diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2014-08-27 09:50:29 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2014-08-27 09:50:29 +0000 |
commit | 1abecb7b559c5e0eab8c093a629fd8197f57205f (patch) | |
tree | d506e467f81140d495967b6ca6b7125fe90df70b | |
parent | a68a6ba072bbc5d6496f6a564c4564b911efe3e8 (diff) |
More efficient implementations of map, fold, etc.
(Contributed by Vincent Laporte.)
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2618 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
-rw-r--r-- | lib/Maps.v | 273 |
1 files changed, 109 insertions, 164 deletions
@@ -429,73 +429,62 @@ Module PTree <: TREE. End BOOLEAN_EQUALITY. - Fixpoint append (i j : positive) {struct i} : positive := - match i with + Fixpoint prev_append (i j: positive) {struct i} : positive := + match i with | xH => j - | xI ii => xI (append ii j) - | xO ii => xO (append ii j) - end. - - Lemma append_assoc_0 : forall (i j : positive), - append i (xO j) = append (append i (xO xH)) j. - Proof. - induction i; intros; destruct j; simpl; - try rewrite (IHi (xI j)); - try rewrite (IHi (xO j)); - try rewrite <- (IHi xH); - auto. - Qed. + | xI i' => prev_append i' (xI j) + | xO i' => prev_append i' (xO j) + end. - Lemma append_assoc_1 : forall (i j : positive), - append i (xI j) = append (append i (xI xH)) j. - Proof. - induction i; intros; destruct j; simpl; - try rewrite (IHi (xI j)); - try rewrite (IHi (xO j)); - try rewrite <- (IHi xH); - auto. - Qed. + Definition prev (i: positive) : positive := + prev_append i xH. - Lemma append_neutral_r : forall (i : positive), append i xH = i. - Proof. - induction i; simpl; congruence. - Qed. + Lemma prev_append_prev i j: + prev (prev_append i j) = prev_append j i. + Proof. + revert j. unfold prev. + induction i as [i IH|i IH|]. 3: reflexivity. + intros j. simpl. rewrite IH. reflexivity. + intros j. simpl. rewrite IH. reflexivity. + Qed. + + Lemma prev_involutive i : + prev (prev i) = i. + Proof (prev_append_prev i xH). - Lemma append_neutral_l : forall (i : positive), append xH i = i. - Proof. - simpl; auto. - Qed. + Lemma prev_append_inj i j j' : + prev_append i j = prev_append i j' -> j = j'. + Proof. + revert j j'. + induction i as [i Hi|i Hi|]; intros j j' H; auto; + specialize (Hi _ _ H); congruence. + Qed. Fixpoint xmap (A B : Type) (f : positive -> A -> B) (m : t A) (i : positive) {struct m} : t B := match m with | Leaf => Leaf - | Node l o r => Node (xmap f l (append i (xO xH))) - (option_map (f i) o) - (xmap f r (append i (xI xH))) + | Node l o r => Node (xmap f l (xO i)) + (match o with None => None | Some x => Some (f (prev i) x) end) + (xmap f r (xI i)) end. Definition map (A B : Type) (f : positive -> A -> B) m := xmap f m xH. Lemma xgmap: forall (A B: Type) (f: positive -> A -> B) (i j : positive) (m: t A), - get i (xmap f m j) = option_map (f (append j i)) (get i m). + get i (xmap f m j) = option_map (f (prev (prev_append i j))) (get i m). Proof. induction i; intros; destruct m; simpl; auto. - rewrite (append_assoc_1 j i); apply IHi. - rewrite (append_assoc_0 j i); apply IHi. - rewrite (append_neutral_r j); auto. Qed. Theorem gmap: forall (A B: Type) (f: positive -> A -> B) (i: positive) (m: t A), get i (map f m) = option_map (f i) (get i m). Proof. - intros. + intros A B f i m. unfold map. - replace (f i) with (f (append xH i)). - apply xgmap. - rewrite append_neutral_l; auto. + rewrite xgmap. repeat f_equal. exact (prev_involutive i). Qed. Fixpoint map1 (A B: Type) (f: A -> B) (m: t A) {struct m} : t B := @@ -639,10 +628,10 @@ Module PTree <: TREE. match m with | Leaf => k | Node l None r => - xelements l (append i (xO xH)) (xelements r (append i (xI xH)) k) + xelements l (xO i) (xelements r (xI i) k) | Node l (Some x) r => - xelements l (append i (xO xH)) - ((i, x) :: xelements r (append i (xI xH)) k) + xelements l (xO i) + ((prev i, x) :: xelements r (xI i) k) end. @@ -661,16 +650,16 @@ Module PTree <: TREE. Lemma xelements_correct: forall (A: Type) (m: t A) (i j : positive) (v: A) k, - get i m = Some v -> In (append j i, v) (xelements m j k). + get i m = Some v -> In (prev (prev_append i j), v) (xelements m j k). Proof. induction m; intros. rewrite (gleaf A i) in H; congruence. destruct o; destruct i; simpl; simpl in H. - rewrite append_assoc_1. apply xelements_incl. right. auto. - rewrite append_assoc_0. auto. - inv H. apply xelements_incl. left. rewrite append_neutral_r; auto. - rewrite append_assoc_1. apply xelements_incl. auto. - rewrite append_assoc_0. auto. + apply xelements_incl. right. auto. + auto. + inv H. apply xelements_incl. left. reflexivity. + apply xelements_incl. auto. + auto. inv H. Qed. @@ -679,88 +668,47 @@ Module PTree <: TREE. get i m = Some v -> In (i, v) (elements m). Proof. intros A m i v H. - exact (xelements_correct m i xH nil H). + generalize (xelements_correct m i xH nil H). rewrite prev_append_prev. exact id. Qed. - Fixpoint xget (A : Type) (i j : positive) (m : t A) {struct j} : option A := - match i, j with - | _, xH => get i m - | xO ii, xO jj => xget ii jj m - | xI ii, xI jj => xget ii jj m - | _, _ => None - end. - - Lemma xget_diag : - forall (A : Type) (i : positive) (m1 m2 : t A) (o : option A), - xget i i (Node m1 o m2) = o. - Proof. - induction i; intros; simpl; auto. - Qed. - - Lemma xget_left : - forall (A : Type) (j i : positive) (m1 m2 : t A) (o : option A) (v : A), - xget i (append j (xO xH)) m1 = Some v -> xget i j (Node m1 o m2) = Some v. - Proof. - induction j; intros; destruct i; simpl; simpl in H; auto; try congruence. - destruct i; congruence. - Qed. - - Lemma xget_right : - forall (A : Type) (j i : positive) (m1 m2 : t A) (o : option A) (v : A), - xget i (append j (xI xH)) m2 = Some v -> xget i j (Node m1 o m2) = Some v. - Proof. - induction j; intros; destruct i; simpl; simpl in H; auto; try congruence. - destruct i; congruence. - Qed. + Lemma in_xelements: + forall (A: Type) (m: t A) (i k: positive) (v: A) l, + In (k, v) (xelements m i l) -> + (exists j, k = prev (prev_append j i) /\ get j m = Some v) \/ In (k, v) l. + Proof. + induction m as [|l IHl o r IHr]; intros i j v k H. + right; exact H. + destruct o as [o|]. + specialize (IHl _ _ _ _ H). destruct IHl as [(j' & -> & Hj')|[IHl|IHl]]. + left. exists (xO j'). split. reflexivity. exact Hj'. + inv IHl. left. exists