diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-08-02 08:05:18 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-08-02 08:05:18 +0000 |
commit | 4ee0544a157090ddd087b36109d292cd174bae7c (patch) | |
tree | 3282bd6a14816239268e14bb40f2f09217c45456 /flocq/Prop | |
parent | b5da812fdc8db859d816cb2fc85e367569a38bed (diff) |
Merge of Flocq version 2.2.0.
More precise modeling of NaNs.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2303 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'flocq/Prop')
-rw-r--r-- | flocq/Prop/Fprop_Sterbenz.v | 4 | ||||
-rw-r--r-- | flocq/Prop/Fprop_div_sqrt_error.v | 4 | ||||
-rw-r--r-- | flocq/Prop/Fprop_mult_error.v | 4 | ||||
-rw-r--r-- | flocq/Prop/Fprop_plus_error.v | 4 | ||||
-rw-r--r-- | flocq/Prop/Fprop_relative.v | 166 |
5 files changed, 160 insertions, 22 deletions
diff --git a/flocq/Prop/Fprop_Sterbenz.v b/flocq/Prop/Fprop_Sterbenz.v index 7d2c2e7..7260d2e 100644 --- a/flocq/Prop/Fprop_Sterbenz.v +++ b/flocq/Prop/Fprop_Sterbenz.v @@ -2,9 +2,9 @@ This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ -Copyright (C) 2010-2011 Sylvie Boldo +Copyright (C) 2010-2013 Sylvie Boldo #<br /># -Copyright (C) 2010-2011 Guillaume Melquiond +Copyright (C) 2010-2013 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public diff --git a/flocq/Prop/Fprop_div_sqrt_error.v b/flocq/Prop/Fprop_div_sqrt_error.v index 84a0694..ec00ca4 100644 --- a/flocq/Prop/Fprop_div_sqrt_error.v +++ b/flocq/Prop/Fprop_div_sqrt_error.v @@ -2,9 +2,9 @@ This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ -Copyright (C) 2010-2011 Sylvie Boldo +Copyright (C) 2010-2013 Sylvie Boldo #<br /># -Copyright (C) 2010-2011 Guillaume Melquiond +Copyright (C) 2010-2013 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public diff --git a/flocq/Prop/Fprop_mult_error.v b/flocq/Prop/Fprop_mult_error.v index e3e094c..e84e80b 100644 --- a/flocq/Prop/Fprop_mult_error.v +++ b/flocq/Prop/Fprop_mult_error.v @@ -2,9 +2,9 @@ This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ -Copyright (C) 2010-2011 Sylvie Boldo +Copyright (C) 2010-2013 Sylvie Boldo #<br /># -Copyright (C) 2010-2011 Guillaume Melquiond +Copyright (C) 2010-2013 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public diff --git a/flocq/Prop/Fprop_plus_error.v b/flocq/Prop/Fprop_plus_error.v index d9dee7c..ddae698 100644 --- a/flocq/Prop/Fprop_plus_error.v +++ b/flocq/Prop/Fprop_plus_error.v @@ -2,9 +2,9 @@ This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ -Copyright (C) 2010-2011 Sylvie Boldo +Copyright (C) 2010-2013 Sylvie Boldo #<br /># -Copyright (C) 2010-2011 Guillaume Melquiond +Copyright (C) 2010-2013 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public diff --git a/flocq/Prop/Fprop_relative.v b/flocq/Prop/Fprop_relative.v index 8df7336..a8cc1ff 100644 --- a/flocq/Prop/Fprop_relative.v +++ b/flocq/Prop/Fprop_relative.v @@ -2,9 +2,9 @@ This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ -Copyright (C) 2010-2011 Sylvie Boldo +Copyright (C) 2010-2013 Sylvie Boldo #<br /># -Copyright (C) 2010-2011 Guillaume Melquiond +Copyright (C) 2010-2013 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public @@ -35,9 +35,9 @@ Section relative_error_conversion. Variable rnd : R -> Z. Context { valid_rnd : Valid_rnd rnd }. -Lemma relative_error_lt_conversion : +Lemma relative_error_lt_conversion' : forall x b, (0 < b)%R -> - (Rabs (round beta fexp rnd x - x) < b * Rabs x)%R -> + (x <> 0 -> Rabs (round beta fexp rnd x - x) < b * Rabs x)%R -> exists eps, (Rabs eps < b)%R /\ round beta fexp rnd x = (x * (1 + eps))%R. Proof with auto with typeclass_instances. @@ -50,6 +50,7 @@ now rewrite Rabs_R0. rewrite Hx0, Rmult_0_l. apply round_0... (* *) +specialize (Hxb Hx0). exists ((round beta fexp rnd x - x) / x)%R. split. 