summaryrefslogtreecommitdiff
path: root/common
diff options
context:
space:
mode:
authorGravatar xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2014-03-28 08:08:46 +0000
committerGravatar xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2014-03-28 08:08:46 +0000
commitf37a87e35850e57febba0a39ce3cb526e7886c10 (patch)
tree5f425efb2ee4b5f5fa263c067f5491e3ff8736c2 /common
parent20d63e8ff055ba280061a2fc15a033b038890872 (diff)
Revert commits r2435 and r2436 (coarser RTLtyping / finer Lineartyping):
the new Lineartyping can't keep track of single floats that were spilled. git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2438 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'common')
-rw-r--r--common/Unityping.v435
1 files changed, 0 insertions, 435 deletions
diff --git a/common/Unityping.v b/common/Unityping.v
deleted file mode 100644
index d108c87..0000000
--- a/common/Unityping.v
+++ /dev/null
@@ -1,435 +0,0 @@
-(* *********************************************************************)
-(* *)
-(* The Compcert verified compiler *)
-(* *)
-(* Xavier Leroy, INRIA Paris-Rocquencourt *)
-(* *)
-(* Copyright Institut National de Recherche en Informatique et en *)
-(* Automatique. All rights reserved. This file is distributed *)
-(* under the terms of the GNU General Public License as published by *)
-(* the Free Software Foundation, either version 2 of the License, or *)
-(* (at your option) any later version. This file is also distributed *)
-(* under the terms of the INRIA Non-Commercial License Agreement. *)
-(* *)
-(* *********************************************************************)
-
-(* A solver for unification constraints. *)
-
-Require Import Recdef Coqlib Maps Errors.
-
-Local Open Scope nat_scope.
-Local Open Scope error_monad_scope.
-
-(** This module provides a solver for sets of unification constraints of the
- following kinds: [T(x) = base-type] or [T(x) = T(y)].
- The unknowns are the types [T(x)] of every identifier [x]. *)
-
-(** The interface for base types. *)
-
-Module Type TYPE_ALGEBRA.
-
-Variable t: Type.
-Variable eq: forall (x y: t), {x=y} + {x<>y}.
-Variable default: t.
-
-End TYPE_ALGEBRA.
-
-(** The constraint solver. *)
-
-Module UniSolver (T: TYPE_ALGEBRA).
-
-(* The current set of constraints is represented by a record with two components:
-- [te_typ]: a partial map from variables to types
-- [te_equ]: a list of pairs [(x,y)] of variables, indicating that
- the type of [x] must be equal to the type of [y].
-*)
-
-Definition constraint : Type := (positive * positive)%type.
-
-Record typenv : Type := Typenv {
- te_typ: PTree.t T.t; (**r mapping var -> typ *)
- te_equ: list constraint (**r additional equality constraints *)
-}.
-
-Definition initial : typenv := {| te_typ := PTree.empty _; te_equ := nil |}.
-
-(** Add the constraint [T(x) = ty]. *)
-
-Definition set (e: typenv) (x: positive) (ty: T.t) : res typenv :=
- match e.(te_typ)!x with
- | None =>
- OK {| te_typ := PTree.set x ty e.(te_typ);
- te_equ := e.(te_equ) |}
- | Some ty' =>
- if T.eq ty ty'
- then OK e
- else Error (MSG "bad definition/use of variable " :: POS x :: nil)
- end.
-
-Fixpoint set_list (e: typenv) (rl: list positive) (tyl: list T.t) {struct rl}: res typenv :=
- match rl, tyl with
- | nil, nil => OK e
- | r1::rs, ty1::tys => do e1 <- set e r1 ty1; set_list e1 rs tys
- | _, _ => Error (msg "arity mismatch")
- end.
-
-(** Add the constraint [T(x) = T(y)].
