diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2012-08-01 13:34:34 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2012-08-01 13:34:34 +0000 |
commit | f1ac540608524331ec20e0380a118c36e5d6922a (patch) | |
tree | e8d5f9e8d70e111a27df974789d4a560b5e2a74f /common | |
parent | f896088ade483c43bc737513bf614f962c645020 (diff) |
Removed old, commented-out definitions.
Removed axiom "traceinf_determ" and show uniqueness of behaviors up to similarity of infinite traces.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@1988 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'common')
-rw-r--r-- | common/Determinism.v | 322 |
1 files changed, 30 insertions, 292 deletions
diff --git a/common/Determinism.v b/common/Determinism.v index 778ba22..d798cf5 100644 --- a/common/Determinism.v +++ b/common/Determinism.v @@ -10,9 +10,9 @@ (* *) (* *********************************************************************) -(** Characterization and properties of deterministic semantics *) +(** Characterization and properties of deterministic external worlds + and deterministic semantics *) -Require Import Classical. Require Import Coqlib. Require Import AST. Require Import Integers. @@ -22,14 +22,6 @@ Require Import Globalenvs. Require Import Smallstep. Require Import Behaviors. -(** This file uses classical logic (the axiom of excluded middle), as - well as the following extensionality property over infinite - sequences of events. All these axioms are sound in a set-theoretic - model of Coq's logic. *) - -Axiom traceinf_extensionality: - forall T T', traceinf_sim T T' -> T = T'. - (** * Deterministic worlds *) (** One source of possible nondeterminism is that our semantics leave @@ -428,58 +420,66 @@ Qed. (** Determinism for program executions *) +Definition same_behaviors (beh1 beh2: program_behavior) : Prop := + match beh1, beh2 with + | Terminates t1 r1, Terminates t2 r2 => t1 = t2 /\ r1 = r2 + | Diverges t1, Diverges t2 => t1 = t2 + | Reacts t1, Reacts t2 => traceinf_sim t1 t2 + | Goes_wrong t1, Goes_wrong t2 => t1 = t2 + | _, _ => False + end. + Lemma state_behaves_deterministic: forall s beh1 beh2, - state_behaves L s beh1 -> state_behaves L s beh2 -> beh1 = beh2. + state_behaves L s beh1 -> state_behaves L s beh2 -> same_behaviors beh1 beh2. Proof. generalize (det_final_nostep L DET); intro dfns. intros until beh2; intros BEH1 BEH2. - inv BEH1; inv BEH2. + inv BEH1; inv BEH2; red. (* terminates, terminates *) assert (t = t0 /\ s' = s'0). eapply steps_deterministic; eauto. - destruct H3. f_equal; auto. subst. eapply det_final_state; eauto. + destruct H3. split; auto. subst. eapply det_final_state; eauto. (* terminates, diverges *) - byContradiction. eapply star2_final_not_forever_silent with (s1 := s') (s2 := s'0); eauto. + eapply star2_final_not_forever_silent with (s1 := s') (s2 := s'0); eauto. (* terminates, reacts *) - byContradiction. eapply star_final_not_forever_reactive; eauto. + eapply star_final_not_forever_reactive; eauto. (* terminates, goes_wrong *) - byContradiction. eapply terminates_not_goes_wrong with (s1 := s') (s2 := s'0); eauto. + eapply terminates_not_goes_wrong with (s1 := s') (s2 := s'0); eauto. (* diverges, terminates *) - byContradiction. eapply star2_final_not_forever_silent with (s2 := s') (s1 := s'0); eauto. + eapply star2_final_not_forever_silent with (s2 := s') (s1 := s'0); eauto. (* diverges, diverges *) - f_equal. use_star_step_diamond. + use_star_step_diamond. exploit star_forever_silent_inv. eexact P. eauto. intros [A B]. subst; traceEq. exploit star_forever_silent_inv. eexact