2: now field. unfold Rdiv. @@ -61,6 +62,19 @@ rewrite Rinv_l with (1 := Hx0). now rewrite Rabs_R1, Rmult_1_r. Qed. +(* TODO: remove *) +Lemma relative_error_lt_conversion : + forall x b, (0 < b)%R -> + (Rabs (round beta fexp rnd x - x) < b * Rabs x)%R -> + exists eps, + (Rabs eps < b)%R /\ round beta fexp rnd x = (x * (1 + eps))%R. +Proof. +intros x b Hb0 Hxb. +apply relative_error_lt_conversion'. +exact Hb0. +now intros _. +Qed. + Lemma relative_error_le_conversion : forall x b, (0 <= b)%R -> (Rabs (round beta fexp rnd x - x) <= b * Rabs x)%R -> @@ -154,18 +168,28 @@ rewrite F2R_0, F2R_Zabs. now apply Rabs_pos_lt. Qed. -Theorem relative_error_F2R_emin_ex : +Theorem relative_error_F2R_emin_ex' : forall m, let x := F2R (Float beta m emin) in - (x <> 0)%R -> exists eps, (Rabs eps < bpow (-p + 1))%R /\ round beta fexp rnd x = (x * (1 + eps))%R. Proof with auto with typeclass_instances. -intros m x Hx. -apply relative_error_lt_conversion... +intros m x. +apply relative_error_lt_conversion'... apply bpow_gt_0. now apply relative_error_F2R_emin. Qed. +(* TODO: remove *) +Theorem relative_error_F2R_emin_ex : + forall m, let x := F2R (Float beta m emin) in + (x <> 0)%R -> + exists eps, + (Rabs eps < bpow (-p + 1))%R /\ round beta fexp rnd x = (x * (1 + eps))%R. +Proof with auto with typeclass_instances. +intros m x _. +apply relative_error_F2R_emin_ex'. +Qed. + Theorem relative_error_round : (0 < p)%Z -> forall x, @@ -404,6 +428,7 @@ Qed. Variable rnd : R -> Z. Context { valid_rnd : Valid_rnd rnd }. +(* TODO: remove *) Theorem relative_error_FLT_F2R_emin : forall m, let x := F2R (Float beta m (emin + prec - 1)) in (x <> 0)%R -> @@ -424,14 +449,49 @@ apply relative_error with (emin + prec - 1)%Z... apply relative_error_FLT_aux. Qed. +Theorem relative_error_FLT_F2R_emin' : + forall m, let x := F2R (Float beta m emin) in + (x <> 0)%R -> + (Rabs (round beta (FLT_exp emin prec) rnd x - x) < bpow (-prec + 1) * Rabs x)%R. +Proof with auto with typeclass_instances. +intros m x Zx. +destruct (Rlt_or_le (Rabs x) (bpow (emin + prec - 1))) as [Hx|Hx]. +rewrite round_generic... +unfold Rminus. +rewrite Rplus_opp_r, Rabs_R0. +apply Rmult_lt_0_compat. +apply bpow_gt_0. +now apply Rabs_pos_lt. +apply generic_format_FLT_FIX... +apply Rlt_le. +apply Rlt_le_trans with (1 := Hx). +apply bpow_le. +apply Zle_pred. +apply generic_format_FIX. +now exists (Float beta m emin). +now apply relative_error_FLT. +Qed. + +Theorem relative_error_FLT_F2R_emin_ex' : + forall m, let x := F2R (Float beta m emin) in + exists eps, + (Rabs eps < bpow (-prec + 1))%R /\ round beta (FLT_exp emin prec) rnd x = (x * (1 + eps))%R. +Proof with auto with typeclass_instances. +intros m x. +apply relative_error_lt_conversion'... +apply bpow_gt_0. +now apply relative_error_FLT_F2R_emin'. +Qed. + +(* TODO: remove *) Theorem relative_error_FLT_F2R_emin_ex : forall m, let x := F2R (Float beta m (emin + prec - 1)) in (x <> 0)%R -> exists eps, (Rabs eps < bpow (-prec + 1))%R /\ round beta (FLT_exp emin prec) rnd x = (x * (1 + eps))%R. Proof with auto with typeclass_instances. -intros m x Hx. -apply relative_error_lt_conversion... +intros m x _. +apply relative_error_lt_conversion'... apply bpow_gt_0. now apply relative_error_FLT_F2R_emin. Qed. @@ -488,6 +548,32 @@ apply relative_error_N_round with (emin + prec - 1)%Z... apply relative_error_FLT_aux. Qed. +Theorem