- The boolean result is [true] if the types of [x] or [y] could be
- made more precise. Otherwise, [te_typ] does not change and
- [false] is returned. *)
-
-Definition move (e: typenv) (r1 r2: positive) : res (bool * typenv) :=
- if peq r1 r2 then OK (false, e) else
- match e.(te_typ)!r1, e.(te_typ)!r2 with
- | None, None =>
- OK (false, {| te_typ := e.(te_typ); te_equ := (r1, r2) :: e.(te_equ) |})
- | Some ty1, None =>
- OK (true, {| te_typ := PTree.set r2 ty1 e.(te_typ); te_equ := e.(te_equ) |})
- | None, Some ty2 =>
- OK (true, {| te_typ := PTree.set r1 ty2 e.(te_typ); te_equ := e.(te_equ) |})
- | Some ty1, Some ty2 =>
- if T.eq ty1 ty2
- then OK (false, e)
- else Error(MSG "ill-typed move from " :: POS r1 :: MSG " to " :: POS r2 :: nil)
- end.
-
-(** Solve the remaining subtyping constraints by iteration. *)
-
-Fixpoint solve_rec (e: typenv) (changed: bool) (q: list constraint) : res (typenv * bool) :=
- match q with
- | nil =>
- OK (e, changed)
- | (r1, r2) :: q' =>
- do (changed1, e1) <- move e r1 r2; solve_rec e1 (changed || changed1) q'
- end.
-
-(** Measuring the state *)
-
-Lemma move_shape:
- forall e r1 r2 changed e',
- move e r1 r2 = OK (changed, e') ->
- (e'.(te_equ) = e.(te_equ) \/ e'.(te_equ) = (r1, r2) :: e.(te_equ))
- /\ (changed = true -> e'.(te_equ) = e.(te_equ)).
-Proof.
- unfold move; intros.
- destruct (peq r1 r2). inv H. auto.
- destruct e.(te_typ)!r1 as [ty1|]; destruct e.(te_typ)!r2 as [ty2|]; inv H; simpl.
- destruct (T.eq ty1 ty2); inv H1. auto.
- auto.
- auto.
- split. auto. intros. discriminate.
-Qed.
-
-Lemma length_move:
- forall e r1 r2 changed e',
- move e r1 r2 = OK (changed, e') ->
- length e'.(te_equ) + (if changed then 1 else 0) <= S(length e.(te_equ)).
-Proof.
- unfold move; intros.
- destruct (peq r1 r2). inv H. omega.
- destruct e.(te_typ)!r1 as [ty1|]; destruct e.(te_typ)!r2 as [ty2|]; inv H; simpl.
- destruct (T.eq ty1 ty2); inv H1. omega.
- omega.
- omega.
- omega.
-Qed.
-
-Lemma length_solve_rec:
- forall q e ch e' ch',
- solve_rec e ch q = OK (e', ch') ->
- length e'.(te_equ) + (if ch' && negb ch then 1 else 0) <= length e.(te_equ) + length q.
-Proof.
- induction q; simpl; intros.
-- inv H. replace (ch' && negb ch') with false. omega. destruct ch'; auto.
-- destruct a as [r1 r2]; monadInv H. rename x0 into e0. rename x into ch0.
- exploit IHq; eauto. intros A.
- exploit length_move; eauto. intros B.
- set (X := (if ch' && negb (ch || ch0) then 1 else 0)) in *.
- set (Y := (if ch0 then 1 else 0)) in *.
- set (Z := (if ch' && negb ch then 1 else 0)) in *.
- cut (Z <= X + Y). intros. omega.
- unfold X, Y, Z. destruct ch'; destruct ch; destruct ch0; simpl; auto.
-Qed.
-
-Definition weight_typenv (e: typenv) : nat := length e.(te_equ).
-
-
-(** Iterative solving of the remaining constraints *)
-
-Function solve_constraints (e: typenv) {measure weight_typenv e}: res typenv :=
- match solve_rec {| te_typ := e.(te_typ); te_equ := nil |} false e.(te_equ) with
- | OK(e', false) => OK e (**r no more changes, fixpoint reached *)
- | OK(e', true) => solve_constraints e' (**r one more iteration *)
- | Error msg => Error msg
- end.
