summaryrefslogtreecommitdiff
path: root/ia32
diff options
context:
space:
mode:
authorGravatar xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2013-03-03 21:35:23 +0000
committerGravatar xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2013-03-03 21:35:23 +0000
commit6acc8ded7cd7e6605fcf27bdbd209d94571f45f4 (patch)
treec8a6cfbb481adaab445988e5df223dbca751456a /ia32
parentd2ab3d934a3ae059422b12849fc1ca02d54ba7b8 (diff)
Partial backtracking on previous commit: the "hole in Mach stack frame"
trick prevents a future mapping of the Mach/Asm call stack as a single block. IA32 is fixed, PowerPC and ARM remains to be done. git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2136 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'ia32')
-rw-r--r--ia32/Asm.v2
-rw-r--r--ia32/Asmgenproof.v512
2 files changed, 233 insertions, 281 deletions
diff --git a/ia32/Asm.v b/ia32/Asm.v
index 87d9dc9..df901db 100644
--- a/ia32/Asm.v
+++ b/ia32/Asm.v
@@ -70,7 +70,7 @@ Coercion CR: crbit >-> preg.
(** Conventional names for stack pointer ([SP]) and return address ([RA]) *)
-Notation "'SP'" := ESP (only parsing).
+Notation SP := ESP (only parsing).
(** ** Instruction set. *)
diff --git a/ia32/Asmgenproof.v b/ia32/Asmgenproof.v
index e43552e..83918f4 100644
--- a/ia32/Asmgenproof.v
+++ b/ia32/Asmgenproof.v
@@ -84,8 +84,8 @@ Proof.
Qed.
Lemma exec_straight_exec:
- forall f c ep tf tc c' rs m rs' m',
- transl_code_at_pc ge (rs PC) f c ep tf tc ->
+ forall fb f c ep tf tc c' rs m rs' m',
+ transl_code_at_pc ge (rs PC) fb f c ep tf tc ->
exec_straight tge tf tc rs m c' rs' m' ->
plus step tge (State rs m) E0 (State rs' m').
Proof.
@@ -96,11 +96,11 @@ Proof.
Qed.
Lemma exec_straight_at:
- forall f c ep tf tc c' ep' tc' rs m rs' m',
- transl_code_at_pc ge (rs PC) f c ep tf tc ->
+ forall fb f c ep tf tc c' ep' tc' rs m rs' m',
+ transl_code_at_pc ge (rs PC) fb f c ep tf tc ->
transl_code f c' ep' = OK tc' ->
exec_straight tge tf tc rs m tc' rs' m' ->
- transl_code_at_pc ge (rs' PC) f c' ep' tf tc'.
+ transl_code_at_pc ge (rs' PC) fb f c' ep' tf tc'.
Proof.
intros. inv H.
exploit exec_straight_steps_2; eauto.
@@ -110,39 +110,6 @@ Proof.
rewrite PC'. constructor; auto.
Qed.
-(** The [find_label] function returns the code tail starting at the
- given label. A connection with [code_tail] is then established. *)
-
-Fixpoint find_label (lbl: label) (c: code) {struct c} : option code :=
- match c with
- | nil => None
- | instr :: c' =>
- if is_label lbl instr then Some c' else find_label lbl c'
- end.
-
-Lemma label_pos_code_tail:
- forall lbl c pos c',
- find_label lbl c = Some c' ->
- exists pos',
- label_pos lbl pos c = Some pos'
- /\ code_tail (pos' - pos) c c'
- /\ pos < pos' <= pos + list_length_z c.
-Proof.
- induction c.
- simpl; intros. discriminate.
- simpl; intros until c'.
- case (is_label lbl a).
- intro EQ; injection EQ; intro; subst c'.
- exists (pos + 1). split. auto. split.
- replace (pos + 1 - pos) with (0 + 1) by omega. constructor. constructor.
- rewrite list_length_z_cons. generalize (list_length_z_pos c). omega.
- intros. generalize (IHc (pos + 1) c' H). intros [pos' [A [B C]]].
- exists pos'. split. auto. split.
- replace (pos' - pos) with ((pos' - (pos + 1)) + 1) by omega.
- constructor. auto.
- rewrite list_length_z_cons. omega.
-Qed.
-
(** The following lemmas show that the translation from Mach to Asm
preserves labels, in the sense that the following diagram commutes:
<<
@@ -157,120 +124,148 @@ Qed.
>>
The proof demands many boring lemmas showing that Asm constructor
functions do not introduce new labels.
+
+ In passing, we also prove a "is tail" property of the generated Asm code.
*)
Section TRANSL_LABEL.
-Variable lbl: label.
+Definition nolabel (i: instruction) :=
+ match i with Plabel _ => False | _ => True end.
+
+Hint Extern 1 (nolabel _) => exact I : labels.
+
+Lemma tail_nolabel_cons:
+ forall i c k,
+ nolabel i -> tail_nolabel k c -> tail_nolabel k (i :: c).
+Proof.
+ intros. destruct H0. split.
+ constructor; auto.
+ intros. simpl. rewrite <- H1. destruct i; reflexivity || contradiction.
+Qed.
+
+
+Ltac TailNoLabel :=
+ eauto with labels;
+ match goal with
+ | [ |- tail_nolabel _ (_ :: _) ] => apply tail_nolabel_cons; [auto; exact I | TailNoLabel]
+ | [ H: Error _ = OK _ |- _ ] => discriminate
+ | [ H: OK _ = OK _ |- _ ] => inv H; TailNoLabel
+ | [ H: bind _ _ = OK _ |- _ ] => monadInv H; TailNoLabel
+ | [ H: (if ?x then _ else _) = OK _ |- _ ] => destruct x; TailNoLabel
+ | [ H: match ?x with nil => _ | _ :: _ => _ end = OK _ |- _ ] => destruct x; TailNoLabel
+ | _ => idtac
+ end.
Remark mk_mov_label:
- forall rd rs k c, mk_mov rd rs k = OK c -> find_label lbl c = find_label lbl k.
+ forall rd rs k c, mk_mov rd rs k = OK c -> tail_nolabel k c.
