diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2012-07-01 16:00:20 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2012-07-01 16:00:20 +0000 |
commit | 3de3ecc23d8ab5d6d45451075467dd70981f1061 (patch) | |
tree | f4cfc65f830d6ec66a8986c890fcda314c391c98 /lib | |
parent | 3d67364b52cac702ed3f2336d7d02f742aa0257a (diff) |
Process successors in increasing order. Helps preserving the nice CFG
structure that we got from Cminorgen. Otherwise, the linearization
heuristic can produce rather bad code.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@1948 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Postorder.v | 85 |
1 files changed, 62 insertions, 23 deletions
diff --git a/lib/Postorder.v b/lib/Postorder.v index fe06da7..3a76b0d 100644 --- a/lib/Postorder.v +++ b/lib/Postorder.v @@ -16,6 +16,8 @@ (** Postorder numbering of a directed graph. *) Require Import Wellfounded. +Require Import Permutation. +Require Import Mergesort. Require Import Coqlib. Require Import Maps. Require Import Iteration. @@ -27,6 +29,25 @@ Definition node: Type := positive. Definition graph: Type := PTree.t (list node). +(** A sorting function over lists of positives. While not necessary for + correctness, we process the successors of a node in increasing order. + This preserves more of the shape of the original graph and is good for + our CFG linearization heuristic. *) + +Module PositiveOrd. + Definition t := positive. + Definition leb (x y: t): bool := if plt y x then false else true. +(* Infix "<=?" := leb (at level 35). *) + Theorem leb_total : forall x y, is_true (leb x y) \/ is_true (leb y x). + Proof. + unfold leb, is_true; intros. + destruct (plt x y); auto. destruct (plt y x); auto. + elim (Plt_strict x). eapply Plt_trans; eauto. + Qed. +End PositiveOrd. + +Module Sort := Mergesort.Sort(PositiveOrd). + (** The traversal is presented as an iteration that modifies the following state. *) Record state : Type := mkstate { @@ -40,7 +61,7 @@ Definition init_state (g: graph) (root: node) := match g!root with | Some succs => {| gr := PTree.remove root g; - wrk := (root, succs) :: nil; + wrk := (root, Sort.sort succs) :: nil; map := PTree.empty positive; next := 1%positive |} | None => @@ -52,16 +73,25 @@ Definition init_state (g: graph) (root: node) := Definition transition (s: state) : PTree.t positive + state := match s.(wrk) with - | nil => + | nil => (**r empty worklist, we are done *) inl _ s.(map) - | (x, nil) :: l => - inr _ {| gr := s.(gr); wrk := l; map := PTree.set x s.(next) s.(map); next := Psucc s.(next) |} - | (x, y :: succs_x) :: l => + | (x, nil) :: l => (**r all successors of [x] are numbered; number [x] itself *) + inr _ {| gr := s.(gr); + wrk := l; + map := PTree.set x s.(next) s.(map); + next := Psucc s.(next) |} + | (x, y :: succs_x) :: l => (**r consider [y], the next unnumbered successor of [x] *) match s.(gr)!y with - | None => - inr _ {| gr := s.(gr); wrk := (x, succs_x) :: l; map := s.(map); next := s.(next) |} - | Some succs_y => - inr _ {| gr := PTree.remove y s.(gr); wrk := (y, succs_y) :: (x, succs_x) :: l; map := s.(map); next := s.(next) |} + | None => (**r [y] is already numbered: discard from worklist *) + inr _ {| gr := s.(gr); + wrk := (x, succs_x) :: l; + map := s.(map); + next := s.(next) |} + | Some succs_y => (**r push [y] on the worklist *) + inr _ {| gr := PTree.remove y s.(gr); + wrk := (y, Sort.sort succs_y) :: (x, succs_x) :: l; + map := s.(map); + next := s.(next) |} end end. @@ -89,8 +119,8 @@ Inductive invariant (s: state) : Prop := (* worklist is well-formed *) (WKLIST: forall x l, In (x, l) s.