-Proof.
- intros. exploit length_solve_rec; eauto. simpl. intros.
- unfold weight_typenv. omega.
-Qed.
-
-Definition typassign := positive -> T.t.
-
-Definition makeassign (e: typenv) : typassign :=
- fun x => match e.(te_typ)!x with Some ty => ty | None => T.default end.
-
-Definition solve (e: typenv) : res typassign :=
- do e' <- solve_constraints e; OK(makeassign e').
-
-(** What it means to be a solution *)
-
-Definition satisf (te: typassign) (e: typenv) : Prop :=
- (forall x ty, e.(te_typ)!x = Some ty -> te x = ty)
-/\ (forall x y, In (x, y) e.(te_equ) -> te x = te y).
-
-Lemma satisf_initial: forall te, satisf te initial.
-Proof.
- unfold initial; intros; split; simpl; intros.
- rewrite PTree.gempty in H; discriminate.
- contradiction.
-Qed.
-
-(** Soundness proof *)
-
-Lemma set_incr:
- forall te x ty e e', set e x ty = OK e' -> satisf te e' -> satisf te e.
-Proof.
- unfold set; intros. destruct (te_typ e)!x as [ty'|] eqn:E.
-- destruct (T.eq ty ty'); inv H. auto.
-- inv H. destruct H0 as [A B]; simpl in *. red; split; intros; auto.
- apply A. rewrite PTree.gso by congruence. auto.
-Qed.
-
-Hint Resolve set_incr: ty.
-
-Lemma set_sound:
- forall te x ty e e', set e x ty = OK e' -> satisf te e' -> te x = ty.
-Proof.
- unfold set; intros. destruct H0 as [P Q].
- destruct (te_typ e)!x as [ty'|] eqn:E.
-- destruct (T.eq ty ty'); inv H. eauto.
-- inv H. simpl in P. apply P. apply PTree.gss.
-Qed.
-
-Lemma set_list_incr:
- forall te xl tyl e e', set_list e xl tyl = OK e' -> satisf te e' -> satisf te e.
-Proof.
- induction xl; destruct tyl; simpl; intros; monadInv H; eauto with ty.
-Qed.
-
-Hint Resolve set_list_incr: ty.
-
-Lemma set_list_sound:
- forall te xl tyl e e', set_list e xl tyl = OK e' -> satisf te e' -> map te xl = tyl.
-Proof.
- induction xl; destruct tyl; simpl; intros; monadInv H.
- auto.
- f_equal. eapply set_sound; eauto with ty. eauto.
-Qed.
-
-Lemma move_incr:
- forall te e r1 r2 e' changed,
- move e r1 r2 = OK(changed, e') -> satisf te e' -> satisf te e.
-Proof.
- unfold move; intros. destruct H0 as [P Q].
- destruct (peq r1 r2). inv H; split; auto.
- destruct (te_typ e)!r1 as [ty1|] eqn:E1;
- destruct (te_typ e)!r2 as [ty2|] eqn:E2.
-- destruct (T.eq ty1 ty2); inv H. split; auto.
-- inv H; simpl in *; split; auto. intros. apply P.
- rewrite PTree.gso by congruence. auto.
-- inv H; simpl in *; split; auto. intros. apply P.
- rewrite PTree.gso by congruence. auto.
-- inv H; simpl in *; split; auto.
-Qed.
-
-Hint Resolve move_incr: ty.
-
-Lemma move_sound:
- forall te e r1 r2 e' changed,
- move e r1 r2 = OK(changed, e') -> satisf te e' -> te r1 = te r2.
-Proof.
- unfold move; intros. destruct H0 as [P Q].
- destruct (peq r1 r2). congruence.
- destruct (te_typ e)!r1 as [ty1|] eqn:E1;
- destruct (te_typ e)!r2 as [ty2|] eqn:E2.
-- destruct (T.eq ty1 ty2); inv H. erewrite ! P by eauto. auto.
