diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-09-14 16:24:30 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-09-14 16:24:30 +0000 |
commit | 76ea1108be6f8b4ba9dc0118a13f685bcb62bc2b (patch) | |
tree | 8b2dad961e6b368426573e8a217594b9bcb42752 | |
parent | 9a0ff6bb768cb0a6e45c1c75727d1cd8199cb89e (diff) |
Floats.v, Nan.v: hard-wire the general shape of binop_pl, so that no axioms
are necessary, only two parameters (default_pl and choose_binop_pl).
SelectDiv: optimize FP division by a power of 2.
ConstpropOp: optimize 2.0 * x and x * 2.0 into x + x.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2326 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
-rw-r--r-- | Changelog | 5 | ||||
-rw-r--r-- | arm/ConstpropOp.vp | 7 | ||||
-rw-r--r-- | arm/ConstpropOpproof.v | 32 | ||||
-rw-r--r-- | arm/Nan.v | 47 | ||||
-rw-r--r-- | backend/Constprop.v | 4 | ||||
-rw-r--r-- | backend/Constpropproof.v | 12 | ||||
-rw-r--r-- | backend/SelectDiv.vp | 18 | ||||
-rw-r--r-- | backend/SelectDivproof.v | 18 | ||||
-rw-r--r-- | extraction/extraction.v | 6 | ||||
-rw-r--r-- | ia32/ConstpropOp.vp | 13 | ||||
-rw-r--r-- | ia32/ConstpropOpproof.v | 36 | ||||
-rw-r--r-- | ia32/Nan.v | 38 | ||||
-rw-r--r-- | ia32/SelectOp.vp | 13 | ||||
-rw-r--r-- | ia32/SelectOpproof.v | 9 | ||||
-rw-r--r-- | lib/Floats.v | 140 | ||||
-rw-r--r-- | powerpc/ConstpropOp.vp | 7 | ||||
-rw-r--r-- | powerpc/ConstpropOpproof.v | 32 | ||||
-rw-r--r-- | powerpc/Nan.v | 38 | ||||
-rw-r--r-- | powerpc/SelectOp.vp | 1 | ||||
-rw-r--r-- | powerpc/SelectOpproof.v | 5 |
20 files changed, 374 insertions, 107 deletions
@@ -5,8 +5,13 @@ Development trunk: arithmetic. - Optimize integer divisions by positive constants, turning them into multiply-high and shifts. +- Optimize floating-point divisions by powers of 2, turning them + into multiplications. +- Optimize "x * 2.0" and "2.0 * x" into "x + x". - Avoid double rounding issues in conversion from 64-bit integers to single-precision floats. +- Fixed typing rules for __builtin_annot() to avoid casting arguments + of small integer or FP types. - PowerPC: more efficient implementation of division on 64-bit integers. - Minor simplifications in the generic solvers for dataflow analysis. diff --git a/arm/ConstpropOp.vp b/arm/ConstpropOp.vp index caf0da6..47d2086 100644 --- a/arm/ConstpropOp.vp +++ b/arm/ConstpropOp.vp @@ -287,6 +287,11 @@ Definition make_xorimm (n: int) (r: reg) := else if Int.eq n Int.mone then (Onot, r :: nil) else (Oxorimm n, r :: nil). +Definition make_mulfimm (n: float) (r r1 r2: reg) := + if Float.eq_dec n (Float.floatofint (Int.repr 2)) + then (Oaddf, r :: r :: nil) + else (Omulf, r1 :: r2 :: nil). + Nondetfunction op_strength_reduction (op: operation) (args: list reg) (vl: list approx) := match op, args, vl with @@ -317,6 +322,8 @@ Nondetfunction op_strength_reduction | Oshru, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shruimm n2 r1 r2 | Ocmp c, args, vl => let (c', args') := cond_strength_reduction c args vl in (Ocmp c', args') + | Omulf, r1 :: r2 :: nil, v1 :: F n2 :: nil => make_mulfimm n2 r1 r1 r2 + | Omulf, r1 :: r2 :: nil, F n1 :: v2 :: nil => make_mulfimm n1 r2 r1 r2 | _, _, _ => (op, args) end. diff --git a/arm/ConstpropOpproof.v b/arm/ConstpropOpproof.v index 687e08f..f0d6b7f 100644 --- a/arm/ConstpropOpproof.v +++ b/arm/ConstpropOpproof.v @@ -372,6 +372,33 @@ Proof. econstructor; split; eauto. auto. Qed. +Lemma make_mulfimm_correct: + forall n r1 r2, + rs#r2 = Vfloat n -> + let (op, args) := make_mulfimm n r1 r1 r2 in + exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.mulf rs#r1 rs#r2) v. +Proof. + intros; unfold make_mulfimm. + destruct (Float.eq_dec n (Float.floatofint (Int.repr 2))); intros. + simpl. econstructor; split. eauto. rewrite H; subst n. + destruct (rs#r1); simpl; auto. rewrite Float.mul2_add; auto. + simpl. econstructor; split; eauto. +Qed. + +Lemma make_mulfimm_correct_2: + forall n r1 r2, + rs#r1 = Vfloat n -> + let (op, args) := make_mulfimm n r2 r1 r2 in + exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.mulf rs#r1 rs#r2) v. +Proof. + intros; unfold make_mulfimm. + destruct (Float.eq_dec n (Float.floatofint (Int.repr 2))); intros. + simpl. econstructor; split. eauto. rewrite H; subst n. + destruct (rs#r2); simpl; auto. rewrite Float.mul2_add; auto. + rewrite Float.mul_commut; auto. + simpl. econstructor; split; eauto. +Qed. + Lemma op_strength_reduction_correct: forall op args vl v, vl = approx_regs app args -> @@ -431,6 +458,11 @@ Proof. generalize (cond_strength_reduction_correct c args0 vl0). destruct (cond_strength_reduction c args0 vl0) as [c' args']; intros. rewrite <- H1 in H0; auto. econstructor; split; eauto. +(* mulf *) + inv H0. assert (rs#r2 = Vfloat n2). InvApproxRegs; SimplVMA; auto. + apply make_mulfimm_correct; auto. + inv H0. assert (rs#r1 = Vfloat n1). InvApproxRegs; SimplVMA; auto. + apply make_mulfimm_correct_2; auto. (* default *) exists v; auto. Qed. @@ -1,34 +1,29 @@ +(* *********************************************************************) +(* *) +(* The Compcert verified compiler *) +(* *) +(* Xavier Leroy, INRIA Paris-Rocquencourt *) +(* Jacques-Henri Jourdan, INRIA Paris-Rocquencourt *) +(* *) +(* Copyright Institut National de Recherche en Informatique et en *) +(* Automatique. All rights reserved. This file is distributed *) +(* under the terms of the GNU General Public License as published by *) +(* the Free Software Foundation, either version 2 of the License, or *) +(* (at your option) any later version. This file is also distributed *) +(* under the terms of the INRIA Non-Commercial License Agreement. *) +(* *) +(* *********************************************************************) + Require Import Fappli_IEEE. Require Import Fappli_IEEE_bits. Require Import Floats. Require Import ZArith. Require Import Integers. -(* Needed to break a circular reference after extraction *) -Definition transform_quiet_pl := - Eval unfold Float.transform_quiet_pl in Float.transform_quiet_pl. - Program Definition default_pl : bool * nan_pl 53 := (false, nat_iter 51 xO xH). -Definition binop_pl (pl1 pl2:binary64) : bool*nan_pl 53 := - match pl1, pl2 with - | B754_nan s1 pl1, B754_nan s2 pl2 => - if (Pos.testbit (proj1_sig pl1) 51 && (* pl2 is sNan but pl1 is qNan *) - negb (Pos.testbit (proj1_sig pl2) 51))%bool - then (s2, transform_quiet_pl pl2) - else (s1, transform_quiet_pl pl1) - | B754_nan s1 pl1, _ => (s1, transform_quiet_pl pl1) - | _, B754_nan s2 pl2 => (s2, transform_quiet_pl pl2) - | _, _ => default_pl - end. - -Theorem binop_propagate1: Float.binop_propagate1_prop binop_pl. -Proof. - repeat intro. destruct f1, f2; try discriminate; simpl; - destruct Pos.testbit; reflexivity. -Qed. - -Theorem binop_propagate2: Float.binop_propagate2_prop binop_pl. -Proof. - repeat intro. destruct f1, f2, f3; try discriminate; simpl; reflexivity. -Qed. +Definition choose_binop_pl (s1: bool) (pl1: nan_pl 53) (s2: bool) (pl2: nan_pl 53) := + (** Choose second NaN if pl2 is sNaN but pl1 is qNan. + In all other cases, choose first NaN *) + (Pos.testbit (proj1_sig pl1) 51 && + negb (Pos.testbit (proj1_sig pl2) 51))%bool. diff --git a/backend/Constprop.v b/backend/Constprop.v index 24573a5..e5ea64d 100644 --- a/backend/Constprop.v +++ b/backend/Constprop.v @@ -322,7 +322,9 @@ Function annot_strength_reduction let (targs'', args'') := annot_strength_reduction app targs' args' in match ty, approx_reg app arg with | Tint, I n => (AA_int n :: targs'', args'') - | Tfloat, F n => (AA_float n :: targs'', args'') + | Tfloat, F n => if generate_float_constants tt + then (AA_float n :: targs'', args'') + else (AA_arg ty :: targs'', arg :: args'') | _, _ => (AA_arg ty :: targs'', arg :: args'') end | targ :: targs', _ => diff --git a/backend/Constpropproof.v b/backend/Constpropproof.v index 328f724..898c4df 100644 --- a/backend/Constpropproof.v +++ b/backend/Constpropproof.v @@ -517,10 +517,14 @@ Proof. exists (ev1 :: eargs''); split. simpl; constructor; auto. simpl. congruence. } - destruct ty; destruct (approx_reg app arg) as [] eqn:E2; inv