summaryrefslogtreecommitdiff
path: root/Test/z3api/boog23.bpl
blob: 4e0fc4d055cf982a7355a345b095b7f18a1543b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
type name;
type ref;
type byte;
function OneByteToInt(byte) returns (int);
function TwoBytesToInt(byte, byte) returns (int);
function FourBytesToInt(byte, byte, byte, byte) returns (int);
axiom(forall b0:byte, c0:byte :: {OneByteToInt(b0), OneByteToInt(c0)} OneByteToInt(b0) == OneByteToInt(c0) ==> b0 == c0);
axiom(forall b0:byte, b1: byte, c0:byte, c1:byte :: {TwoBytesToInt(b0, b1), TwoBytesToInt(c0, c1)} TwoBytesToInt(b0, b1) == TwoBytesToInt(c0, c1) ==> b0 == c0 && b1 == c1);
axiom(forall b0:byte, b1: byte, b2:byte, b3:byte, c0:byte, c1:byte, c2:byte, c3:byte :: {FourBytesToInt(b0, b1, b2, b3), FourBytesToInt(c0, c1, c2, c3)} FourBytesToInt(b0, b1, b2, b3) == FourBytesToInt(c0, c1, c2, c3) ==> b0 == c0 && b1 == c1 && b2 == c2 && b3 == c3);

// Mutable
var Mem_BYTE:[int]byte;
var alloc:[int]name;


function Field(int) returns (name);
function Base(int) returns (int);

// Constants
const unique UNALLOCATED:name;
const unique ALLOCATED: name;
const unique FREED:name;

const unique BYTE:name;

function Equal([int]bool, [int]bool) returns (bool);
function Subset([int]bool, [int]bool) returns (bool);
function Disjoint([int]bool, [int]bool) returns (bool);

function Empty() returns ([int]bool);
function Singleton(int) returns ([int]bool);
function Reachable([int,int]bool, int) returns ([int]bool);
function Union([int]bool, [int]bool) returns ([int]bool);
function Intersection([int]bool, [int]bool) returns ([int]bool);
function Difference([int]bool, [int]bool) returns ([int]bool);
function Dereference([int]bool, [int]int) returns ([int]bool);
function Inverse(f:[int]int, x:int) returns ([int]bool);

function AtLeast(int, int) returns ([int]bool);
function Rep(int, int) returns (int);
axiom(forall n:int, x:int, y:int :: {AtLeast(n,x)[y]} AtLeast(n,x)[y] ==> x <= y && Rep(n,x) == Rep(n,y));
axiom(forall n:int, x:int, y:int :: {AtLeast(n,x),Rep(n,x),Rep(n,y)} x <= y && Rep(n,x) == Rep(n,y) ==> AtLeast(n,x)[y]);
axiom(forall n:int, x:int :: {AtLeast(n,x)} AtLeast(n,x)[x]);
axiom(forall n:int, x:int, z:int :: {PLUS(x,n,z)} Rep(n,x) == Rep(n,PLUS(x,n,z)));
axiom(forall n:int, x:int :: {Rep(n,x)} (exists k:int :: Rep(n,x) - x  == n*k));

function Array(int, int, int) returns ([int]bool);
axiom(forall x:int, n:int, z:int :: {Array(x,n,z)} z <= 0 ==> Equal(Array(x,n,z), Empty()));
axiom(forall x:int, n:int, z:int :: {Array(x,n,z)} z > 0 ==> Equal(Array(x,n,z), Difference(AtLeast(n,x),AtLeast(n,PLUS(x,n,z)))));


axiom(forall x:int :: !Empty()[x]);

axiom(forall x:int, y:int :: {Singleton(y)[x]} Singleton(y)[x] <==> x == y);
axiom(forall y:int :: {Singleton(y)} Singleton(y)[y]);

/* this formulation of Union IS more complete than the earlier one */
/* (A U B)[e], A[d], A U B = Singleton(c), d != e */
axiom(forall x:int, S:[int]bool, T:[int]bool :: {Union(S,T)[x]} Union(S,T)[x] <==> S[x] || T[x]);
axiom(forall x:int, S:[int]bool, T:[int]bool :: {Union(S,T), S[x]} S[x] ==> Union(S,T)[x]);
axiom(forall x:int, S:[int]bool, T:[int]bool :: {Union(S,T), T[x]} T[x] ==> Union(S,T)[x]);

axiom(forall x:int, S:[int]bool, T:[int]bool :: {Intersection(S,T)[x]} Intersection(S,T)[x] <==>  S[x] && T[x]);
axiom(forall x:int, S:[int]bool, T:[int]bool :: {Intersection(S,T), S[x]} S[x] && T[x] ==> Intersection(S,T)[x]);
axiom(forall x:int, S:[int]bool, T:[int]bool :: {Intersection(S,T), T[x]} S[x] && T[x] ==> Intersection(S,T)[x]);