-- inv H; simpl in *. rewrite (P r1 ty1). rewrite (P r2 ty1). auto.
- apply PTree.gss. rewrite PTree.gso by congruence. auto.
-- inv H; simpl in *. rewrite (P r1 ty2). rewrite (P r2 ty2). auto.
- rewrite PTree.gso by congruence. auto. apply PTree.gss.
-- inv H; simpl in *. apply Q; auto.
-Qed.
-
-Lemma solve_rec_incr:
- forall te q e changed e' changed',
- solve_rec e changed q = OK(e', changed') -> satisf te e' -> satisf te e.
-Proof.
- induction q; simpl; intros.
-- inv H. auto.
-- destruct a as [r1 r2]; monadInv H. eauto with ty.
-Qed.
-
-Lemma solve_rec_sound:
- forall te r1 r2 q e changed e' changed',
- solve_rec e changed q = OK(e', changed') -> In (r1, r2) q -> satisf te e' ->
- te r1 = te r2.
-Proof.
- induction q; simpl; intros.
-- contradiction.
-- destruct a as [r3 r4]; monadInv H. destruct H0.
- + inv H. eapply move_sound; eauto. eapply solve_rec_incr; eauto.
- + eapply IHq; eauto with ty.
-Qed.
-
-Lemma move_false:
- forall e r1 r2 e',
- move e r1 r2 = OK(false, e') ->
- te_typ e' = te_typ e /\ makeassign e r1 = makeassign e r2.
-Proof.
- unfold move; intros.
- destruct (peq r1 r2). inv H. split; auto.
- unfold makeassign;
- destruct (te_typ e)!r1 as [ty1|] eqn:E1;
- destruct (te_typ e)!r2 as [ty2|] eqn:E2.
-- destruct (T.eq ty1 ty2); inv H. auto.
-- discriminate.
-- discriminate.
-- inv H. split; auto.
-Qed.
-
-Lemma solve_rec_false:
- forall r1 r2 q e changed e',
- solve_rec e changed q = OK(e', false) ->
- changed = false /\
- (In (r1, r2) q -> makeassign e r1 = makeassign e r2).
-Proof.
- induction q; simpl; intros.
-- inv H. tauto.
-- destruct a as [r3 r4]; monadInv H.
- exploit IHq; eauto. intros [P Q].
- destruct changed; try discriminate. destruct x; try discriminate.
- exploit move_false; eauto. intros [U V].
- split. auto. intros [A|A]. inv A. auto. exploit Q; auto.
- unfold makeassign; rewrite U; auto.
-Qed.
-
-Lemma solve_constraints_incr:
- forall te e e', solve_constraints e = OK e' -> satisf te e' -> satisf te e.
-Proof.
- intros te e; functional induction (solve_constraints e); intros.
-- inv H. auto.
-- exploit solve_rec_incr; eauto. intros [A B].
- split; auto. intros; eapply solve_rec_sound; eauto.
-- discriminate.
-Qed.
-
-Lemma solve_constraints_sound:
- forall e e', solve_constraints e = OK e' -> satisf (makeassign e') e'.
-Proof.
- intros e0; functional induction (solve_constraints e0); intros.
-- inv H. split; intros.
- unfold makeassign; rewrite H. split; auto with ty.
- exploit solve_rec_false. eauto. intros [A B]. eapply B; eauto.
-- eauto.
-- discriminate.
-Qed.
-
-Theorem solve_sound:
- forall e te, solve e = OK te -> satisf te e.
-Proof.
- unfold solve; intros. monadInv H.
- eapply solve_constraints_incr. eauto. eapply solve_constraints_sound; eauto.
-Qed.
-
-(** Completeness proof *)
-
-Lemma set_complete:
- forall te e x ty,
- satisf te e -> te x = ty -> exists e', set e x ty = OK e' /\ satisf te e'.
-Proof.
- unfold set; intros. generalize H; intros [P Q].