H; auto; - exists eargs''; split; auto; simpl; f_equal; auto; - generalize (MATCH arg); rewrite E2; simpl; intros E3; - rewrite E3 in H5; inv H5; auto. + destruct ty; destruct (approx_reg app arg) as [] eqn:E2; inv H; auto. + * exists eargs''; split; auto; simpl; f_equal; auto. + generalize (MATCH arg); rewrite E2; simpl; intros E3; + rewrite E3 in H5; inv H5; auto. + * destruct (generate_float_constants tt); inv H1; auto. + exists eargs''; split; auto; simpl; f_equal; auto. + generalize (MATCH arg); rewrite E2; simpl; intros E3; + rewrite E3 in H5; inv H5; auto. + destruct (annot_strength_reduction app targs args) as [targs'' args''] eqn:E. inv H. exploit IHtargs; eauto. intros [eargs'' [A B]]. diff --git a/backend/SelectDiv.vp b/backend/SelectDiv.vp index e60a97d..1d9168c 100644 --- a/backend/SelectDiv.vp +++ b/backend/SelectDiv.vp @@ -10,7 +10,7 @@ (* *) (* *********************************************************************) -(** Instruction selection for integer division and modulus *) +(** Instruction selection for division and modulus *) Require Import Coqlib. Require Import AST. @@ -154,3 +154,19 @@ Nondetfunction mods (e1: expr) (e2: expr) := | _ => mods_base e1 e2 end. +(** Floating-point division by a constant can also be turned into a FP + multiplication by the inverse constant, but only for powers of 2. *) + +Definition divfimm (e: expr) (n: float) := + match Float.exact_inverse n with + | Some n' => Eop Omulf (e ::: Eop (Ofloatconst n') Enil ::: Enil) + | None => Eop Odivf (e ::: Eop (Ofloatconst n) Enil ::: Enil) + end. + +Nondetfunction divf (e1: expr) (e2: expr) := + match e2 with + | Eop (Ofloatconst n2) Enil => divfimm e1 n2 + | _ => Eop Odivf (e1 ::: e2 ::: Enil) + end. + + diff --git a/backend/SelectDivproof.v b/backend/SelectDivproof.v index 4d8f96a..0719a5e 100644 --- a/backend/SelectDivproof.v +++ b/backend/SelectDivproof.v @@ -544,4 +544,22 @@ Proof. - eapply eval_mods_base; eauto. Qed. +(** * Floating-point division *) + +Theorem eval_divf: + forall le a b x y, + eval_expr ge sp e m le a x -> + eval_expr ge sp e m le b y -> + exists v, eval_expr ge sp e m le (divf a b) v /\ Val.lessdef (Val.divf x y) v. +Proof. + intros until y. unfold divf. destruct (divf_match b); intros. +- unfold divfimm. destruct (Float.exact_inverse n2) as [n2' | ] eqn:EINV. + + inv H0. inv H4. simpl in H6. inv H6. econstructor; split. + EvalOp. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor. + simpl; eauto. + destruct x; simpl; auto. erewrite Float.div_mul_inverse; eauto. + + TrivialExists. +- TrivialExists. +Qed. + End CMCONSTRS. diff --git a/extraction/extraction.v b/extraction/extraction.v index ba1ca58..047a9b4 100644 --- a/extraction/extraction.v +++ b/extraction/extraction.v @@ -32,8 +32,8 @@ Require Import ExtrOcamlString. Extraction Inline Wfsimpl.Fix Wfsimpl.Fixm. (* Floats *) -Extract Constant Floats.Float.binop_pl => - "Nan.binop_pl". +Extract Constant Floats.Float.default_pl => "Nan.default_pl". +Extract Constant Floats.Float.choose_binop_pl => "Nan.choose_binop_pl". (* AST *) Extract Constant AST.ident_of_string => @@ -135,4 +135,4 @@ Separate Extraction RTL.instr_defs RTL.instr_uses Machregs.mregs_for_operation Machregs.mregs_for_builtin Machregs.two_address_op - Nan.binop_pl. + Nan.default_pl Nan.choose_binop_pl. diff --git a/ia32/ConstpropOp.vp b/ia32/ConstpropOp.vp index a29b450..8c3a7fa 100644 --- a/ia32/ConstpropOp.vp +++ b/ia32/ConstpropOp.vp @@ -291,20 +291,25 @@ Definition make_moduimm n (r1 r2: reg) := | None => (Omodu, r1 :: r2 :: nil) end. -(** We must be careful to preserve 2-address constraints over the - RTL code, which means that commutative operations cannot - be specialized if their first argument is a constant. *) +Definition make_mulfimm (n: float) (r r1 r2: reg) := + if Float.eq_dec n (Float.floatofint (Int.repr 2)) + then (Oaddf, r :: r :: nil) + else (Omulf, r1 :: r2 :: nil). Nondetfunction op_strength_reduction (op: operation) (args: list reg) (vl: list approx) := match op, args, vl with | Osub, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_addimm (Int.neg n2) r1 + | Omul, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_mulimm n1 r2 | Omul, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_mulimm n2 r1 | Odiv, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_divimm n2 r1 r2 | Odivu, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_divuimm n2 r1 r2 | Omodu, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_moduimm n2 r1 r2 + | Oand, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_andimm n1 r2 | Oand, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_andimm n2 r1 + | Oor, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_orimm n1 r2 | Oor, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_orimm n2 r1 + | Oxor, r1 :: r2 :: nil, I n1 :: v2 :: nil => make_xorimm n1 r2 | Oxor, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_xorimm n2 r1 | Oshl, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shlimm n2 r1 | Oshr, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shrimm n2 r1 @@ -315,6 +320,8 @@ Nondetfunction op_strength_reduction | Ocmp c, args, vl => let (c', args') := cond_strength_reduction c args vl in (Ocmp c', args') + | Omulf, r1 :: r2 :: nil, v1 :: F n2 :: nil => make_mulfimm n2 r1 r1 r2 + | Omulf, r1 :: r2 :: nil, F n1 :: v2 :: nil => make_mulfimm n1 r2 r1 r2 | _, _, _ => (op, args) end. diff --git a/ia32/ConstpropOpproof.v b/ia32/ConstpropOpproof.v index b6c3cdc..a4cb402 100644 --- a/ia32/ConstpropOpproof.v +++ b/ia32/ConstpropOpproof.v @@ -380,6 +380,33 @@ Proof. econstructor; split; eauto. auto. Qed. +Lemma make_mulfimm_correct: + forall n r1 r2, + rs#r2 = Vfloat n -> + let (op, args) := make_mulfimm n r1 r1 r2 in + exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.mulf rs#r1 rs#r2) v. +Proof. + intros; unfold make_mulfimm. + destruct (Float.eq_dec n (Float.floatofint (Int.repr 2))); intros. + simpl. econstructor; split. eauto. rewrite H; subst n. + destruct (rs#r1); simpl; auto. rewrite Float.mul2_add; auto. + simpl. econstructor; split; eauto. +Qed. + +Lemma make_mulfimm_correct_2: + forall n r1 r2, + rs#r1 = Vfloat n -> + let (op, args) := make_mulfimm n r2 r1 r2 in + exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.mulf rs#r1 rs#r2) v. +Proof. + intros; unfold make_mulfimm. + destruct (Float.eq_dec n (Float.floatofint (Int.repr 2))); intros. + simpl. econstructor; split. eauto. rewrite H; subst n. + destruct (rs#r2); simpl; auto. rewrite Float.mul2_add; auto. + rewrite Float.mul_commut; auto. + simpl. econstructor; split; eauto. +Qed. + Lemma op_strength_reduction_correct: forall op args vl v, vl = approx_regs app args -> @@ -392,6 +419,7 @@ Proof. (* sub *) InvApproxRegs. SimplVMA. inv H0; rewrite H. rewrite Val.sub_add_opp. apply make_addimm_correct; auto. (* mul *) + InvApproxRegs. SimplVMA. inv H0; rewrite H1. rewrite Val.mul_commut. apply make_mulimm_correct; auto. InvApproxRegs. SimplVMA. inv H0; rewrite H. apply make_mulimm_correct; auto. (* divs *) assert (rs#r2 = Vint n2). clear H0. InvApproxRegs; SimplVMA; auto. @@ -403,10 +431,13 @@ Proof. assert (rs#r2 = Vint n2). clear H0. InvApproxRegs; SimplVMA; auto. apply make_moduimm_correct; auto. (* and *) + InvApproxRegs. SimplVMA. inv H0; rewrite H1. rewrite Val.and_commut. apply make_andimm_correct; auto. InvApproxRegs. SimplVMA. inv H0; rewrite H. apply make_andimm_correct; auto. (* or *) + InvApproxRegs. SimplVMA. inv H0; rewrite H1. rewrite Val.or_commut. apply make_orimm_correct; auto. InvApproxRegs. SimplVMA. inv H0; rewrite H. apply make_orimm_correct; auto. (* xor *) + InvApproxRegs. SimplVMA. inv H0; rewrite H1. rewrite Val.xor_commut. apply make_xorimm_correct; auto. InvApproxRegs. SimplVMA. inv H0; rewrite H. apply make_xorimm_correct; auto. (* shl *) InvApproxRegs. SimplVMA. inv H0; rewrite H. apply make_shlimm_correct; auto. @@ -422,6 +453,11 @@ Proof. generalize (cond_strength_reduction_correct c args0 vl0 H). destruct (cond_strength_reduction c args0 vl0) as [c' args']; intros. rewrite <- H1 in