Proof.
unfold mk_mov; intros.
- destruct rd; try discriminate; destruct rs; inv H; auto.
+ destruct rd; try discriminate; destruct rs; TailNoLabel.
Qed.
+Hint Resolve mk_mov_label: labels.
Remark mk_shift_label:
forall f r1 r2 k c, mk_shift f r1 r2 k = OK c ->
- (forall r, is_label lbl (f r) = false) ->
- find_label lbl c = find_label lbl k.
+ (forall r, nolabel (f r)) ->
+ tail_nolabel k c.
Proof.
- unfold mk_shift; intros.
- destruct (ireg_eq r2 ECX). monadInv H; simpl; rewrite H0; auto.
- destruct (ireg_eq r1 ECX); monadInv H; simpl; rewrite H0; auto.
+ unfold mk_shift; intros. TailNoLabel.
Qed.
+Hint Resolve mk_shift_label: labels.
Remark mk_mov2_label:
forall r1 r2 r3 r4 k,
- find_label lbl (mk_mov2 r1 r2 r3 r4 k) = find_label lbl k.
+ tail_nolabel k (mk_mov2 r1 r2 r3 r4 k).
Proof.
intros; unfold mk_mov2.
- destruct (ireg_eq r1 r2); auto.
- destruct (ireg_eq r3 r4); auto.
- destruct (ireg_eq r3 r2); auto.
- destruct (ireg_eq r1 r4); auto.
+ destruct (ireg_eq r1 r2); TailNoLabel.
+ destruct (ireg_eq r3 r4); TailNoLabel.
+ destruct (ireg_eq r3 r2); TailNoLabel.
+ destruct (ireg_eq r1 r4); TailNoLabel.
Qed.
+Hint Resolve mk_mov2_label: labels.
Remark mk_div_label:
forall f r1 r2 k c, mk_div f r1 r2 k = OK c ->
- (forall r, is_label lbl (f r) = false) ->
- find_label lbl c = find_label lbl k.
+ (forall r, nolabel (f r)) ->
+ tail_nolabel k c.
Proof.
- unfold mk_div; intros.
- destruct (ireg_eq r1 EAX).
- destruct (ireg_eq r2 EDX); monadInv H; simpl; rewrite H0; auto.
- monadInv H; simpl. rewrite mk_mov2_label. simpl; rewrite H0; auto.
+ unfold mk_div; intros. TailNoLabel.
+ eapply tail_nolabel_trans. 2: apply mk_mov2_label. TailNoLabel.
Qed.
+Hint Resolve mk_div_label: labels.
Remark mk_mod_label:
forall f r1 r2 k c, mk_mod f r1 r2 k = OK c ->
- (forall r, is_label lbl (f r) = false) ->
- find_label lbl c = find_label lbl k.
+ (forall r, nolabel (f r)) ->
+ tail_nolabel k c.
Proof.
- unfold mk_mod; intros.
- destruct (ireg_eq r1 EAX).
- destruct (ireg_eq r2 EDX); monadInv H; simpl; rewrite H0; auto.
- monadInv H; simpl. rewrite mk_mov2_label. simpl; rewrite H0; auto.
+ unfold mk_mod; intros. TailNoLabel.
+ eapply tail_nolabel_trans. 2: apply mk_mov2_label. TailNoLabel.
Qed.
+Hint Resolve mk_mod_label: labels.
Remark mk_shrximm_label:
- forall r n k c, mk_shrximm r n k = OK c -> find_label lbl c = find_label lbl k.
+ forall r n k c, mk_shrximm r n k = OK c -> tail_nolabel k c.
Proof.
- intros. monadInv H; auto.
+ intros. monadInv H; TailNoLabel.
Qed.
+Hint Resolve mk_shrximm_label: labels.
Remark mk_intconv_label:
forall f r1 r2 k c, mk_intconv f r1 r2 k = OK c ->
- (forall r r', is_label lbl (f r r') = false) ->
- find_label lbl c = find_label lbl k.
+ (forall r r', nolabel (f r r')) ->
+ tail_nolabel k c.
Proof.
- unfold mk_intconv; intros. destruct (low_ireg r2); inv H; simpl; rewrite H0; auto.
+ unfold mk_intconv; intros. TailNoLabel.
Qed.
+Hint Resolve mk_intconv_label: labels.
Remark mk_smallstore_label:
forall f addr r k c, mk_smallstore f addr r k = OK c ->
- (forall r addr, is_label lbl (f r addr) = false) ->
- find_label lbl c = find_label lbl k.
+ (forall r addr, nolabel (f r addr)) ->
+ tail_nolabel k c.
Proof.
- unfold mk_smallstore; intros. destruct (low_ireg r).
- monadInv H; simpl; rewrite H0; auto.
- destruct (addressing_mentions addr ECX); monadInv H; simpl; rewrite H0; auto.
+ unfold mk_smallstore; intros. TailNoLabel.
Qed.
+Hint Resolve mk_smallstore_label: labels.
Remark loadind_label:
forall base ofs ty dst k c,
loadind base ofs ty dst k = OK c ->
- find_label lbl c = find_label lbl k.
+ tail_nolabel k c.
Proof.
- unfold loadind; intros. destruct ty.
- monadInv H; auto.
- destruct (preg_of dst); inv H; auto.
+ unfold loadind; intros. destruct ty.
+ TailNoLabel.
+ destruct (preg_of dst); TailNoLabel.
Qed.
Remark storeind_label:
forall base ofs ty src k c,
storeind src base ofs ty k = OK c ->
- find_label lbl c = find_label lbl k.
+ tail_nolabel k c.
Proof.
- unfold storeind; intros. destruct ty.
- monadInv H; auto.
- destruct (preg_of src); inv H; auto.
+ unfold storeind; intros. destruct ty.
+ TailNoLabel.
+ destruct (preg_of src); TailNoLabel.
Qed.
Remark mk_setcc_label:
forall xc rd k,
- find_label lbl (mk_setcc xc rd k) = find_label lbl k.
+ tail_nolabel k (mk_setcc xc rd k).
Proof.