axiom(forall x:int, S:[int]bool, T:[int]bool :: {Difference(S,T)[x]} Difference(S,T)[x] <==> S[x] && !T[x]);
axiom(forall x:int, S:[int]bool, T:[int]bool :: {Difference(S,T), S[x]} S[x] ==> Difference(S,T)[x] || T[x]);

axiom(forall x:int, S:[int]bool, M:[int]int :: {Dereference(S,M)[x]} Dereference(S,M)[x] ==> (exists y:int :: x == M[y] && S[y]));
axiom(forall x:int, S:[int]bool, M:[int]int :: {M[x], S[x], Dereference(S,M)} S[x] ==> Dereference(S,M)[M[x]]);
axiom(forall x:int, y:int, S:[int]bool, M:[int]int :: {Dereference(S,M[x := y])} !S[x] ==> Equal(Dereference(S,M[x := y]), Dereference(S,M)));
axiom(forall x:int, y:int, S:[int]bool, M:[int]int :: {Dereference(S,M[x := y])} 
     S[x] &&  Equal(Intersection(Inverse(M,M[x]), S), Singleton(x)) ==> Equal(Dereference(S,M[x := y]), Union(Difference(Dereference(S,M), Singleton(M[x])), Singleton(y))));
axiom(forall x:int, y:int, S:[int]bool, M:[int]int :: {Dereference(S,M[x := y])} 
     S[x] && !Equal(Intersection(Inverse(M,M[x]), S), Singleton(x)) ==> Equal(Dereference(S,M[x := y]), Union(Dereference(S,M), Singleton(y))));

axiom(forall f:[int]int, x:int :: {Inverse(f,f[x])} Inverse(f,f[x])[x]);
axiom(forall f:[int]int, x:int, y:int :: {Inverse(f[x := y],y)} Equal(Inverse(f[x := y],y), Union(Inverse(f,y), Singleton(x))));
axiom(forall f:[int]int, x:int, y:int, z:int :: {Inverse(f[x := y],z)} y == z || Equal(Inverse(f[x := y],z), Difference(Inverse(f,z), Singleton(x))));

axiom(forall S:[int]bool, T:[int]bool :: {Equal(S,T)} Equal(S,T) <==> Subset(S,T) && Subset(T,S));
axiom(forall x:int, S:[int]bool, T:[int]bool :: {S[x], Subset(S,T)} S[x] && Subset(S,T) ==> T[x]);
axiom(forall S:[int]bool, T:[int]bool :: {Subset(S,T)} Subset(S,T) || (exists x:int :: S[x] && !T[x]));
axiom(forall x:int, S:[int]bool, T:[int]bool :: {S[x], Disjoint(S,T), T[x]} !(S[x] && Disjoint(S,T) && T[x]));
axiom(forall S:[int]bool, T:[int]bool :: {Disjoint(S,T)} Disjoint(S,T) || (exists x:int :: S[x] && T[x]));

function Unified([name][int]int) returns ([int]int);
axiom(forall M:[name][int]int, x:int :: {Unified(M)[x]} Unified(M)[x] == M[Field(x)][x]);
axiom(forall M:[name][int]int, x:int, y:int :: {Unified(M[Field(x) := M[Field(x)][x := y]])} Unified(M[Field(x) := M[Field(x)][x := y]]) == Unified(M)[x := y]);
// Memory model

var Mem: [name][int]int;

function Match(a:int, t:name) returns (bool);
function HasType(v:int, t:name) returns (bool);
function Values(t:name) returns ([int]bool);

axiom(forall v:int, t:name :: {Values(t)[v]} Values(t)[v] ==> HasType(v, t));
axiom(forall v:int, t:name :: {HasType(v, t), Values(t)} HasType(v, t) ==> Values(t)[v]);

// Field declarations


// Type declarations

const unique INT4_name:name;
const unique PINT4_name:name;

// Field definitions

// Type definitions

axiom(forall a:int :: {Match(a, INT4_name)}
    Match(a, INT4_name) <==> Field(a) == INT4_name);
axiom(forall v:int :: HasType(v, INT4_name));

axiom(forall a:int :: {Match(a, PINT4_name)}
    Match(a, PINT4_name) <==> Field(a) == PINT4_name);
axiom(forall v:int :: {HasType(v, PINT4_name)} {Match(v, INT4_name)}
    HasType(v, PINT4_name) <==> (v == 0 || (v > 0 && Match(v, INT4_name))));

function MINUS_BOTH_PTR_OR_BOTH_INT(a:int, b:int, size:int) returns (int); 
axiom(forall a:int, b:int, size:int :: {MINUS_BOTH_PTR_OR_BOTH_INT(a,b,size)} 
size * MINUS_BOTH_PTR_OR_BOTH_INT(a,b,size) <= a - b && a - b < size * (MINUS_BOTH_PTR_OR_BOTH_INT(a,b,size) + 1));