H0; auto. econstructor; split; eauto. +(* mulf *) + inv H0. assert (rs#r2 = Vfloat n2). InvApproxRegs; SimplVMA; auto. + apply make_mulfimm_correct; auto. + inv H0. assert (rs#r1 = Vfloat n1). InvApproxRegs; SimplVMA; auto. + apply make_mulfimm_correct_2; auto. (* default *) exists v; auto. Qed. @@ -1,28 +1,26 @@ +(* *********************************************************************) +(* *) +(* The Compcert verified compiler *) +(* *) +(* Xavier Leroy, INRIA Paris-Rocquencourt *) +(* Jacques-Henri Jourdan, INRIA Paris-Rocquencourt *) +(* *) +(* Copyright Institut National de Recherche en Informatique et en *) +(* Automatique. All rights reserved. This file is distributed *) +(* under the terms of the GNU General Public License as published by *) +(* the Free Software Foundation, either version 2 of the License, or *) +(* (at your option) any later version. This file is also distributed *) +(* under the terms of the INRIA Non-Commercial License Agreement. *) +(* *) +(* *********************************************************************) + Require Import Fappli_IEEE. Require Import Fappli_IEEE_bits. Require Import Floats. Require Import ZArith. Require Import Integers. -(* Needed to break a circular reference after extraction *) -Definition transform_quiet_pl := - Eval unfold Float.transform_quiet_pl in Float.transform_quiet_pl. - Program Definition default_pl : bool * nan_pl 53 := (true, nat_iter 51 xO xH). -Definition binop_pl (pl1 pl2:binary64) : bool*nan_pl 53 := - match pl1, pl2 with - | B754_nan s1 pl1, _ => (s1, transform_quiet_pl pl1) - | _, B754_nan s2 pl2 => (s2, transform_quiet_pl pl2) - | _, _ => default_pl - end. - -Theorem binop_propagate1: Float.binop_propagate1_prop binop_pl. -Proof. - repeat intro. destruct f1, f2; try discriminate; simpl; reflexivity. -Qed. - -Theorem binop_propagate2: Float.binop_propagate2_prop binop_pl. -Proof. - repeat intro. destruct f1, f2, f3; try discriminate; simpl; reflexivity. -Qed. +Definition choose_binop_pl (s1: bool) (pl1: nan_pl 53) (s2: bool) (pl2: nan_pl 53) := + false. (** always choose first NaN *) diff --git a/ia32/SelectOp.vp b/ia32/SelectOp.vp index 209147e..1471405 100644 --- a/ia32/SelectOp.vp +++ b/ia32/SelectOp.vp @@ -334,7 +334,18 @@ Definition absf (e: expr) := Eop Oabsf (e ::: Enil). Definition addf (e1 e2: expr) := Eop Oaddf (e1 ::: e2 ::: Enil). Definition subf (e1 e2: expr) := Eop Osubf (e1 ::: e2 ::: Enil). Definition mulf (e1 e2: expr) := Eop Omulf (e1 ::: e2 ::: Enil). -Definition divf (e1 e2: expr) := Eop Odivf (e1 ::: e2 ::: Enil). + +Definition divfimm (e: expr) (n: float) := + match Float.exact_inverse n with + | Some n' => Eop Omulf (e ::: Eop (Ofloatconst n') Enil ::: Enil) + | None => Eop Odivf (e ::: Eop (Ofloatconst n) Enil ::: Enil) + end. + +Nondetfunction divf (e1: expr) (e2: expr) := + match e2 with + | Eop (Ofloatconst n2) Enil => divfimm e1 n2 + | _ => Eop Odivf (e1 ::: e2 ::: Enil) + end. (** ** Comparisons *) diff --git a/ia32/SelectOpproof.v b/ia32/SelectOpproof.v index 85802b6..cec3b59 100644 --- a/ia32/SelectOpproof.v +++ b/ia32/SelectOpproof.v @@ -576,7 +576,14 @@ Qed. Theorem eval_divf: binary_constructor_sound divf Val.divf. Proof. - red; intros; TrivialExists. + red. intros until y. unfold divf. destruct (divf_match b); intros. +- unfold divfimm. destruct (Float.exact_inverse n2) as [n2' | ] eqn:EINV. + + inv H0. inv H4. simpl in H6. inv H6. econstructor; split. + EvalOp. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor. + simpl; eauto. + destruct x; simpl; auto. erewrite Float.div_mul_inverse; eauto. + + TrivialExists. +- TrivialExists. Qed. Section COMP_IMM. diff --git a/lib/Floats.v b/lib/Floats.v index 0151cf0..0a30836 100644 --- a/lib/Floats.v +++ b/lib/Floats.v @@ -260,23 +260,27 @@ Definition singleoflong (n:int64): float := (**r conversion from signed 64-bit i Definition singleoflongu (n:int64): float:= (**r conversion from unsigned 64-bit int to single-precision float *) floatofbinary32 (binary_normalize32 (Int64.unsigned n) 0 false). -Parameter binop_pl: binary64 -> binary64 -> bool*nan_pl 53. - -Definition binop_propagate1_prop binop_pl := - forall f1 f2:float, is_nan _ _ f1 = true -> is_nan _ _ f2 = false -> - binop_pl f1 f1 = (binop_pl f1 f2 : bool*nan_pl 53). - - -(* Proved in Nan.v for different architectures *) -Hypothesis binop_propagate1: binop_propagate1_prop binop_pl. - -Definition binop_propagate2_prop binop_pl := - forall f1 f2 f3:float, is_nan _ _ f1 = true -> - is_nan _ _ f2 = false -> is_nan _ _ f3 = false -> - binop_pl f1 f2 = (binop_pl f1 f3 : bool*nan_pl 53). - -(* Proved in Nan.v for different architectures *) -Hypothesis binop_propagate2: binop_propagate2_prop binop_pl. +(* The Nan payload operations for two-argument arithmetic operations are not part of + the IEEE754 standard, but all architectures of Compcert share a similar + NaN behavior, parameterized by: +- a "default" payload which occurs when an operation generates a NaN from + non-NaN arguments; +- a choice function determining which of the payload arguments to choose, + when an operation is given two NaN arguments. *) + +Parameter default_pl : bool*nan_pl 53. +Parameter choose_binop_pl : bool -> nan_pl 53 -> bool -> nan_pl 53 -> bool. + +Definition binop_pl (x y: binary64) : bool*nan_pl 53 := + match x, y with + | B754_nan s1 pl1, B754_nan s2 pl2 => + if choose_binop_pl s1 pl1 s2 pl2 + then (s2, transform_quiet_pl pl2) + else (s1, transform_quiet_pl pl1) + | B754_nan s1 pl1, _ => (s1, transform_quiet_pl pl1) + | _, B754_nan s2 pl2 => (s2, transform_quiet_pl pl2) + | _, _ => default_pl + end. Definition add: float -> float -> float := b64_plus binop_pl mode_NE. (**r addition *) Definition sub: float -> float -> float := b64_minus binop_pl mode_NE. (**r subtraction *) @@ -496,6 +500,57 @@ Proof. right; red; intros; elim n. apply singleoffloat_of_single; auto. Defined. +(** Commutativity properties of addition and multiplication. *) + +Theorem add_commut: + forall x y, is_nan _ _ x = false \/ is_nan _ _ y = false -> add x y = add y x. +Proof. + intros x y NAN. unfold add, b64_plus. + pose proof (Bplus_correct 53 1024 eq_refl eq_refl binop_pl mode_NE x y). + pose proof (Bplus_correct 53 1024 eq_refl eq_refl binop_pl mode_NE y x). + unfold Bplus in *; destruct x; destruct y; auto. +- rewrite (eqb_sym b0 b). destruct (eqb b b0) eqn:EQB; auto. f_equal; apply eqb_prop; auto. +- rewrite (eqb_sym b0 b). destruct (eqb b b0) eqn:EQB. + f_equal; apply eqb_prop; auto. + auto. +- simpl in NAN; intuition congruence. +- exploit H; auto. clear H. exploit H0; auto. clear H0. + set (x := B754_finite 53 1024 b0 m0 e1 e2). + set (rx := B2R 53 1024 x). + set (y := B754_finite 53 1024 b m e e0). + set (ry := B2R 53 1024 y). + rewrite (Rplus_comm ry rx). destruct Rlt_bool. + intros (A1 & A2 & A3) (B1 & B2 & B3). + apply B2R_Bsign_inj; auto. rewrite <- B1 in A1. auto. + rewrite Z.add_comm. rewrite Z.min_comm. auto. + intros (A1 & A2) (B1 & B2). apply B2FF_inj. rewrite B2 in B1. rewrite <- B1 in A1. auto. +Qed. + +Theorem mul_commut: + forall x y, is_nan _ _ x = false \/ is_nan _ _ y = false -> mul x y = mul y x. +Proof. + intros x y NAN. unfold mul, b64_mult. + pose proof (Bmult_correct 53 1024 eq_refl eq_refl binop_pl mode_NE x y). + pose proof (Bmult_correct 53 1024 eq_refl eq_refl binop_pl mode_NE y x). + unfold Bmult in *; destruct x; destruct y; auto. +- f_equal. apply xorb_comm. +- f_equal. apply xorb_comm. +- f_equal. apply xorb_comm. +- f_equal. apply xorb_comm. +- simpl in NAN. intuition congruence. +- f_equal. apply xorb_comm. +- f_equal. apply xorb_comm. +- set (x := B754_finite 53 1024 b0 m0 e1 e2) in *. + set (rx := B2R 53 1024 x) in *. + set (y := B754_finite 53 1024 b m e e0) in *. + set (ry := B2R 53 1024 y) in *. + rewrite (Rmult_comm ry rx) in *. destruct Rlt_bool. + destruct H as (A1 & A2 & A3); destruct H0 as (B1 & B2 & B3). + apply B2R_Bsign_inj; auto. rewrite <- B1 in A1. auto. + rewrite ! Bsign_FF2B. f_equal. f_equal. apply xorb_comm. apply Pos.mul_comm. apply Z.add_comm. + apply B2FF_inj. etransitivity. eapply H. rewrite