- intros. destruct xc; simpl; auto; destruct (ireg_eq rd EDX); auto.
+ intros. destruct xc; simpl; destruct (ireg_eq rd EDX); TailNoLabel.
Qed.
Remark mk_jcc_label:
forall xc lbl' k,
- find_label lbl (mk_jcc xc lbl' k) = find_label lbl k.
+ tail_nolabel k (mk_jcc xc lbl' k).
Proof.
- intros. destruct xc; auto.
+ intros. destruct xc; simpl; TailNoLabel.
Qed.
+(*
Ltac ArgsInv :=
match goal with
| [ H: Error _ = OK _ |- _ ] => discriminate
@@ -278,88 +273,78 @@ Ltac ArgsInv :=
| [ H: bind _ _ = OK _ |- _ ] => monadInv H; ArgsInv
| _ => idtac
end.
+*)
Remark transl_cond_label:
forall cond args k c,
transl_cond cond args k = OK c ->
- find_label lbl c = find_label lbl k.
+ tail_nolabel k c.
Proof.
- unfold transl_cond; intros.
- destruct cond; ArgsInv; auto.
- destruct (Int.eq_dec i Int.zero); auto.
- destruct c0; auto.
- destruct c0; auto.
+ unfold transl_cond; intros.
+ destruct cond; TailNoLabel.
+ destruct (Int.eq_dec i Int.zero); TailNoLabel.
+ destruct c0; simpl; TailNoLabel.
+ destruct c0; simpl; TailNoLabel.
Qed.
Remark transl_op_label:
forall op args r k c,
transl_op op args r k = OK c ->
- find_label lbl c = find_label lbl k.
+ tail_nolabel k c.
Proof.
- unfold transl_op; intros. destruct op; ArgsInv; auto.
- eapply mk_mov_label; eauto.
- destruct (Int.eq_dec i Int.zero); auto.
- destruct (Float.eq_dec f Float.zero); auto.
- eapply mk_intconv_label; eauto.
- eapply mk_intconv_label; eauto.
- eapply mk_intconv_label; eauto.
- eapply mk_intconv_label; eauto.
- eapply mk_div_label; eauto.
- eapply mk_div_label; eauto.
- eapply mk_mod_label; eauto.
- eapply mk_mod_label; eauto.
- eapply mk_shift_label; eauto.
- eapply mk_shift_label; eauto.
- eapply mk_shrximm_label; eauto.
- eapply mk_shift_label; eauto.
- eapply trans_eq. eapply transl_cond_label; eauto. apply mk_setcc_label.
+ unfold transl_op; intros. destruct op; TailNoLabel.
+ destruct (Int.eq_dec i Int.zero); TailNoLabel.
+ destruct (Float.eq_dec f Float.zero); TailNoLabel.
+ eapply tail_nolabel_trans. eapply mk_setcc_label. eapply transl_cond_label. eauto.
Qed.
Remark transl_load_label:
forall chunk addr args dest k c,
transl_load chunk addr args dest k = OK c ->
- find_label lbl c = find_label lbl k.
+ tail_nolabel k c.
Proof.
- intros. monadInv H. destruct chunk; monadInv EQ0; auto.
+ intros. monadInv H. destruct chunk; TailNoLabel.
Qed.
Remark transl_store_label:
forall chunk addr args src k c,
transl_store chunk addr args src k = OK c ->
- find_label lbl c = find_label lbl k.
+ tail_nolabel k c.
Proof.
- intros. monadInv H. destruct chunk; monadInv EQ0; auto; eapply mk_smallstore_label; eauto.
+ intros. monadInv H. destruct chunk; TailNoLabel.
Qed.
Lemma transl_instr_label:
forall f i ep k c,
transl_instr f i ep k = OK c ->
- find_label lbl c = if Mach.is_label lbl i then Some k else find_label lbl k.
+ match i with Mlabel lbl => c = Plabel lbl :: k | _ => tail_nolabel k c end.
Proof.
- intros. generalize (Mach.is_label_correct lbl i).
- case (Mach.is_label lbl i); intro.
- subst i. monadInv H. simpl. rewrite peq_true. auto.
Opaque loadind.
- destruct i; simpl in H.
+ unfold transl_instr; intros; destruct i; TailNoLabel.
eapply loadind_label; eauto.
eapply storeind_label; eauto.
- destruct ep. eapply loadind_label; eauto. monadInv H. eapply trans_eq; eapply loadind_label; eauto.
+ eapply loadind_label; eauto.
+ eapply tail_nolabel_trans; eapply loadind_label; eauto.
eapply transl_op_label; eauto.
eapply transl_load_label; eauto.
eapply transl_store_label; eauto.
- destruct s0; monadInv H; auto.
- destruct s0; monadInv H; auto.
- monadInv H; auto.
- monadInv H; auto.
- inv H; simpl. destruct (peq lbl l). congruence. auto.
- monadInv H; auto.
- eapply trans_eq. eapply transl_cond_label; eauto. apply mk_jcc_label.
- monadInv H; auto.
- monadInv H; auto.
+ destruct s0; TailNoLabel.
+ destruct s0; TailNoLabel.
+ eapply tail_nolabel_trans. eapply mk_jcc_label. eapply transl_cond_label; eauto.
+Qed.
+
+Lemma transl_instr_label':
+ forall lbl f i ep k c,
+ transl_instr f i ep k = OK c ->
+ find_label lbl c = if Mach.is_label lbl i then Some k else find_label lbl k.
+Proof.
+ intros. exploit transl_instr_label; eauto.
+ destruct i; try (intros [A B]; apply B).
+ intros. subst c. simpl. auto.
Qed.
Lemma transl_code_label:
- forall f c ep tc,
+ forall lbl f c ep tc,
transl_code f c ep = OK tc ->
match Mach.find_label lbl c with
| None => find_label lbl tc = None
@@ -368,7 +353,7 @@ Lemma transl_code_label:
Proof.
induction c; simpl; intros.
inv H. auto.
- monadInv H. rewrite (transl_instr_label _ _ _ _ _ EQ0).
