diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2012-11-03 10:36:15 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2012-11-03 10:36:15 +0000 |
commit | dcb9f48f51cec5e864565862a700c27df2a1a7e6 (patch) | |
tree | b453b51b7406d3b1cf7191729637446a23ffc92c /flocq | |
parent | bd93aa7ef9c19a4def8aa64c32faeb04ab2607e9 (diff) |
Flocq-based parsing of floating-point literals (Jacques-Henri Jourdan)
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2065 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'flocq')
-rw-r--r-- | flocq/Appli/Fappli_IEEE.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/flocq/Appli/Fappli_IEEE.v b/flocq/Appli/Fappli_IEEE.v index 79f6a4c..63b150f 100644 --- a/flocq/Appli/Fappli_IEEE.v +++ b/flocq/Appli/Fappli_IEEE.v @@ -1309,7 +1309,7 @@ Definition Fdiv_core_binary m1 e1 m2 e2 := (q, e', new_location m2 r loc_Exact). Lemma Bdiv_correct_aux : - forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true), + forall m sx mx ex sy my ey, let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in let z := @@ -1325,7 +1325,7 @@ Lemma Bdiv_correct_aux : else z = binary_overflow m (xorb sx sy). Proof. -intros m sx mx ex Hx sy my ey Hy. +intros m sx mx ex sy my ey. replace (Fdiv_core_binary (Zpos mx) ex (Zpos my) ey) with (Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey). 2: now unfold Fdiv_core_binary ; rewrite 2!Zdigits2_Zdigits. refine (_ (Fdiv_core_correct radix2 prec (Zpos mx) ex (Zpos my) ey _ _ _)) ; try easy. @@ -1418,8 +1418,8 @@ Definition Bdiv m x y := | B754_finite sx _ _ _, B754_zero sy => B754_infinity (xorb sx sy) | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy) | B754_zero sx, B754_zero sy => B754_nan - | B754_finite sx mx ex Hx, B754_finite sy my ey Hy => - FF2B _ (proj1 (Bdiv_correct_aux m sx mx ex Hx sy my ey Hy)) + | B754_finite sx mx ex _, B754_finite sy my ey _ => + FF2B _ (proj1 (Bdiv_correct_aux m sx mx ex sy my ey)) end. Theorem Bdiv_correct : |