P. eauto. intros [A B]. subst; traceEq. (* diverges, reacts *) - byContradiction. eapply forever_silent_reactive_exclusive2; eauto. + eapply forever_silent_reactive_exclusive2; eauto. (* diverges, goes wrong *) - byContradiction. eapply star2_final_not_forever_silent with (s1 := s'0) (s2 := s'); eauto. + eapply star2_final_not_forever_silent with (s1 := s'0) (s2 := s'); eauto. (* reacts, terminates *) - byContradiction. eapply star_final_not_forever_reactive; eauto. + eapply star_final_not_forever_reactive; eauto. (* reacts, diverges *) - byContradiction. eapply forever_silent_reactive_exclusive2; eauto. + eapply forever_silent_reactive_exclusive2; eauto. (* reacts, reacts *) - f_equal. apply traceinf_extensionality. eapply forever_reactive_determ; eauto. (* reacts, goes wrong *) - byContradiction. eapply star_final_not_forever_reactive; eauto. + eapply star_final_not_forever_reactive; eauto. (* goes wrong, terminate *) - byContradiction. eapply terminates_not_goes_wrong with (s1 := s'0) (s2 := s'); eauto. + eapply terminates_not_goes_wrong with (s1 := s'0) (s2 := s'); eauto. (* goes wrong, diverges *) - byContradiction. eapply star2_final_not_forever_silent with (s1 := s') (s2 := s'0); eauto. + eapply star2_final_not_forever_silent with (s1 := s') (s2 := s'0); eauto. (* goes wrong, reacts *) - byContradiction. eapply star_final_not_forever_reactive; eauto. + eapply star_final_not_forever_reactive; eauto. (* goes wrong, goes wrong *) assert (t = t0 /\ s' = s'0). eapply steps_deterministic; eauto. - destruct H5. congruence. + tauto. Qed. Theorem program_behaves_deterministic: forall beh1 beh2, program_behaves L beh1 -> program_behaves L beh2 -> - beh1 = beh2. + same_behaviors beh1 beh2. Proof. intros until beh2; intros BEH1 BEH2. inv BEH1; inv BEH2. (* both initial states defined *) @@ -489,7 +489,7 @@ Proof. elim (H1 _ H). elim (H _ H0). (* both initial states undefined *) - auto. + red; auto. Qed. End DETERM_SEM. @@ -542,268 +542,6 @@ Proof. red; simpl; intros. red; intros [A B]. exploit (sd_final_nostep D); eauto. Qed. -(*** To be updated. *) -(*********** -Variable genv: Type. -Variable state: Type. -Variable step: genv -> state -> trace -> state -> Prop. -Variable initial_state: state -> Prop. -Variable final_state: state -> int -> Prop. -Variable initial_world: world. - -Definition wstate : Type := (state * world)%type. - - -Definition wstep (ge: genv) (S: wstate) (t: trace) (S': wstate) := - step ge S#1 t S'#1 /\ possible_trace S#2 t S'#2. - -Definition winitial_state (S: wstate) := - initial_state S#1 /\ S#2 = initial_world. - -Definition wfinal_state (S: wstate) (r: int) := - final_state S#1 r. - -Definition wprogram_behaves (ge: genv) (beh: program_behavior) := - program_behaves wstep winitial_state wfinal_state ge beh. - -(** We now relate sequences of transitions and behaviors between the two semantics. *) - -Section TRANSITIONS. - -Variable ge: genv. - -Lemma inject_star: - forall S t S', star step ge S t S' -> - forall w w', possible_trace w t w' -> - star wstep ge (S, w) t (S', w'). -Proof. - induction 1; intros; subst; possibleTraceInv. - constructor. - apply star_step with t1 (s2,w0) t2. split; auto. auto. auto. -Qed. - -Lemma project_star: - forall S t S', star wstep ge S t S' -> star step ge S#1 t S'#1. -Proof. - induction 1. constructor. destruct H. econstructor; eauto. -Qed. - -Lemma project_star_trace: - forall S t S', star wstep ge S t S' -> possible_trace S#2 t S'#2. -Proof. - induction 1. constructor. subst t. destruct H. eapply possible_trace_app. eauto. eauto. -Qed. - -Lemma inject_forever_silent: - forall S w, forever_silent step ge S -> forever_silent wstep ge (S, w). -Proof. - cofix COINDHYP; intros. inv H. - apply forever_silent_intro with (s2,w). - split. auto. constructor. apply COINDHYP; auto. -Qed. - -Lemma project_forever_silent: - forall S, forever_silent wstep ge S -> forever_silent step ge S#1. -Proof. - cofix COINDHYP; intros. inv H. destruct H0. - apply forever_silent_intro with (s2#1). auto. apply COINDHYP; auto. -Qed. - -Lemma inject_forever_reactive: - forall S T w, forever_reactive step ge S T -> possible_traceinf w T -> - forever_reactive wstep ge (S, w) T. -Proof. - cofix COINDHYP; intros. inv H. possibleTraceInv. - apply forever_reactive_intro with (s2,w0). - apply inject_star; auto. auto. apply COINDHYP; auto. -Qed. - -Lemma project_forever_reactive: - forall S T, forever_reactive wstep ge S T -> forever_reactive step ge S#1 T. -Proof. - cofix COINDHYP; intros. inv H. - apply forever_reactive_intro with (s2#1). - apply project_star; auto. auto. apply COINDHYP; auto. -Qed. - -Lemma project_forever_reactive_trace: - forall S T, forever_reactive wstep ge S T -> possible_traceinf S#2 T. -Proof. - intros. apply possible_traceinf'_traceinf. revert S T H. - cofix COINDHYP; intros. inv H. econstructor. - apply project_star_trace. eauto. auto. apply COINDHYP; auto. -Qed. - -Lemma inject_behaviors: - forall beh, - program_behaves step initial_state final_state ge beh -> - possible_behavior initial_world beh -> - wprogram_behaves ge beh. -Proof. - intros. inv H; simpl in H0. -(* terminates *) - destruct H0 as [w' A]. econstructor. - instantiate (1 := (s, initial_world)). red; eauto. - apply inject_star; eauto. - red; auto. -(* diverges silently *) - destruct H0 as [w' A]. econstructor. - instantiate (1 := (s, initial_world)). red; eauto. - apply inject_star; eauto. apply inject_forever_silent; auto. -(* diverges reactively *) - econstructor. - instantiate (1 := (s, initial_world)). red; eauto. - apply inject_forever_reactive; auto. -(* goes wrong *) - destruct H0 as [w' A]. red in H3. - econstructor. - instantiate (1 := (s, initial_world)). red; eauto. - apply inject_star; eauto. - red. intros. red; intros [C D]. elim (H3 t0 s'0#1); auto. - unfold wfinal_state; simpl. auto. -(* goes initially wrong *) - apply program_goes_initially_wrong. intros; red; intros. destruct H. - elim (H1 s#1); auto. -Qed. - -Lemma project_behaviors_trace: - forall beh, - wprogram_behaves ge beh -> - possible_behavior initial_world beh. -Proof. - intros. inv H; simpl. - destruct H0. rewrite <- H0. exists (s'#2); apply project_star_trace; auto. - destruct H0. rewrite <- H0. exists (s'#2); apply project_star_trace; auto. - destruct H0. rewrite <- H0. apply project_forever_reactive_trace; auto. - destruct H0. rewrite <- H0. exists (s'#2); apply project_star_trace; auto. - exists initial_world; constructor. -Qed. - -Lemma project_behaviors: - forall beh, - wprogram_behaves ge beh -> - program_behaves step initial_state final_state ge beh - \/ exists S, exists t, exists S', exists w', exists S'', exists t', - beh = Goes_wrong t /\ - initial_state S /\ star step ge S t S' /\ possible_trace initial_world t w' /\ - step ge S' t' S'' /\ forall w'', ~(possible_trace w' t' w''). -Proof. - intros. inv H. -(* terminates *) - destruct H0. - left. econstructor; eauto. apply project_star; auto. -(* diverges silently *) - destruct H0. - left. econstructor; eauto. apply project_star; eauto. apply project_forever_silent; auto. -(* diverges reactively *) - destruct H0. - left. econstructor; eauto. apply project_forever_reactive; auto. -(* goes