+ monadInv H. rewrite (transl_instr_label' lbl _ _ _ _ _ EQ0).
generalize (Mach.is_label_correct lbl a).
destruct (Mach.is_label lbl a); intros.
subst a. simpl in EQ. exists x; auto.
@@ -376,7 +361,7 @@ Proof.
Qed.
Lemma transl_find_label:
- forall f tf,
+ forall lbl f tf,
transf_function f = OK tf ->
match Mach.find_label lbl f.(Mach.fn_code) with
| None => find_label lbl tf = None
@@ -400,7 +385,7 @@ Lemma find_label_goto_label:
Mach.find_label lbl f.(Mach.fn_code) = Some c' ->
exists tc', exists rs',
goto_label tf lbl rs m = Next rs' m
- /\ transl_code_at_pc ge (rs' PC) f c' false tf tc'
+ /\ transl_code_at_pc ge (rs' PC) b f c' false tf tc'
/\ forall r, r <> PC -> rs'#r = rs#r.
Proof.
intros. exploit (transl_find_label lbl f tf); eauto. rewrite H2.
@@ -416,6 +401,21 @@ Proof.
intros. apply Pregmap.gso; auto.
Qed.
+(** Existence of return addresses *)
+
+Lemma return_address_exists:
+ forall f sg ros c, is_tail (Mcall sg ros :: c) f.(Mach.fn_code) ->
+ exists ra, return_address_offset f c ra.
+Proof.
+ intros. eapply Asmgenproof0.return_address_exists; eauto.
+- intros. exploit transl_instr_label; eauto.
+ destruct i; try (intros [A B]; apply A). intros. subst c0. repeat constructor.
+- intros. monadInv H0.
+ destruct (zlt (list_length_z x) Int.max_unsigned); inv EQ0.
+ exists x; exists true; split; auto. unfold fn_code. repeat constructor.
+- exact transf_function_no_overflow.
+Qed.
+
(** * Proof of semantic preservation *)
(** Semantic preservation is proved using simulation diagrams
@@ -436,49 +436,49 @@ Qed.
Inductive match_states: Mach.state -> Asm.state -> Prop :=
| match_states_intro:
- forall s f sp c ep ms m m' rs tf tc ra
- (STACKS: match_stack ge s m m' ra sp)
+ forall s fb sp c ep ms m m' rs f tf tc
+ (STACKS: match_stack ge s)
+ (FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
(MEXT: Mem.extends m m')
- (AT: transl_code_at_pc ge (rs PC) f c ep tf tc)
- (AG: agree ms (Vptr sp Int.zero) rs)
- (RSA: retaddr_stored_at m m' sp (Int.unsigned f.(fn_retaddr_ofs)) ra)
+ (AT: transl_code_at_pc ge (rs PC) fb f c ep tf tc)
+ (AG: agree ms sp rs)
(DXP: ep = true -> rs#EDX = parent_sp s),
- match_states (Mach.State s f (Vptr sp Int.zero) c ms m)
+ match_states (Mach.State s fb sp c ms m)
(Asm.State rs m')
| match_states_call:
- forall s fd ms m m' rs fb
- (STACKS: match_stack ge s m m' (rs RA) (Mem.nextblock m))
+ forall s fb ms m m' rs
+ (STACKS: match_stack ge s)
(MEXT: Mem.extends m m')
(AG: agree ms (parent_sp s) rs)
(ATPC: rs PC = Vptr fb Int.zero)
- (FUNCT: Genv.find_funct_ptr ge fb = Some fd)
- (WTRA: Val.has_type (rs RA) Tint),
- match_states (Mach.Callstate s fd ms m)
+ (ATLR: rs RA = parent_ra s),
+ match_states (Mach.Callstate s fb ms m)
(Asm.State rs m')
| match_states_return:
forall s ms m m' rs
- (STACKS: match_stack ge s m m' (rs PC) (Mem.nextblock m))
+ (STACKS: match_stack ge s)
(MEXT: Mem.extends m m')
- (AG: agree ms (parent_sp s) rs),
+ (AG: agree ms (parent_sp s) rs)
+ (ATPC: rs PC = parent_ra s),
match_states (Mach.Returnstate s ms m)
(Asm.State rs m').
Lemma exec_straight_steps:
- forall s f rs1 i c ep tf tc m1' m2 m2' sp ms2 ra,
- match_stack ge s m2 m2' ra sp ->
+ forall s fb f rs1 i c ep tf tc m1' m2 m2' sp ms2,
+ match_stack ge s ->
Mem.extends m2 m2' ->
- retaddr_stored_at m2 m2' sp (Int.unsigned f.(fn_retaddr_ofs)) ra ->
- transl_code_at_pc ge (rs1 PC) f (i :: c) ep tf tc ->
+ Genv.find_funct_ptr ge fb = Some (Internal f) ->
+ transl_code_at_pc ge (rs1 PC) fb f (i :: c) ep tf tc ->
(forall k c (TR: transl_instr f i ep k = OK c),
exists rs2,
exec_straight tge tf c rs1 m1' k rs2 m2'
- /\ agree ms2 (Vptr sp Int.zero) rs2
+ /\ agree ms2 sp rs2
/\ (edx_preserved ep i = true -> rs2#EDX = parent_sp s)) ->
exists st',
plus step tge (State rs1 m1') E0 st' /\
- match_states (Mach.State s f (Vptr sp Int.zero) c ms2 m2) st'.
+ match_states (Mach.State s fb sp c ms2 m2) st'.
Proof.
- intros. inversion H2; subst. monadInv H7.
+ intros. inversion H2. subst. monadInv H7.
exploit H3; eauto. intros [rs2 [A [B C]]].
exists (State rs2 m2'); split.
eapply exec_straight_exec; eauto.
@@ -486,23 +486,23 @@ Proof.
Qed.