function MINUS_LEFT_PTR(a:int, a_size:int, b:int) returns (int);
axiom(forall a:int, a_size:int, b:int :: {MINUS_LEFT_PTR(a,a_size,b)} MINUS_LEFT_PTR(a,a_size,b) == a - a_size * b);

function PLUS(a:int, a_size:int, b:int) returns (int);
axiom(forall a:int, a_size:int, b:int :: {PLUS(a,a_size,b)} PLUS(a,a_size,b) == a + a_size * b);

function MULT(a:int, b:int) returns (int); // a*b
axiom(forall a:int, b:int :: {MULT(a,b)} MULT(a,b) == a * b);

function DIV(a:int, b:int) returns (int); // a/b	
	      
axiom(forall a:int, b:int :: {DIV(a,b)}
a >= 0 && b > 0 ==> b * DIV(a,b) <= a && a < b * (DIV(a,b) + 1)
); 

axiom(forall a:int, b:int :: {DIV(a,b)}
a >= 0 && b < 0 ==> b * DIV(a,b) <= a && a < b * (DIV(a,b) - 1)
); 

axiom(forall a:int, b:int :: {DIV(a,b)}
a < 0 && b > 0 ==> b * DIV(a,b) >= a && a > b * (DIV(a,b) - 1)
); 

axiom(forall a:int, b:int :: {DIV(a,b)}
a < 0 && b < 0 ==> b * DIV(a,b) >= a && a > b * (DIV(a,b) + 1)
); 

function BINARY_BOTH_INT(a:int, b:int) returns (int);

function POW2(a:int) returns (bool);
axiom POW2(1);
axiom POW2(2);
axiom POW2(4);
axiom POW2(8);
axiom POW2(16);
axiom POW2(32);
axiom POW2(64);
axiom POW2(128);
axiom POW2(256);
axiom POW2(512);
axiom POW2(1024);
axiom POW2(2048);
axiom POW2(4096);
axiom POW2(8192);
axiom POW2(16384);
axiom POW2(32768);
axiom POW2(65536);
axiom POW2(131072);
axiom POW2(262144);
axiom POW2(524288);
axiom POW2(1048576);
axiom POW2(2097152);
axiom POW2(4194304);
axiom POW2(8388608);
axiom POW2(16777216);
axiom POW2(33554432);

function choose(a:bool, b:int, c:int) returns (x:int);
axiom(forall a:bool, b:int, c:int :: {choose(a,b,c)} a ==> choose(a,b,c) == b);
axiom(forall a:bool, b:int, c:int :: {choose(a,b,c)} !a ==> choose(a,b,c) == c);

function BIT_BAND(a:int, b:int) returns (x:int);
axiom(forall a:int, b:int :: {BIT_BAND(a,b)} a == b ==> BIT_BAND(a,b) == a);
axiom(forall a:int, b:int :: {BIT_BAND(a,b)} POW2(a) && POW2(b) && a != b ==> BIT_BAND(a,b) == 0);
axiom(forall a:int, b:int :: {BIT_BAND(a,b)} a == 0 || b == 0 ==> BIT_BAND(a,b) == 0);

function BIT_BOR(a:int, b:int) returns (x:int);

function BIT_BXOR(a:int, b:int) returns (x:int);

function BIT_BNOT(a:int) returns (int);

function LIFT(a:bool) returns (int);
axiom(forall a:bool :: {LIFT(a)} a <==> LIFT(a) != 0);

function NOT(a:int) returns (int);
axiom(forall a:int :: {NOT(a)} a == 0 ==> NOT(a) != 0);
axiom(forall a:int :: {NOT(a)} a != 0 ==> NOT(a) == 0);

function NULL_CHECK(a:int) returns (int);
axiom(forall a:int :: {NULL_CHECK(a)} a == 0 ==> NULL_CHECK(a) != 0);
axiom(forall a:int :: {NULL_CHECK(a)} a != 0 ==> NULL_CHECK(a) == 0);

procedure nondet_choice() returns (x:int);


procedure havoc_assert(i:int);
requires (i != 0);

procedure havoc_assume(i:int);
ensures (i != 0);

procedure __HAVOC_free(a:int);
modifies alloc;
ensures (forall x:int :: {alloc[x]} x == a || old(alloc)[x] == alloc[x]);
ensures (alloc[a] == FREED);
// Additional checks guarded by tranlator flags
// requires alloc[a] == ALLOCATED;
// requires Base(a) == a;