wrong *) - destruct H0. - red in H2. - destruct (classic (forall t s'', ~step ge s'#1 t s'')). - left. econstructor; eauto. apply project_star; eauto. - destruct (not_all_ex_not _ _ H4) as [t' A]. clear H4. - destruct (not_all_ex_not _ _ A) as [s'' B]. clear A. - assert (C: step ge s'#1 t' s''). apply NNPP; auto. clear B. - right. do 6 econstructor. split. eauto. split. eauto. - split. apply project_star; eauto. - split. rewrite <- H0. apply project_star_trace; eauto. - split. eauto. - intros; red; intros. elim (H2 t' (s'',w'')). split; auto. -(* goes initially wrong *) - left. apply program_goes_initially_wrong. intros; red; intros. - elim (H0 (s, initial_world)). split; auto. -Qed. - -End TRANSITIONS. - -Section INTERNAL_DET_TO_DET. - -(** We assume given a transition semantics that is internally - deterministic: the only source of non-determinism is the return - value of system calls. Under this assumption, the world-aware semantics - is deterministic. *) - -Hypothesis step_internal_deterministic: - forall ge s t1 s1 t2 s2, - step ge s t1 s1 -> step ge s t2 s2 -> matching_traces t1 t2 -> s1 = s2 /\ t1 = t2. - -Hypothesis initial_state_determ: - forall s1 s2, initial_state s1 -> initial_state s2 -> s1 = s2. - -Hypothesis final_state_determ: - forall st r1 r2, final_state st r1 -> final_state st r2 -> r1 = r2. - -Hypothesis final_state_nostep: - forall ge st r, final_state st r -> nostep step ge st. - -Remark matching_possible_traces: - forall w0 t1 w1, possible_trace w0 t1 w1 -> - forall t2 w2, possible_trace w0 t2 w2 -> - matching_traces t1 t2. -Proof. - induction 1; intros. - destruct t2; simpl; auto. - destruct t2; simpl. destruct ev; auto. inv H1. - inv H; inv H5; auto; intros. - destruct H2. subst. rewrite H in H1; inv H1. split; eauto. - destruct H2. destruct H3. subst. rewrite H in H1; inv H1. split; eauto. - destruct H2. destruct H3. destruct H4. subst. rewrite H in H1; inv H1. eauto. -Qed. - -Lemma wstep_deterministic: - forall ge S0 t1 S1 t2 S2, - wstep ge S0 t1 S1 -> wstep ge S0 t2 S2 -> S1 = S2 /\ t1 = t2. -Proof. - intros. destruct H; destruct H0. - exploit step_internal_deterministic. eexact H. eexact H0. - eapply matching_possible_traces; eauto. - intros [A B]. split. apply injective_projections. auto. - subst t2. eapply possible_trace_final_world; eauto. - auto. -Qed. - -Lemma winitial_state_determ: - forall s1 s2, winitial_state s1 -> winitial_state s2 -> s1 = s2. -Proof. - intros. destruct H; destruct H0. apply injective_projections. eauto. congruence. -Qed. - -Lemma wfinal_state_determ: - forall st r1 r2, wfinal_state st r1 -> wfinal_state st r2 -> r1 = r2. -Proof. - unfold wfinal_state. eauto. -Qed. - -Lemma wfinal_state_nostep: - forall ge st r, wfinal_state st r -> nostep wstep ge st. -Proof. - unfold wfinal_state. intros; red; intros; red; intros [A B]. - eapply final_state_nostep; eauto. -Qed. - -Theorem program_behaves_world_deterministic: - forall ge beh1 beh2, - program_behaves step initial_state final_state ge beh1 -> possible_behavior initial_world beh1 -> - program_behaves step initial_state final_state ge beh2 -> possible_behavior initial_world beh2 -> - beh1 = beh2. -Proof. - intros. - apply program_behaves_deterministic with - (step := wstep) (initial_state := winitial_state) (final_state := wfinal_state) (ge := ge). - exact wstep_deterministic. - exact winitial_state_determ. - exact wfinal_state_determ. - exact wfinal_state_nostep. - apply inject_behaviors; auto. - apply inject_behaviors; auto. -Qed. - -End INTERNAL_DET_TO_DET. - -***********) - End WORLD_SEM. |