omega. + change (two_p 32) with Int.modulus. generalize (Int.unsigned_range xl) (Int.unsigned_range yl). - change Int.modulus with 4294967296. omega. - predSpec Int.eq Int.eq_spec xh yh. - subst yh. unfold proj_sumbool; apply zeq_true. - destruct (zeq (Int.signed xh) (Int.signed yh)); auto. - elim H. rewrite <- (Int.repr_signed xh). rewrite <- (Int.repr_signed yh). congruence. + change Int.modulus with 4294967296. intros. + unfold Int.lt. destruct (zlt (Int.signed xh) (Int.signed yh)). + apply zlt_true; omega. + apply zlt_false; omega. +Qed. + +Lemma decompose_le: + forall xh xl yh yl, + negb (lt (ofwords yh yl) (ofwords xh xl)) = + if Int.eq xh yh then negb (Int.ltu yl xl) else Int.lt xh yh. +Proof. + intros. rewrite decompose_lt. rewrite Int.eq_sym. + rewrite Int.eq_signed. destruct (zeq (Int.signed xh) (Int.signed yh)). + auto. + unfold Int.lt. destruct (zlt (Int.signed xh) (Int.signed yh)). + rewrite zlt_false by omega; auto. + rewrite zlt_true by omega; auto. Qed. End Int64. |