diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-02-10 10:08:27 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-02-10 10:08:27 +0000 |
commit | 6f3225b0623b9c97eed7d40ddc320b08c79c6518 (patch) | |
tree | be4ea0d5624499c40f82d3c2f86c0fba7ead6aef /cfrontend | |
parent | 77d3c45aa0928420a083a8d25ec52d5f7f3e6c77 (diff) |
lib/Integers.v: revised and extended, faster implementation based on
bit-level operations provided by ZArith in Coq 8.4.
Other modules: adapted accordingly.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2110 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'cfrontend')
-rw-r--r-- | cfrontend/Cminorgenproof.v | 71 | ||||
-rw-r--r-- | cfrontend/SimplExprspec.v | 2 | ||||
-rw-r--r-- | cfrontend/SimplLocalsproof.v | 6 |
3 files changed, 38 insertions, 41 deletions
diff --git a/cfrontend/Cminorgenproof.v b/cfrontend/Cminorgenproof.v index cff5b06..9bbf040 100644 --- a/cfrontend/Cminorgenproof.v +++ b/cfrontend/Cminorgenproof.v @@ -1280,23 +1280,23 @@ Proof. assert (A: forall v, v = Val.zero_ext 8 v -> v = Val.zero_ext 16 v). intros. rewrite H. destruct v; simpl; auto. decEq. symmetry. - apply Int.zero_ext_widen. compute; auto. split. omega. compute; auto. + apply Int.zero_ext_widen. omega. assert (B: forall v, v = Val.sign_ext 8 v -> v = Val.sign_ext 16 v). intros. rewrite H. destruct v; simpl; auto. decEq. symmetry. - apply Int.sign_ext_widen. compute; auto. split. omega. compute; auto. + apply Int.sign_ext_widen. omega. assert (C: forall v, v = Val.zero_ext 8 v -> v = Val.sign_ext 16 v). intros. rewrite H. destruct v; simpl; auto. decEq. symmetry. - apply Int.sign_zero_ext_widen. compute; auto. split. omega. compute; auto. + apply Int.sign_zero_ext_widen. omega. assert (D: forall v, v = Val.zero_ext 1 v -> v = Val.zero_ext 8 v). intros. rewrite H. destruct v; simpl; auto. decEq. symmetry. - apply Int.zero_ext_widen. compute; auto. split. omega. compute; auto. + apply Int.zero_ext_widen. omega. assert (E: forall v, v = Val.zero_ext 1 v -> v = Val.sign_ext 8 v). intros. rewrite H. destruct v; simpl; auto. decEq. symmetry. - apply Int.sign_zero_ext_widen. compute; auto. split. omega. compute; auto. + apply Int.sign_zero_ext_widen. omega. intros. unfold Approx.bge in H; destruct a1; try discriminate; destruct a2; simpl in *; try discriminate; intuition. Qed. @@ -1309,14 +1309,14 @@ Proof. destruct (Int.eq_dec n Int.one); simpl. subst; auto. destruct (Int.eq_dec n (Int.zero_ext 7 n)). simpl. split. - decEq. rewrite e. symmetry. apply Int.zero_ext_widen. compute; auto. split. omega. compute; auto. - decEq. rewrite e. symmetry. apply Int.sign_zero_ext_widen. compute; auto. compute; auto. + decEq. rewrite e. symmetry. apply Int.zero_ext_widen. omega. + decEq. rewrite e. symmetry. apply Int.sign_zero_ext_widen. omega. destruct (Int.eq_dec n (Int.zero_ext 8 n)). simpl; congruence. destruct (Int.eq_dec n (Int.sign_ext 8 n)). simpl; congruence. destruct (Int.eq_dec n (Int.zero_ext 15 n)). simpl. split. - decEq. rewrite e. symmetry. apply Int.zero_ext_widen. compute; auto. split. omega. compute; auto. - decEq. rewrite e. symmetry. apply Int.sign_zero_ext_widen. compute; auto. compute; auto. + decEq. rewrite e. symmetry. apply Int.zero_ext_widen. omega. + decEq. rewrite e. symmetry. apply Int.sign_zero_ext_widen. omega. destruct (Int.eq_dec n (Int.zero_ext 16 n)). simpl; congruence. destruct (Int.eq_dec n (Int.sign_ext 16 n)). simpl; congruence. exact I. @@ -1345,10 +1345,10 @@ Lemma approx_of_unop_sound: val_match_approx (Approx.unop op a1) v. Proof. destruct op; simpl; intros; auto; inv H. - destruct v1; simpl; auto. rewrite Int.zero_ext_idem; auto. compute; auto. - destruct v1; simpl; auto. rewrite Int.sign_ext_idem; auto. compute; auto. - destruct v1; simpl; auto. rewrite Int.zero_ext_idem; auto. compute; auto. - destruct v1; simpl; auto. rewrite Int.sign_ext_idem; auto. compute; auto. + destruct v1; simpl; auto. rewrite Int.zero_ext_idem; auto. omega. + destruct v1; simpl; auto. rewrite Int.sign_ext_idem; auto. omega. + destruct v1; simpl; auto. rewrite Int.zero_ext_idem; auto. omega. + destruct v1; simpl; auto. rewrite Int.sign_ext_idem; auto. omega. destruct v1; simpl; auto. rewrite Float.singleoffloat_idem; auto. Qed. @@ -1650,10 +1650,11 @@ Proof. intros. inversion H; clear H. inversion H2. destruct v2; simpl; auto. apply val_lessdef_upto_int. rewrite Int.zero_ext_and; auto. - rewrite Int.and_assoc. rewrite H0. auto. + rewrite Int.and_assoc. rewrite H0. auto. + omega. simpl; auto. simpl. apply val_lessdef_upto_int. rewrite Int.zero_ext_and; auto. - rewrite Int.and_assoc. rewrite H0. auto. + rewrite Int.and_assoc. rewrite H0. auto. omega. Qed. Remark val_lessdef_upto_sign_ext: @@ -1664,9 +1665,9 @@ Proof. intros. assert (A: forall x, Int.and (Int.sign_ext p x) m = Int.and x m). intros. transitivity (Int.and (Int.zero_ext p (Int.sign_ext p x)) m). - rewrite Int.zero_ext_and; auto. rewrite Int.and_assoc. congruence. + rewrite Int.zero_ext_and; auto. rewrite Int.and_assoc. congruence. omega. rewrite Int.zero_ext_sign_ext. - rewrite Int.zero_ext_and; auto. rewrite Int.and_assoc. congruence. + rewrite Int.zero_ext_and; auto. rewrite Int.and_assoc. congruence. omega. omega. inversion H; clear H. inversion H2. destruct v2; simpl; auto. apply val_lessdef_upto_int. auto. @@ -1811,28 +1812,24 @@ Proof. exploit (eval_uncast_int (Int.repr 255)); eauto. intros [v' [A B]]. exists v'; split; auto. inv B; auto. inv H0; auto. constructor. - assert (0 < 8 < Z_of_nat Int.wordsize) by (compute; auto). - apply Int.sign_ext_equal_if_zero_equal; auto. - repeat rewrite Int.zero_ext_and; auto. + apply Int.sign_ext_equal_if_zero_equal; auto. omega. + repeat rewrite Int.zero_ext_and; auto. omega. omega. (* int8unsigned *) exploit (eval_uncast_int (Int.repr 255)); eauto. intros [v' [A B]]. exists v'; split; auto. inv B; auto. inv H0; auto. constructor. - assert (0 < 8 < Z_of_nat Int.wordsize) by (compute; auto). - repeat rewrite Int.zero_ext_and; auto. + repeat rewrite Int.zero_ext_and; auto. omega. omega. (* int16signed *) exploit (eval_uncast_int (Int.repr 65535)); eauto. intros [v' [A B]]. exists v'; split; auto. inv B; auto. inv H0; auto. constructor. - assert (0 < 16 < Z_of_nat Int.wordsize) by (compute; auto). - apply Int.sign_ext_equal_if_zero_equal; auto. - repeat rewrite Int.zero_ext_and; auto. + apply Int.sign_ext_equal_if_zero_equal; auto. omega. + repeat rewrite Int.zero_ext_and; auto. omega. omega. (* int16unsigned *) exploit (eval_uncast_int (Int.repr 65535)); eauto. intros [v' [A B]]. exists v'; split; auto. inv B; auto. inv H0; auto. constructor. - assert (0 < 16 < Z_of_nat Int.wordsize) by (compute; auto). - repeat rewrite Int.zero_ext_and; auto. + repeat rewrite Int.zero_ext_and; auto. omega. omega. (* int32 *) exists va; auto. (* float32 *) @@ -1915,30 +1912,30 @@ Proof. exploit (eval_uncast_int (Int.repr 255)); eauto. intros [v1 [A B]]. exists (Val.zero_ext 8 