Lemma exec_straight_steps_goto:
- forall s f rs1 i c ep tf tc m1' m2 m2' sp ms2 lbl c' ra,
- match_stack ge s m2 m2' ra sp ->
+ forall s fb f rs1 i c ep tf tc m1' m2 m2' sp ms2 lbl c',
+ match_stack ge s ->
Mem.extends m2 m2' ->
- retaddr_stored_at m2 m2' sp (Int.unsigned f.(fn_retaddr_ofs)) ra ->
+ Genv.find_funct_ptr ge fb = Some (Internal f) ->
Mach.find_label lbl f.(Mach.fn_code) = Some c' ->
- transl_code_at_pc ge (rs1 PC) f (i :: c) ep tf tc ->
+ transl_code_at_pc ge (rs1 PC) fb f (i :: c) ep tf tc ->
edx_preserved ep i = false ->
(forall k c (TR: transl_instr f i ep k = OK c),
exists jmp, exists k', exists rs2,
exec_straight tge tf c rs1 m1' (jmp :: k') rs2 m2'
- /\ agree ms2 (Vptr sp Int.zero) rs2
+ /\ agree ms2 sp rs2
/\ exec_instr tge tf jmp rs2 m2' = goto_label tf lbl rs2 m2') ->
exists st',
plus step tge (State rs1 m1') E0 st' /\
- match_states (Mach.State s f (Vptr sp Int.zero) c' ms2 m2) st'.
+ match_states (Mach.State s fb sp c' ms2 m2) st'.
Proof.
- intros. inversion H3; subst. monadInv H9.
+ intros. inversion H3. subst. monadInv H9.
exploit H5; eauto. intros [jmp [k' [rs2 [A [B C]]]]].
generalize (functions_transl _ _ _ H7 H8); intro FN.
generalize (transf_function_no_overflow _ _ H8); intro NOOV.
@@ -540,7 +540,7 @@ Definition measure (s: Mach.state) : nat :=
(** This is the simulation diagram. We prove it by case analysis on the Mach transition. *)
Theorem step_simulation:
- forall S1 t S2, Mach.step ge S1 t S2 ->
+ forall S1 t S2, Mach.step return_address_offset ge S1 t S2 ->
forall S1' (MS: match_states S1 S1'),
(exists S2', plus step tge S1' t S2' /\ match_states S2 S2')
\/ (measure S2 < measure S1 /\ t = E0 /\ match_states S2 S1')%nat.
@@ -567,8 +567,6 @@ Proof.
assert (Val.lessdef (rs src) (rs0 (preg_of src))). eapply preg_val; eauto.
exploit Mem.storev_extends; eauto. intros [m2' [A B]].
left; eapply exec_straight_steps; eauto.
- eapply match_stack_storev; eauto.
- eapply retaddr_stored_at_storev; eauto.
rewrite (sp_val _ _ _ AG) in A. intros. simpl in TR.
exploit storeind_correct; eauto. intros [rs' [P Q]].
exists rs'; split. eauto.
@@ -576,11 +574,12 @@ Proof.
simpl; intros. rewrite Q; auto with asmgen.
- (* Mgetparam *)
+ assert (f0 = f) by congruence; subst f0.
unfold load_stack in *.
- exploit Mem.loadv_extends. eauto. eexact H. auto.
+ exploit Mem.loadv_extends. eauto. eexact H0. auto.
intros [parent' [A B]]. rewrite (sp_val _ _ _ AG) in A.
exploit lessdef_parent_sp; eauto. clear B; intros B; subst parent'.
- exploit Mem.loadv_extends. eauto. eexact H0. auto.
+ exploit Mem.loadv_extends. eauto. eexact H1. auto.
intros [v' [C D]].
Opaque loadind.
left; eapply exec_straight_steps; eauto; intros.
@@ -606,7 +605,7 @@ Opaque loadind.
simpl; intros. rewrite U; auto.
- (* Mop *)
- assert (eval_operation tge (Vptr sp0 Int.zero) op rs##args m = Some v).
+ assert (eval_operation tge sp op rs##args m = Some v).
rewrite <- H. apply eval_operation_preserved. exact symbols_preserved.
exploit eval_operation_lessdef. eapply preg_vals; eauto. eauto. eexact H0.
intros [v' [A B]]. rewrite (sp_val _ _ _ AG) in A.
@@ -621,7 +620,7 @@ Opaque loadind.
simpl; congruence.
- (* Mload *)
- assert (eval_addressing tge (Vptr sp0 Int.zero) addr rs##args = Some a).
+ assert (eval_addressing tge sp addr rs##args = Some a).
rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved.
exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1.
intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.
@@ -633,15 +632,13 @@ Opaque loadind.
simpl; congruence.
- (* Mstore *)
- assert (eval_addressing tge (Vptr sp0 Int.zero) addr rs##args = Some a).
+ assert (eval_addressing tge sp addr rs##args = Some a).
rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved.
exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1.
intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.
assert (Val.lessdef (rs src) (rs0 (preg_of src))). eapply preg_val; eauto.
exploit Mem.storev_extends; eauto. intros [m2' [C D]].
left; eapply exec_straight_steps; eauto.
- eapply match_stack_storev; eauto.
- eapply retaddr_stored_at_storev; eauto.
intros. simpl in TR.
exploit transl_store_correct; eauto. intros [rs2 [P Q]].
exists rs2; split. eauto.
@@ -649,79 +646,70 @@ Opaque loadind.
simpl; congruence.
- (* Mcall *)
+ assert (f0 = f) by congruence. subst f0.
inv AT.
assert (NOOV: list_length_z tf <= Int.max_unsigned).
eapply transf_function_no_overflow; eauto.
- destruct ros as [rf|fid]; simpl in H; monadInv H3.
+ destruct ros as [rf|fid]; simpl in H; monadInv H5.
+ (* Indirect call *)
- exploit Genv.find_funct_inv; eauto. intros [bf EQ2].
- rewrite EQ2 in H; rewrite Genv.find_funct_find_funct_ptr in H.
- assert (rs0 x0 = Vptr bf Int.zero).
- exploit ireg_val; eauto. rewrite EQ2; intros LD; inv LD; auto.
- generalize (code_tail_next_int _ _ _ _ NOOV H4). intro CT1.
- assert (TCA: transl_code_at_pc ge (Vptr b (Int.add ofs Int.one)) f c false tf x).
- econstructor; eauto.