xorb_comm. auto. +Qed. + (** Properties of comparisons. *) Theorem order_float_finite_correct: @@ -1181,7 +1236,7 @@ Proof. symmetry. etransitivity. apply H0. f_equal. destruct Bsign; reflexivity. - destruct f as [[]|[]| |]; try discriminate; try reflexivity. - simpl. erewrite binop_propagate1; reflexivity. + simpl. destruct (choose_binop_pl b n b n); auto. Qed. Program Definition pow2_float (b:bool) (e:Z) (H:-1023 < e < 1023) : float := @@ -1216,9 +1271,7 @@ Proof. + apply B2FF_inj. etransitivity. apply H0. symmetry. etransitivity. apply H1. reflexivity. - - destruct f; try discriminate EQFIN. reflexivity. - simpl. erewrite binop_propagate2. reflexivity. - reflexivity. reflexivity. reflexivity. + - destruct f; try discriminate EQFIN; auto. - simpl. assert ((4503599627370496 * bpow radix2 (e - 52))%R = (/ (4503599627370496 * bpow radix2 (- e - 52)))%R). @@ -1233,6 +1286,51 @@ Proof. destruct b; simpl in H2; omega. Qed. +Definition exact_inverse_mantissa := nat_iter 52 xO xH. + +Program Definition exact_inverse (f: float) : option float := + match f with + | B754_finite s m e B => + if peq m exact_inverse_mantissa then + if zlt (-1023) (e + 52) then + if zlt (e + 52) 1023 then + Some(B754_finite _ _ s m (-e - 104) _) + else None else None else None + | _ => None + end. +Next Obligation. + unfold Fappli_IEEE.bounded, canonic_mantissa. apply andb_true_iff; split. + simpl Z.of_nat. apply Zeq_bool_true. unfold FLT_exp. apply Z.max_case_strong; omega. + apply Zle_bool_true. omega. +Qed. + +Remark B754_finite_eq: + forall s1 m1 e1 B1 s2 m2 e2 B2, + s1 = s2 -> m1 = m2 -> e1 = e2 -> + B754_finite _ _ s1 m1 e1 B1 = (B754_finite _ _ s2 m2 e2 B2 : float). +Proof. + intros. subst. f_equal. apply proof_irrelevance. +Qed. + +Theorem div_mul_inverse: + forall x y z, exact_inverse y = Some z -> div x y = mul x z. +Proof with (try discriminate). + unfold exact_inverse; intros. destruct y... + destruct (peq m exact_inverse_mantissa)... + destruct (zlt (-1023) (e + 52))... + destruct (zlt (e + 52) 1023)... + inv H. + set (n := - e - 52). + assert (RNG1: -1023 < n < 1023) by (unfold n; omega). + assert (RNG2: -1023 < -n < 1023) by (unfold n; omega). + symmetry. + transitivity (mul x (pow2_float b n RNG1)). + f_equal. apply B754_finite_eq; auto. unfold n; omega. + transitivity (div x (pow2_float b (-n) RNG2)). + apply mul_div_pow2. + f_equal. apply B754_finite_eq; auto. unfold n; omega. +Qed. + Global Opaque zero eq_dec neg abs singleoffloat intoffloat intuoffloat floatofint floatofintu add sub mul div cmp bits_of_double double_of_bits bits_of_single single_of_bits from_words. diff --git a/powerpc/ConstpropOp.vp b/powerpc/ConstpropOp.vp index d0322c1..b755b5e 100644 --- a/powerpc/ConstpropOp.vp +++ b/powerpc/ConstpropOp.vp @@ -245,6 +245,11 @@ Definition make_xorimm (n: int) (r: reg) := then (Omove, r :: nil) else (Oxorimm n, r :: nil). +Definition make_mulfimm (n: float) (r r1 r2: reg) := + if Float.eq_dec n (Float.floatofint (Int.repr 2)) + then (Oaddf, r :: r :: nil) + else (Omulf, r1 :: r2 :: nil). + Nondetfunction op_strength_reduction (op: operation) (args: list reg) (vl: list approx) := match op, args, vl with @@ -267,6 +272,8 @@ Nondetfunction op_strength_reduction | Oshru, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shruimm n2 r1 r2 | Ocmp c, args, vl => let (c', args') := cond_strength_reduction c args vl in (Ocmp c', args') + | Omulf, r1 :: r2 :: nil, v1 :: F n2 :: nil => make_mulfimm n2 r1 r1 r2 + | Omulf, r1 :: r2 :: nil, F n1 :: v2 :: nil => make_mulfimm n1 r2 r1 r2 | _, _, _ => (op, args) end. diff --git a/powerpc/ConstpropOpproof.v b/powerpc/ConstpropOpproof.v index 9d833bf..b7fad69 100644 --- a/powerpc/ConstpropOpproof.v +++ b/powerpc/ConstpropOpproof.v @@ -364,6 +364,33 @@ Proof. econstructor; split; eauto. auto. Qed. +Lemma make_mulfimm_correct: + forall n r1 r2, + rs#r2 = Vfloat n -> + let (op, args) := make_mulfimm n r1 r1 r2 in + exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.mulf rs#r1 rs#r2) v. +Proof. + intros; unfold make_mulfimm. + destruct (Float.eq_dec