xH. split. reflexivity. reflexivity. + destruct (IHr _ _ _ _ IHl) as [(j' & -> & Hj') | IH]; clear IHr. + left. exists (xI j'). split. reflexivity. exact Hj'. + right; assumption. + specialize (IHl _ _ _ _ H). destruct IHl as [(j' & -> & Hj' )|IHl]. + left. exists (xO j'). split. reflexivity. exact Hj'. + destruct (IHr _ _ _ _ IHl) as [(j' & -> & Hj') | IH]; clear IHr. + left. exists (xI j'). split. reflexivity. exact Hj'. + right; assumption. + Qed. Lemma xelements_complete: forall (A: Type) (m: t A) (i j : positive) (v: A) k, - In (i, v) (xelements m j k) -> xget i j m = Some v \/ In (i, v) k. - Proof. - induction m; simpl; intros. - auto. - destruct o. - edestruct IHm1; eauto. left; apply xget_left; auto. - destruct H0. inv H0. left; apply xget_diag. - edestruct IHm2; eauto. left; apply xget_right; auto. - edestruct IHm1; eauto. left; apply xget_left; auto. - edestruct IHm2; eauto. left; apply xget_right; auto. - Qed. - - Lemma get_xget_h : - forall (A: Type) (m: t A) (i: positive), get i m = xget i xH m. + In (prev_append j i, v) (xelements m j k) -> get i m = Some v \/ In (prev_append j i, v) k. Proof. - destruct i; simpl; auto. + intros A m i j v k H. + apply in_xelements in H. destruct H as [(j' & EQ & Hj')|H]. + rewrite prev_append_prev in EQ. apply prev_append_inj in EQ. left; congruence. + right; assumption. Qed. Theorem elements_complete: forall (A: Type) (m: t A) (i: positive) (v: A), In (i, v) (elements m) -> get i m = Some v. Proof. - intros A m i v H. unfold elements in H. - edestruct xelements_complete; eauto. - rewrite get_xget_h. auto. - contradiction. - Qed. - - Lemma in_xelements: - forall (A: Type) (m: t A) (i k: positive) (v: A) l, - In (k, v) (xelements m i l) -> - (exists j, k = append i j) \/ In (k, v) l. - Proof. - induction m; simpl; intros. - auto. - destruct o. - edestruct IHm1 as [[j EQ] | IN]; eauto. - rewrite <- append_assoc_0 in EQ. left; econstructor; eauto. - destruct IN. - inv H0. left; exists xH; symmetry; apply append_neutral_r. - edestruct IHm2 as [[j EQ] | IN]; eauto. - rewrite <- append_assoc_1 in EQ. left; econstructor; eauto. - edestruct IHm1 as [[j EQ] | IN]; eauto. - rewrite <- append_assoc_0 in EQ. left; econstructor; eauto. - edestruct IHm2 as [[j EQ] | IN']; eauto. - rewrite <- append_assoc_1 in EQ. left; econstructor; eauto. + unfold elements. intros A m i v H. + change i with (prev_append 1 i) in H. + destruct (xelements_complete _ _ _ _ _ H) as [K|()]. exact K. Qed. Definition xkeys (A: Type) (m: t A) (i: positive) (l: list (positive * A)) := @@ -769,53 +717,50 @@ Module PTree <: TREE. Lemma in_xkeys: forall (A: Type) (m: t A) (i k: positive) l, In k (xkeys m i l) -> - (exists j, k = append i j) \/ In k (List.map fst l). + (exists j, k = prev (prev_append j i)) \/ In k (List.map fst l). Proof. unfold xkeys; intros. - exploit list_in_map_inv; eauto. intros [[k1 v1] [EQ IN]]. - simpl in EQ; subst k1. - exploit in_xelements; eauto. intros [EX | IN']. - auto. - right. change k with (fst (k, v1)). apply List.in_map; auto. - Qed. - - Lemma append_injective: - forall i j1 j2, append i j1 = append i j2 -> j1 = j2. - Proof. - induction i; simpl; intros. - apply IHi. congruence. - apply