+ assert (rs rf = Vptr f' Int.zero).
+ destruct (rs rf); try discriminate.
+ revert H; predSpec Int.eq Int.eq_spec i Int.zero; intros; congruence.
+ assert (rs0 x0 = Vptr f' Int.zero).
+ exploit ireg_val; eauto. rewrite H5; intros LD; inv LD; auto.
+ generalize (code_tail_next_int _ _ _ _ NOOV H6). intro CT1.
+ assert (TCA: transl_code_at_pc ge (Vptr fb (Int.add ofs Int.one)) fb f c false tf x).
+ econstructor; eauto.
+ exploit return_address_offset_correct; eauto. intros; subst ra.
left; econstructor; split.
apply plus_one. eapply exec_step_internal. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. eauto.
econstructor; eauto.
econstructor; eauto.
- rewrite <- H0. eexact TCA.
- change (Mem.valid_block m sp0). eapply retaddr_stored_at_valid; eauto.
- simpl. eapply agree_exten; eauto. intros. Simplifs.
- rewrite <- H0. exact I.
+ eapply agree_sp_def; eauto.
+ simpl. eapply agree_exten; eauto. intros. Simplifs.
+ Simplifs. rewrite <- H2. auto.
+ (* Direct call *)
- destruct (Genv.find_symbol ge fid) as [bf|] eqn:FS; try discriminate.
- generalize (code_tail_next_int _ _ _ _ NOOV H4). intro CT1.
- assert (TCA: transl_code_at_pc ge (Vptr b (Int.add ofs Int.one)) f c false tf x).
- econstructor; eauto.
+ generalize (code_tail_next_int _ _ _ _ NOOV H6). intro CT1.
+ assert (TCA: transl_code_at_pc ge (Vptr fb (Int.add ofs Int.one)) fb f c false tf x).
+ econstructor; eauto.
+ exploit return_address_offset_correct; eauto. intros; subst ra.
left; econstructor; split.
apply plus_one. eapply exec_step_internal. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
- simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite FS. eauto.
+ simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite H. eauto.
econstructor; eauto.
econstructor; eauto.
- rewrite <- H0. eexact TCA.
- change (Mem.valid_block m sp0). eapply retaddr_stored_at_valid; eauto.
+ eapply agree_sp_def; eauto.
simpl. eapply agree_exten; eauto. intros. Simplifs.
- auto.
- rewrite <- H0. exact I.
+ Simplifs. rewrite <- H2. auto.
- (* Mtailcall *)
+ assert (f0 = f) by congruence. subst f0.
inv AT.
assert (NOOV: list_length_z tf <= Int.max_unsigned).
eapply transf_function_no_overflow; eauto.
rewrite (sp_val _ _ _ AG) in *. unfold load_stack in *.
- exploit Mem.loadv_extends. eauto. eexact H0. auto. simpl. intros [parent' [A B]].
+ exploit Mem.loadv_extends. eauto. eexact H1. auto. simpl. intros [parent' [A B]].
+ exploit Mem.loadv_extends. eauto. eexact H2. auto. simpl. intros [ra' [C D]].
exploit lessdef_parent_sp; eauto. intros. subst parent'. clear B.
- assert (C: Mem.loadv Mint32 m'0 (Val.add (rs0 ESP) (Vint (fn_retaddr_ofs f))) = Some ra).
-Opaque Int.repr.
- erewrite agree_sp; eauto. simpl. rewrite Int.add_zero_l.
- eapply rsa_contains; eauto.
- exploit retaddr_stored_at_can_free; eauto. intros [m2' [E F]].
- assert (M: match_stack ge s m'' m2' ra (Mem.nextblock m'')).
- apply match_stack_change_bound with stk.
- eapply match_stack_free_left; eauto.
- eapply match_stack_free_left; eauto.
- eapply match_stack_free_right; eauto.
- omega.
- apply Z.lt_le_incl. change (Mem.valid_block m'' stk).
- eapply Mem.valid_block_free_1; eauto. eapply Mem.valid_block_free_1; eauto.
- eapply retaddr_stored_at_valid; eauto.
- destruct ros as [rf|fid]; simpl in H; monadInv H6.
+ exploit lessdef_parent_ra; eauto. intros. subst ra'. clear D.
+ exploit Mem.free_parallel_extends; eauto. intros [m2' [E F]].
+ destruct ros as [rf|fid]; simpl in H; monadInv H7.
+ (* Indirect call *)
- exploit Genv.find_funct_inv; eauto. intros [bf EQ2].
- rewrite EQ2 in H; rewrite Genv.find_funct_find_funct_ptr in H.
- assert (rs0 x0 = Vptr bf Int.zero).
- exploit ireg_val; eauto. rewrite EQ2; intros LD; inv LD; auto.
- generalize (code_tail_next_int _ _ _ _ NOOV H7). intro CT1.
+ assert (rs rf = Vptr f' Int.zero).
+ destruct (rs rf); try discriminate.
+ revert H; predSpec Int.eq Int.eq_spec i Int.zero; intros; congruence.
+ assert (rs0 x0 = Vptr f' Int.zero).
+ exploit ireg_val; eauto. rewrite H7; intros LD; inv LD; auto.
+ generalize (code_tail_next_int _ _ _ _ NOOV H8). intro CT1.
left; econstructor; split.
eapply plus_left. eapply exec_step_internal. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. rewrite C. rewrite A. rewrite <- (sp_val _ _ _ AG). rewrite E. eauto.
apply star_one. eapply exec_step_internal.
- transitivity (Val.add rs0#PC Vone). auto. rewrite <- H3. simpl. eauto.
+ transitivity (Val.add rs0#PC Vone). auto. rewrite <- H4. simpl. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. eauto. traceEq.
econstructor; eauto.
@@ -729,23 +717,20 @@ Opaque Int.repr.
eapply agree_change_sp; eauto. eapply parent_sp_def; eauto.
Simplifs. rewrite Pregmap.gso; auto.
generalize (preg_of_not_SP rf). rewrite (ireg_of_eq _ _ EQ1). congruence.
- change (Val.has_type ra Tint). eapply retaddr_stored_at_type; eauto.