v1); split. econstructor; eauto. inv B. apply Val.zero_ext_lessdef; auto. simpl. - assert (0 < 8 < Z_of_nat Int.wordsize) by (compute; auto). - repeat rewrite Int.zero_ext_and; auto. change (two_p 8 - 1) with 255. rewrite H0. auto. + repeat rewrite Int.zero_ext_and; auto. + change (two_p 8 - 1) with 255. rewrite H0. auto. + omega. omega. (* cast8signed *) exploit (eval_uncast_int (Int.repr 255)); eauto. intros [v1 [A B]]. exists (Val.sign_ext 8 v1); split. econstructor; eauto. inv B. apply Val.sign_ext_lessdef; auto. simpl. - assert (0 < 8 < Z_of_nat Int.wordsize) by (compute; auto). replace (Int.sign_ext 8 n2) with (Int.sign_ext 8 n1). auto. - apply Int.sign_ext_equal_if_zero_equal; auto. - repeat rewrite Int.zero_ext_and; auto. + apply Int.sign_ext_equal_if_zero_equal; auto. omega. + repeat rewrite Int.zero_ext_and; auto. omega. omega. (* cast16unsigned *) exploit (eval_uncast_int (Int.repr 65535)); eauto. intros [v1 [A B]]. exists (Val.zero_ext 16 v1); split. econstructor; eauto. inv B. apply Val.zero_ext_lessdef; auto. simpl. - assert (0 < 16 < Z_of_nat Int.wordsize) by (compute; auto). - repeat rewrite Int.zero_ext_and; auto. change (two_p 16 - 1) with 65535. rewrite H0. auto. + repeat rewrite Int.zero_ext_and; auto. + change (two_p 16 - 1) with 65535. rewrite H0. auto. + omega. omega. (* cast16signed *) exploit (eval_uncast_int (Int.repr 65535)); eauto. intros [v1 [A B]]. exists (Val.sign_ext 16 v1); split. econstructor; eauto. inv B. apply Val.sign_ext_lessdef; auto. simpl. - assert (0 < 16 < Z_of_nat Int.wordsize) by (compute; auto). replace (Int.sign_ext 16 n2) with (Int.sign_ext 16 n1). auto. - apply Int.sign_ext_equal_if_zero_equal; auto. - repeat rewrite Int.zero_ext_and; auto. + apply Int.sign_ext_equal_if_zero_equal; auto. omega. + repeat rewrite Int.zero_ext_and; auto. omega. omega. (* singleoffloat *) exploit eval_uncast_float32; eauto. intros [v1 [A B]]. exists (Val.singleoffloat v1); split. econstructor; eauto. diff --git a/cfrontend/SimplExprspec.v b/cfrontend/SimplExprspec.v index 5cb0f18..b31738b 100644 --- a/cfrontend/SimplExprspec.v +++ b/cfrontend/SimplExprspec.v @@ -591,7 +591,7 @@ Lemma within_widen: Proof. intros. destruct H. split. eapply Ple_trans; eauto. - unfold Plt, Ple in *. omega. + eapply Plt_Ple_trans; eauto. Qed. Definition contained (l: list ident) (g1 g2: generator) : Prop := diff --git a/cfrontend/SimplLocalsproof.v b/cfrontend/SimplLocalsproof.v index 8df7b6e..c496a5e 100644 --- a/cfrontend/SimplLocalsproof.v +++ b/cfrontend/SimplLocalsproof.v @@ -219,8 +219,8 @@ Remark cast_int_int_idem: forall sz sg i, cast_int_int sz sg (cast_int_int sz sg i) = cast_int_int sz sg i. Proof. intros. destruct sz; simpl; auto. - destruct sg; [apply Int.sign_ext_idem|apply Int.zero_ext_idem]; compute; auto. - destruct sg; [apply Int.sign_ext_idem|apply Int.zero_ext_idem]; compute; auto. + destruct sg; [apply Int.sign_ext_idem|apply Int.zero_ext_idem]; compute; intuition congruence. + destruct sg; [apply Int.sign_ext_idem|apply Int.zero_ext_idem]; compute; intuition congruence. destruct (Int.eq i Int.zero); auto. Qed. @@ -288,7 +288,7 @@ Proof. destruct si; inversion H0; clear H0; subst chunk; simpl in *; congruence. clear H1. inv H0. auto. inversion H0; clear H0; subst chunk. simpl in *. - destruct (Int.eq n Int.zero); subst n; auto. + destruct (Int.eq n Int.zero); subst n; reflexivity. destruct sz; inversion H0; clear H0; subst chunk; simpl in *; congruence. inv H0; auto. inv H0; auto. |