procedure __HAVOC_malloc(obj_size:int) returns (new:int);
requires obj_size >= 0;
modifies alloc;
ensures (new > 0);
ensures (forall x:int :: {Base(x)} new <= x && x < new+obj_size ==> Base(x) == new);
ensures (forall x:int :: {alloc[x]} x == new || old(alloc)[x] == alloc[x]);
ensures old(alloc)[new] == UNALLOCATED && alloc[new] == ALLOCATED;

procedure _strdup(str:int) returns (new:int);

procedure _xstrcasecmp(a0:int, a1:int) returns (ret:int);

procedure _xstrcmp(a0:int, a1:int) returns (ret:int);





procedure  main ( ) returns ($result.main$3.5$1$:int)

modifies alloc;
//TAG: no freed locations
ensures(forall f:int :: {alloc[Base(f)]} old(alloc)[Base(f)] == UNALLOCATED || old(alloc)[Base(f)] == alloc[Base(f)]);

modifies Mem;
//TAG: no updated memory locations
ensures(forall f: name, m:int :: {Mem[f][m]} Mem[f][m] == old(Mem[f])[m]);
free ensures(Mem[Field(0)][0] == old(Mem[Field(0)])[0]);

//TAG: Type Safety Precondition
requires(forall a:int :: {Mem[Field(a)][a]} HasType(Mem[Field(a)][a], Field(a)));
//TAG: Type Safety Postcondition
ensures(forall a:int :: {Mem[Field(a)][a]} HasType(Mem[Field(a)][a], Field(a)));
ensures(HasType($result.main$3.5$1$, INT4_name));
{
var havoc_stringTemp:int;
var condVal:int;
var $a$1$4.6$main : int;
var b : int;
var c : int;
var flag : int;
var tempBoogie0:int;
var tempBoogie1:int;
var tempBoogie2:int;
var tempBoogie3:int;
var tempBoogie4:int;
var tempBoogie5:int;
var tempBoogie6:int;
var tempBoogie7:int;
var tempBoogie8:int;
var tempBoogie9:int;
var tempBoogie10:int;
var tempBoogie11:int;
var tempBoogie12:int;
var tempBoogie13:int;
var tempBoogie14:int;
var tempBoogie15:int;
var tempBoogie16:int;
var tempBoogie17:int;
var tempBoogie18:int;
var tempBoogie19:int;


start:

assume(HasType($a$1$4.6$main, INT4_name));
assume(HasType(b, INT4_name));
assume(HasType(c, INT4_name));
assume(HasType(flag, INT4_name));
assume(HasType($result.main$3.5$1$, INT4_name));
goto label_3;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(20)
label_1:
assume (forall m:int :: {Mem[Field(m)][m]} alloc[Base(m)] != ALLOCATED  && old(alloc)[Base(m)] != ALLOCATED  ==> Mem[Field(m)][m] == old(Mem[Field(m)])[m]);
return;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(20)
label_2:
assume false;
return;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(4)
label_3:
goto label_4;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(4)
label_4:
goto label_5;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(4)
label_5:
goto label_6;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(5)
label_6:
goto label_7;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(7)
label_7:
c := LIFT(b < $a$1$4.6$main) ;
//TAG: Type Safety Assertion
assert(forall a:int :: {Mem[Field(a)][a]} HasType(Mem[Field(a)][a], Field(a)));
assert(HasType($a$1$4.6$main, INT4_name));
assert(HasType(b, INT4_name));
assert(HasType(c, INT4_name));
assert(HasType(flag, INT4_name));
goto label_8;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(9)
label_8:
goto label_8_true , label_8_false ;


label_8_true :
assume (c != 0);
goto label_10;


label_8_false :
assume (c == 0);
goto label_9;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(12)
label_9:
flag := 0 ;
//TAG: Type Safety Assertion
assert(forall a:int :: {Mem[Field(a)][a]} HasType(Mem[Field(a)][a], Field(a)));
assert(HasType($a$1$4.6$main, INT4_name));
assert(HasType(b, INT4_name));
assert(HasType(c, INT4_name));
assert(HasType(flag, INT4_name));
goto label_11;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(10)
label_10:
flag := 1 ;
//TAG: Type Safety Assertion
assert(forall a:int :: {Mem[Field(a)][a]} HasType(Mem[Field(a)][a], Field(a)));
assert(HasType($a$1$4.6$main, INT4_name));
assert(HasType(b, INT4_name));
assert(HasType(c, INT4_name));
assert(HasType(flag, INT4_name));
goto label_11;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(15)
label_11:
goto label_11_true , label_11_false ;


label_11_true :
assume (b < $a$1$4.6$main);
goto label_13;


label_11_false :
assume !(b < $a$1$4.6$main);
goto label_12;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(18)
label_12:
//TAG: flag == 0
assert (flag == 0);
goto label_1;


// c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(16)
label_13:
//TAG: flag == 1
assert (flag == 1);
goto label_1;

}