+ (* Direct call *)
- destruct (Genv.find_symbol ge fid) as [bf|] eqn:FS; try discriminate.
- generalize (code_tail_next_int _ _ _ _ NOOV H7). intro CT1.
+ generalize (code_tail_next_int _ _ _ _ NOOV H8). intro CT1.
left; econstructor; split.
eapply plus_left. eapply exec_step_internal. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. rewrite C. rewrite A. rewrite <- (sp_val _ _ _ AG). rewrite E. eauto.
apply star_one. eapply exec_step_internal.
- transitivity (Val.add rs0#PC Vone). auto. rewrite <- H3. simpl. eauto.
+ transitivity (Val.add rs0#PC Vone). auto. rewrite <- H4. simpl. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. eauto. traceEq.
econstructor; eauto.
apply agree_set_other; auto. apply agree_nextinstr. apply agree_set_other; auto.
eapply agree_change_sp; eauto. eapply parent_sp_def; eauto.
- rewrite Pregmap.gss. unfold symbol_offset. rewrite symbols_preserved. rewrite FS. auto.
- change (Val.has_type ra Tint). eapply retaddr_stored_at_type; eauto.
+ rewrite Pregmap.gss. unfold symbol_offset. rewrite symbols_preserved. rewrite H. auto.
- (* Mbuiltin *)
inv AT. monadInv H3.
@@ -759,8 +744,6 @@ Opaque Int.repr.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
econstructor; eauto.
- eapply match_stack_extcall; eauto.
- intros; eapply external_call_max_perm; eauto.
instantiate (2 := tf); instantiate (1 := x).
unfold nextinstr_nf, nextinstr. rewrite Pregmap.gss.
simpl undef_regs. repeat rewrite Pregmap.gso; auto with asmgen.
@@ -769,8 +752,6 @@ Opaque Int.repr.
apply agree_nextinstr_nf. eapply agree_set_undef_mreg; eauto.
rewrite Pregmap.gss. auto.
intros. Simplifs.
- eapply retaddr_stored_at_extcall; eauto.
- intros; eapply external_call_max_perm; eauto.
congruence.
- (* Mannot *)
@@ -786,18 +767,15 @@ Opaque Int.repr.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
eapply match_states_intro with (ep := false); eauto with coqlib.
- eapply match_stack_extcall; eauto.
- intros; eapply external_call_max_perm; eauto.
unfold nextinstr. rewrite Pregmap.gss.
rewrite <- H1; simpl. econstructor; eauto.
eapply code_tail_next_int; eauto.
apply agree_nextinstr. auto.
- eapply retaddr_stored_at_extcall; eauto.
- intros; eapply external_call_max_perm; eauto.
congruence.
- (* Mgoto *)
- inv AT. monadInv H3.
+ assert (f0 = f) by congruence. subst f0.
+ inv AT. monadInv H4.
exploit find_label_goto_label; eauto. intros [tc' [rs' [GOTO [AT2 INV]]]].
left; exists (State rs' m'); split.
apply plus_one. econstructor; eauto.
@@ -809,6 +787,7 @@ Opaque Int.repr.
congruence.
- (* Mcond true *)
+ assert (f0 = f) by congruence. subst f0.
exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC.
left; eapply exec_straight_steps_goto; eauto.
intros. simpl in TR.
@@ -841,7 +820,7 @@ Opaque Int.repr.
(* jcc2 *)
destruct (eval_testcond c1 rs') as [b1|] eqn:TC1;
destruct (eval_testcond c2 rs') as [b2|] eqn:TC2; inv B.
- destruct (andb_prop _ _ H2). subst.
+ destruct (andb_prop _ _ H3). subst.
exists (Pjcc2 c1 c2 lbl); exists k; exists rs'.
split. eexact A.
split. eapply agree_exten_temps; eauto.
@@ -883,9 +862,10 @@ Opaque Int.repr.
rewrite H1; congruence.
- (* Mjumptable *)
- inv AT. monadInv H5.
+ assert (f0 = f) by congruence. subst f0.
+ inv AT. monadInv H6.
exploit functions_transl; eauto. intro FN.
- generalize (transf_function_no_overflow _ _ H4); intro NOOV.
+ generalize (transf_function_no_overflow _ _ H5); intro NOOV.
exploit find_label_goto_label. eauto. eauto. instantiate (2 := rs0#ECX <- Vundef #EDX <- Vundef).
repeat (rewrite Pregmap.gso by auto with asmgen). eauto. eauto.
intros [tc' [rs' [A [B C]]]].
@@ -893,39 +873,30 @@ Opaque Int.repr.
left; econstructor; split.
apply plus_one. econstructor; eauto.
eapply find_instr_tail; eauto.
- simpl. rewrite <- H8. unfold Mach.label in H0; unfold label; rewrite H0. eauto.
+ simpl. rewrite <- H9. unfold Mach.label in H0; unfold label; rewrite H0. eauto.
econstructor; eauto.
eapply agree_exten_temps; eauto. intros. rewrite C; auto with asmgen. Simplifs.
congruence.
- (* Mreturn *)
+ assert (f0 = f) by congruence. subst f0.
inv AT.
assert (NOOV: list_length_z tf <= Int.max_unsigned).
eapply transf_function_no_overflow; eauto.
rewrite (sp_val _ _ _ AG) in *. unfold load_stack in *.
- exploit Mem.loadv_extends. eauto. eexact H. auto. simpl. intros [parent' [A B]].
+ exploit Mem.loadv_extends. eauto. eexact H0. auto. simpl. intros [parent' [A B]].
exploit lessdef_parent_sp; eauto. intros. subst parent'. clear B.
- assert (C: Mem.loadv Mint32 m'0 (Val.add (rs0 ESP) (Vint (fn_retaddr_ofs f))) = Some ra).
-Opaque Int.repr.
- erewrite agree_sp; eauto. simpl. rewrite Int.add_zero_l.
- eapply rsa_contains; eauto.
- exploit retaddr_stored_at_can_free; eauto. intros [m2' [E F]].