- destruct (te_typ e)!x as [ty1|] eqn:E.
-- replace ty1 with ty. rewrite dec_eq_true. exists e; auto.
- exploit P; eauto. congruence.
-- econstructor; split; eauto. split; simpl; intros; auto.
- rewrite PTree.gsspec in H1. destruct (peq x0 x). congruence. eauto.
-Qed.
-
-Lemma set_list_complete:
- forall te xl tyl e,
- satisf te e -> map te xl = tyl ->
- exists e', set_list e xl tyl = OK e' /\ satisf te e'.
-Proof.
- induction xl; intros; inv H0; simpl.
- econstructor; eauto.
- exploit (set_complete te e a (te a)); auto. intros (e1 & P & Q).
- exploit (IHxl (map te xl) e1); auto. intros (e2 & U & V).
- exists e2; split; auto. rewrite P; auto.
-Qed.
-
-Lemma move_complete:
- forall te e r1 r2,
- satisf te e -> te r1 = te r2 ->
- exists changed e', move e r1 r2 = OK(changed, e') /\ satisf te e'.
-Proof.
- unfold move; intros. elim H; intros P Q.
- assert (Q': forall x y, In (x, y) ((r1, r2) :: te_equ e) -> te x = te y).
- { intros. destruct H1; auto. congruence. }
- destruct (peq r1 r2). econstructor; econstructor; eauto.
- destruct (te_typ e)!r1 as [ty1|] eqn:E1;
- destruct (te_typ e)!r2 as [ty2|] eqn:E2.
-- replace ty2 with ty1. rewrite dec_eq_true. econstructor; econstructor; eauto.
- exploit (P r1); eauto. exploit (P r2); eauto. congruence.
-- econstructor; econstructor; split; eauto.
- split; simpl; intros; auto. rewrite PTree.gsspec in H1. destruct (peq x r2).
- inv H1. rewrite <- H0. eauto.
- eauto.
-- econstructor; econstructor; split; eauto.
- split; simpl; intros; auto. rewrite PTree.gsspec in H1. destruct (peq x r1).
- inv H1. rewrite H0. eauto.
- eauto.
-- econstructor; econstructor; split; eauto.
- split; eauto.
-Qed.
-
-Lemma solve_rec_complete:
- forall te q e changed,
- satisf te e ->
- (forall r1 r2, In (r1, r2) q -> te r1 = te r2) ->
- exists e' changed', solve_rec e changed q = OK(e', changed') /\ satisf te e'.
-Proof.
- induction q; simpl; intros.
-- econstructor; econstructor; eauto.
-- destruct a as [r1 r2].
- exploit (move_complete te e r1 r2); auto. intros (changed1 & e1 & A & B).
- exploit (IHq e1 (changed || changed1)); auto. intros (e' & changed' & C & D).
- exists e'; exists changed'. rewrite A; simpl; rewrite C; auto.
-Qed.
-
-Lemma solve_constraints_complete:
- forall te e, satisf te e -> exists e', solve_constraints e = OK e' /\ satisf te e'.
-Proof.
- intros te e. functional induction (solve_constraints e); intros.
-- exists e; auto.
-- exploit (solve_rec_complete te (te_equ e) {| te_typ := te_typ e; te_equ := nil |} false).
- destruct H; split; auto. simpl; tauto.
- destruct H; auto.
- intros (e1 & changed1 & P & Q).
- apply IHr. congruence.
-- exploit (solve_rec_complete te (te_equ e) {| te_typ := te_typ e; te_equ := nil |} false).
- destruct H; split; auto. simpl; tauto.
- destruct H; auto.
- intros (e1 & changed1 & P & Q).
- congruence.
-Qed.
-
-Lemma solve_complete:
- forall te e, satisf te e -> exists te', solve e = OK te'.
-Proof.
- intros. unfold solve.
- destruct (solve_constraints_complete te e H) as (e' & P & Q).
- econstructor. rewrite P. simpl. eauto.
-Qed.
-
-End UniSolver.
-