n (Float.floatofint (Int.repr 2))); intros. + simpl. econstructor; split. eauto. rewrite H; subst n. + destruct (rs#r1); simpl; auto. rewrite Float.mul2_add; auto. + simpl. econstructor; split; eauto. +Qed. + +Lemma make_mulfimm_correct_2: + forall n r1 r2, + rs#r1 = Vfloat n -> + let (op, args) := make_mulfimm n r2 r1 r2 in + exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.mulf rs#r1 rs#r2) v. +Proof. + intros; unfold make_mulfimm. + destruct (Float.eq_dec n (Float.floatofint (Int.repr 2))); intros. + simpl. econstructor; split. eauto. rewrite H; subst n. + destruct (rs#r2); simpl; auto. rewrite Float.mul2_add; auto. + rewrite Float.mul_commut; auto. + simpl. econstructor; split; eauto. +Qed. + Lemma op_strength_reduction_correct: forall op args vl v, vl = approx_regs app args -> @@ -407,6 +434,11 @@ Proof. generalize (cond_strength_reduction_correct c args0 vl0). destruct (cond_strength_reduction c args0 vl0) as [c' args']; intros. rewrite <- H1 in H0; auto. econstructor; split; eauto. +(* mulf *) + inv H0. assert (rs#r2 = Vfloat n2). InvApproxRegs; SimplVMA; auto. + apply make_mulfimm_correct; auto. + inv H0. assert (rs#r1 = Vfloat n1). InvApproxRegs; SimplVMA; auto. + apply make_mulfimm_correct_2; auto. (* default *) exists v; auto. Qed. diff --git a/powerpc/Nan.v b/powerpc/Nan.v index 77a752e..c230789 100644 --- a/powerpc/Nan.v +++ b/powerpc/Nan.v @@ -1,28 +1,26 @@ +(* *********************************************************************) +(* *) +(* The Compcert verified compiler *) +(* *) +(* Xavier Leroy, INRIA Paris-Rocquencourt *) +(* Jacques-Henri Jourdan, INRIA Paris-Rocquencourt *) +(* *) +(* Copyright Institut National de Recherche en Informatique et en *) +(* Automatique. All rights reserved. This file is distributed *) +(* under the terms of the GNU General Public License as published by *) +(* the Free Software Foundation, either version 2 of the License, or *) +(* (at your option) any later version. This file is also distributed *) +(* under the terms of the INRIA Non-Commercial License Agreement. *) +(* *) +(* *********************************************************************) + Require Import Fappli_IEEE. Require Import Fappli_IEEE_bits. Require Import Floats. Require Import ZArith. Require Import Integers. -(* Needed to break a circular reference after extraction *) -Definition transform_quiet_pl := - Eval unfold Float.transform_quiet_pl in Float.transform_quiet_pl. - Program Definition default_pl : bool * nan_pl 53 := (false, nat_iter 51 xO xH). -Definition binop_pl (pl1 pl2:binary64) : bool*nan_pl 53 := - match pl1, pl2 with - | B754_nan s1 pl1, _ => (s1, transform_quiet_pl pl1) - | _, B754_nan s2 pl2 => (s2, transform_quiet_pl pl2) - | _, _ => default_pl - end. - -Theorem binop_propagate1: Float.binop_propagate1_prop binop_pl. -Proof. - repeat intro. destruct f1, f2; try discriminate; reflexivity. -Qed. - -Theorem binop_propagate2: Float.binop_propagate2_prop binop_pl. -Proof. - repeat intro. destruct f1, f2, f3; try discriminate; simpl; reflexivity. -Qed. +Definition choose_binop_pl (s1: bool) (pl1: nan_pl 53) (s2: bool) (pl2: nan_pl 53) := + false. diff --git a/powerpc/SelectOp.vp b/powerpc/SelectOp.vp index bc9b677..b0e7c4d 100644 --- a/powerpc/SelectOp.vp +++ b/powerpc/SelectOp.vp @@ -334,7 +334,6 @@ Definition absf (e: expr) := Eop Oabsf (e ::: Enil). Definition addf (e1 e2: expr) := Eop Oaddf (e1 ::: e2 ::: Enil). Definition subf (e1 e2: expr) := Eop Osubf (e1 ::: e2 ::: Enil). Definition mulf (e1 e2: expr) := Eop Omulf (e1 ::: e2 ::: Enil). -Definition divf (e1 e2: expr) := Eop Odivf (e1 ::: e2 ::: Enil). (** ** Comparisons *) diff --git a/powerpc/SelectOpproof.v b/powerpc/SelectOpproof.v index 177d64a..c0601eb 100644 --- a/powerpc/SelectOpproof.v +++ b/powerpc/SelectOpproof.v @@ -600,11 +600,6 @@ Proof. red; intros; TrivialExists. Qed. -Theorem eval_divf: binary_constructor_sound divf Val.divf. -Proof. - red; intros; TrivialExists. -Qed. - Section COMP_IMM. Variable default: comparison -> int -> condition. |