- assert (M: match_stack ge s m'' m2' ra (Mem.nextblock m'')).
- apply match_stack_change_bound with stk.
- eapply match_stack_free_left; eauto.
- eapply match_stack_free_left; eauto.
- eapply match_stack_free_right; eauto. omega.
- apply Z.lt_le_incl. change (Mem.valid_block m'' stk).
- eapply Mem.valid_block_free_1; eauto. eapply Mem.valid_block_free_1; eauto.
- eapply retaddr_stored_at_valid; eauto.
- monadInv H5.
+ exploit Mem.loadv_extends. eauto. eexact H1. auto. simpl. intros [ra' [C D]].
+ exploit lessdef_parent_ra; eauto. intros. subst ra'. clear D.
+ exploit Mem.free_parallel_extends; eauto. intros [m2' [E F]].
+ monadInv H6.
exploit code_tail_next_int; eauto. intro CT1.
left; econstructor; split.
eapply plus_left. eapply exec_step_internal. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. rewrite C. rewrite A. rewrite <- (sp_val _ _ _ AG). rewrite E. eauto.
apply star_one. eapply exec_step_internal.
- transitivity (Val.add rs0#PC Vone). auto. rewrite <- H2. simpl. eauto.
+ transitivity (Val.add rs0#PC Vone). auto. rewrite <- H3. simpl. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. eauto. traceEq.
constructor; auto.
@@ -939,30 +910,17 @@ Opaque Int.repr.
unfold store_stack in *.
exploit Mem.alloc_extends. eauto. eauto. apply Zle_refl. apply Zle_refl.
intros [m1' [C D]].
- assert (E: Mem.extends m2 m1') by (eapply Mem.free_left_extends; eauto).
- exploit Mem.storev_extends. eexact E. eexact H1. eauto. eauto.
+ exploit Mem.storev_extends. eexact D. eexact H1. eauto. eauto.
intros [m2' [F G]].
- exploit retaddr_stored_at_can_alloc. eexact H. eauto. eauto. eauto. eauto.
- auto. auto. auto. auto. eauto.
- intros [m3' [P [Q R]]].
+ exploit Mem.storev_extends. eexact G. eexact H2. eauto. eauto.
+ intros [m3' [P Q]].
left; econstructor; split.
apply plus_one. econstructor; eauto.
- subst x; simpl. rewrite Int.unsigned_zero. simpl. eauto.
+ subst x; simpl. eauto.
+Opaque Int.repr.
simpl. rewrite C. simpl in F. rewrite (sp_val _ _ _ AG) in F. rewrite F.
- rewrite Int.add_zero_l. rewrite P. eauto.
+ simpl in P. rewrite ATLR. rewrite P. eauto.
econstructor; eauto.
- assert (STK: stk = Mem.nextblock m) by (eapply Mem.alloc_result; eauto).
- rewrite <- STK in STACKS. simpl in F. simpl in H1.
- eapply match_stack_invariant; eauto.
- intros. eapply Mem.perm_alloc_4; eauto. eapply Mem.perm_free_3; eauto.
- eapply Mem.perm_store_2; eauto. unfold block; omega.
- intros. eapply Mem.perm_store_1; eauto. eapply Mem.perm_store_1; eauto.
- eapply Mem.perm_alloc_1; eauto.
- intros. erewrite Mem.load_store_other. 2: eauto.
- erewrite Mem.load_store_other. 2: eauto.
- eapply Mem.load_alloc_other; eauto.
- left; unfold block; omega.
- left; unfold block; omega.
unfold nextinstr. rewrite Pregmap.gss. repeat rewrite Pregmap.gso; auto with asmgen.
rewrite ATPC. simpl. constructor; eauto.
subst x. unfold fn_code. eapply code_tail_next_int. rewrite list_length_z_cons. omega.
@@ -985,10 +943,6 @@ Opaque Int.repr.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
econstructor; eauto.
- rewrite Pregmap.gss. apply match_stack_change_bound with (Mem.nextblock m).
- eapply match_stack_extcall; eauto.
- intros. eapply external_call_max_perm; eauto.
- eapply external_call_nextblock; eauto.
unfold loc_external_result.
eapply agree_set_mreg; eauto.
rewrite Pregmap.gso; auto with asmgen. rewrite Pregmap.gss. auto.
@@ -996,8 +950,8 @@ Opaque Int.repr.
- (* return *)
inv STACKS. simpl in *.
- right. split. omega. split. auto.
- econstructor; eauto. congruence.
+ right. split. omega. split. auto.
+ econstructor; eauto. rewrite ATPC; eauto. congruence.
Qed.
Lemma transf_initial_states:
@@ -1005,21 +959,19 @@ Lemma transf_initial_states:
exists st2, Asm.initial_state tprog st2 /\ match_states st1 st2.
Proof.
intros. inversion H. unfold ge0 in *.
- exploit functions_translated; eauto. intros [tf [A B]].
econstructor; split.
econstructor.
eapply Genv.init_mem_transf_partial; eauto.
replace (symbol_offset (Genv.globalenv tprog) (prog_main tprog) Int.zero)
- with (Vptr b Int.zero).
+ with (Vptr fb Int.zero).
econstructor; eauto.
constructor.
apply Mem.extends_refl.
- split. auto. intros. rewrite Regmap.gi. auto.
- reflexivity.
- exact I.
+ split. auto. simpl. congruence. intros. rewrite Regmap.gi. auto.
unfold symbol_offset.
- rewrite (transform_partial_program_main _ _ TRANSF).
- rewrite symbols_preserved. unfold ge; rewrite H1. auto.
+ rewrite (transform_partial_program_main _ _ TRANSF).
+ rewrite symbols_preserved.
+ unfold ge; rewrite H1. auto.
Qed.
Lemma transf_final_states:
@@ -1033,7 +985,7 @@ Proof.
Qed.
Theorem transf_program_correct:
- forward_simulation (Mach.semantics prog) (Asm.semantics tprog).
+ forward_simulation (Mach.semantics return_address_offset prog) (Asm.semantics tprog).
Proof.
eapply forward_simulation_star with (measure := measure).
eexact symbols_preserved.