IHi. congruence. - auto. + apply (list_in_map_inv) in H. destruct H as ((j, v) & -> & H). + change j with (prev_append 1 j) in H. apply in_xelements in H. + destruct H as [(j' & Hj' & _) | H]. simpl in Hj'; subst j. + left. simpl. exists j'. reflexivity. + right. apply in_map. exact H. Qed. Lemma xelements_keys_norepet: forall (A: Type) (m: t A) (i: positive) l, - (forall k v, get k m = Some v -> ~In (append i k) (List.map fst l)) -> + (forall k v, get k m = Some v -> ~In (prev (prev_append k i)) (List.map fst l)) -> list_norepet (List.map fst l) -> list_norepet (xkeys m i l). Proof. - unfold xkeys; induction m; simpl; intros. + unfold xkeys. + intros A m. + induction m as [|l Hl o r Hr]; intros i elem H NR. auto. - destruct o. - apply IHm1. - intros; red; intros IN. rewrite <- append_assoc_0 in IN. simpl in IN; destruct IN. - exploit (append_injective i k~0 xH). rewrite append_neutral_r. auto. - congruence. - exploit in_xkeys; eauto. intros [[j EQ] | IN]. - rewrite <- append_assoc_1 in EQ. exploit append_injective; eauto. congruence. - elim (H (xO k) v); auto. - simpl. constructor. - red; intros IN. exploit in_xkeys; eauto. intros [[j EQ] | IN']. - rewrite <- append_assoc_1 in EQ. - exploit (append_injective i j~1 xH). rewrite append_neutral_r. auto. congruence. - elim (H xH a). auto. rewrite append_neutral_r. auto. - apply IHm2; auto. intros. rewrite <- append_assoc_1. eapply H; eauto. - apply IHm1. - intros; red; intros IN. rewrite <- append_assoc_0 in IN. - exploit in_xkeys; eauto. intros [[j EQ] | IN']. - rewrite <- append_assoc_1 in EQ. exploit append_injective; eauto. congruence. - elim (H (xO k) v); auto. - apply IHm2; auto. intros. rewrite <- append_assoc_1. eapply H; eauto. + destruct o as [o|]. + - apply Hl. + intros k v Hkv IN. + destruct IN as [IN | IN]. + rewrite prev_append_prev in IN. simpl in IN. apply prev_append_inj in IN. discriminate. + apply in_xkeys in IN. destruct IN as [(j & EQ) | IN]. + rewrite !prev_append_prev in EQ. simpl in EQ. apply prev_append_inj in EQ. discriminate. + elim (H (xO k) v); auto; fail. + simpl. constructor. + intros IN. + apply in_xkeys in IN. destruct IN as [(j & EQ) | IN]. + rewrite !prev_append_prev in EQ. simpl in EQ. apply prev_append_inj in EQ. discriminate. + elim (H xH o); auto; fail. + apply Hr; auto. + intros k. + exact (H (xI k)). + - apply Hl. + intros k v Hkv IN. + apply in_xkeys in IN. destruct IN as [(j & EQ) | IN]. + rewrite !prev_append_prev in EQ. simpl in EQ. apply prev_append_inj in EQ. discriminate. + exact (H (xO k) _ Hkv IN). + apply Hr; auto. + intros k. + exact (H (xI k)). Qed. Theorem elements_keys_norepet: @@ -908,12 +853,12 @@ Module PTree <: TREE. match m with | Leaf => v | Node l None r => - let v1 := xfold f (append i (xO xH)) l v in - xfold f (append i (xI xH)) r v1 + let v1 := xfold f (xO i) l v in + xfold f (xI i) r v1 | Node l (Some x) r => - let v1 := xfold f (append i (xO xH)) l v in - let v2 := f v1 i x in - xfold f (append i (xI xH)) r v2 + let v1 := xfold f (xO i) l v in + let v2 := f v1 (prev i) x in + xfold f (xI i) r v2 end. Definition fold (A B : Type) (f: B -> positive -> A -> B) (m: t A) (v: B) := |