relative_error_N_FLT_F2R_emin' : + forall m, let x := F2R (Float beta m emin) in + (Rabs (round beta (FLT_exp emin prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs x)%R. +Proof with auto with typeclass_instances. +intros m x. +destruct (Rlt_or_le (Rabs x) (bpow (emin + prec - 1))) as [Hx|Hx]. +rewrite round_generic... +unfold Rminus. +rewrite Rplus_opp_r, Rabs_R0. +apply Rmult_le_pos. +apply Rmult_le_pos. +apply Rlt_le. +apply (RinvN_pos 1). +apply bpow_ge_0. +apply Rabs_pos. +apply generic_format_FLT_FIX... +apply Rlt_le. +apply Rlt_le_trans with (1 := Hx). +apply bpow_le. +apply Zle_pred. +apply generic_format_FIX. +now exists (Float beta m emin). +now apply relative_error_N_FLT. +Qed. + +(* TODO: remove *) Theorem relative_error_N_FLT_F2R_emin : forall m, let x := F2R (Float beta m (emin + prec - 1)) in (Rabs (round beta (FLT_exp emin prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs x)%R. @@ -497,6 +583,21 @@ apply relative_error_N_F2R_emin... apply relative_error_FLT_aux. Qed. +Theorem relative_error_N_FLT_F2R_emin_ex' : + forall m, let x := F2R (Float beta m emin) in + exists eps, + (Rabs eps <= /2 * bpow (-prec + 1))%R /\ round beta (FLT_exp emin prec) (Znearest choice) x = (x * (1 + eps))%R. +Proof with auto with typeclass_instances. +intros m x. +apply relative_error_le_conversion... +apply Rmult_le_pos. +apply Rlt_le. +apply (RinvN_pos 1). +apply bpow_ge_0. +now apply relative_error_N_FLT_F2R_emin'. +Qed. + +(* TODO: remove *) Theorem relative_error_N_FLT_F2R_emin_ex : forall m, let x := F2R (Float beta m (emin + prec - 1)) in exists eps, @@ -512,6 +613,33 @@ apply bpow_gt_0. now apply relative_error_N_FLT_F2R_emin. Qed. +Theorem relative_error_N_FLT_round_F2R_emin' : + forall m, let x := F2R (Float beta m emin) in + (Rabs (round beta (FLT_exp emin prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs (round beta (FLT_exp emin prec) (Znearest choice) x))%R. +Proof with auto with typeclass_instances. +intros m x. +destruct (Rlt_or_le (Rabs x) (bpow (emin + prec - 1))) as [Hx|Hx]. +rewrite round_generic... +unfold Rminus. +rewrite Rplus_opp_r, Rabs_R0. +apply Rmult_le_pos. +apply Rmult_le_pos. +apply Rlt_le. +apply (RinvN_pos 1). +apply bpow_ge_0. +apply Rabs_pos. +apply generic_format_FLT_FIX... +apply Rlt_le. +apply Rlt_le_trans with (1 := Hx). +apply bpow_le. +apply Zle_pred. +apply generic_format_FIX. +now exists (Float beta m emin). +apply relative_error_N_round with (emin := (emin + prec - 1)%Z)... +apply relative_error_FLT_aux. +Qed. + +(* TODO: remove *) Theorem relative_error_N_FLT_round_F2R_emin : forall m, let x := F2R (Float beta m (emin + prec - 1)) in (Rabs (round beta (FLT_exp emin prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs (round beta (FLT_exp emin prec) (Znearest choice) x))%R. @@ -606,18 +734,28 @@ apply He. Qed. (** 1+#ε# property in any rounding in FLX *) -Theorem relative_error_FLX_ex : +Theorem relative_error_FLX_ex' : forall x, - (x <> 0)%R -> exists eps, (Rabs eps < bpow (-prec + 1))%R /\ round beta (FLX_exp prec) rnd x = (x * (1 + eps))%R. Proof with auto with typeclass_instances. -intros x Hx. -apply relative_error_lt_conversion... +intros x. +apply relative_error_lt_conversion'... apply bpow_gt_0. now apply relative_error_FLX. Qed. +(* TODO: remove *) +Theorem relative_error_FLX_ex : + forall x, + (x <> 0)%R -> + exists eps, + (Rabs eps < bpow (-prec + 1))%R /\ round beta (FLX_exp prec) rnd x = (x * (1 + eps))%R. +Proof with auto with typeclass_instances. +intros x _. +apply relative_error_FLX_ex'. +Qed. + Theorem relative_error_FLX_round : forall x, (x <> 0)%R -> |