(wrk) -> s.(gr)!x = None /\ - exists l', ginit!x = Some(l' ++ l) - /\ forall y, In y l' -> s.(gr)!y = None) + exists l', ginit!x = Some l' + /\ forall y, In y l' -> ~In y l -> s.(gr)!y = None) (* all grey nodes are on the worklist *) (GREY: forall x, ginit!x <> None -> s.(gr)!x = None -> s.(map)!x = None -> exists l, In (x,l) s.(wrk)). @@ -101,6 +131,14 @@ Inductive postcondition (map: PTree.t positive) : Prop := (ROOT: ginit!root <> None -> map!root <> None) (SUCCS: forall x succs y, ginit!x = Some succs -> map!x <> None -> In y succs -> ginit!y <> None -> map!y <> None). +Remark In_sort: + forall x l, In x l <-> In x (Sort.sort l). +Proof. + intros; split; intros. + apply Permutation_in with l. apply Sort.Permuted_sort. auto. + apply Permutation_in with (Sort.sort l). apply Permutation_sym. apply Sort.Permuted_sort. auto. +Qed. + Lemma transition_spec: forall s, invariant s -> match transition s with inr s' => invariant s' | inl m => postcondition m end. @@ -138,8 +176,9 @@ Proof. (* color *) rewrite PTree.gsspec in H0. destruct (peq x0 x). inv H0. exploit (WKLIST x nil); auto with coqlib. - intros [A [l' [B C]]]. rewrite app_nil_r in B. - assert (l' = succs) by congruence. subst l'. eauto. + intros [A [l' [B C]]]. + assert (l' = succs) by congruence. subst l'. + apply C; auto. eauto. (* wklist *) apply WKLIST. auto with coqlib. @@ -167,21 +206,20 @@ Proof. rewrite PTree.grspec. destruct (PTree.elt_eq y0 y); eauto. (* wklist *) destruct H. - inv H. split. apply PTree.grs. exists (@nil positive); simpl; intuition. + inv H. split. apply PTree.grs. exists succs_y; split. eauto. + intros. rewrite In_sort in H. tauto. destruct H. inv H. exploit WKLIST; eauto with coqlib. intros [A [l' [B C]]]. split. rewrite PTree.grspec. destruct (PTree.elt_eq x0 y); auto. - exists (l' ++ y :: nil); split. rewrite app_ass. auto. - intros. rewrite in_app_iff in H. simpl in H. intuition. - rewrite PTree.grspec. destruct (PTree.elt_eq y0 y); auto. - subst y0. apply PTree.grs. + exists l'; split. auto. intros. rewrite PTree.grspec. destruct (PTree.elt_eq y0 y); auto. + apply C; auto. simpl. intuition congruence. exploit (WKLIST x0 l0); eauto with coqlib. intros [A [l' [B C]]]. split. rewrite PTree.grspec. destruct (PTree.elt_eq x0 y); auto. exists l'; split; auto. intros. rewrite PTree.grspec. destruct (PTree.elt_eq y0 y); auto. (* grey *) rewrite PTree.grspec in H0. destruct (PTree.elt_eq x0 y) in H0. - subst. exists succs_y; auto with coqlib. + subst. exists (Sort.sort succs_y); auto with coqlib. exploit GREY; eauto. simpl. intros [l1 A]. destruct A. inv H2. exists succ_x; auto. exists l1; auto. @@ -191,8 +229,8 @@ Proof. (* wklist *) destruct H. inv H. exploit (WKLIST x0); eauto with coqlib. intros [A [l' [B C]]]. - split. auto. exists (l' ++ y :: nil); split. rewrite app_ass; auto. - intros. rewrite in_app_iff in H; simpl in H. intuition. congruence. + split. auto. exists l'; split. auto. + intros. destruct (peq y y0). congruence. apply C; auto. simpl. intuition congruence. eapply WKLIST; eauto with coqlib. (* grey *) exploit GREY; eauto. intros [l1 A]. simpl in A. destruct A. @@ -220,10 +258,11 @@ Proof. rewrite PTree.gempty in H0; inv H0. (* wklist *) destruct H; inv H. - split. apply PTree.grs. exists (@nil positive); simpl; tauto. + split. apply PTree.grs. exists succs; split; auto. + intros. rewrite In_sort in H. intuition. (* grey *) rewrite PTree.grspec in H0. destruct (PTree.elt_eq x root). - subst. exists succs; auto. + subst. exists (Sort.sort succs); auto. contradiction. (* root has no succs *) |