blob: 49ff29b4cf310ae798bfc656ece57aa7af0eb35a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
// This method is a slight generalization of the
// code provided in the problem statement since it
// is generic in the type of the array elements.
method swap<T>(a: array<T>, i: int, j: int)
requires a != null;
requires 0 <= i < j < a.Length;
modifies a;
ensures a[i] == old(a[j]);
ensures a[j] == old(a[i]);
ensures forall m :: 0 <= m < a.Length && m != i && m != j ==> a[m] == old(a[m]);
ensures multiset(a[..]) == old(multiset(a[..]));
{
var t := a[i];
a[i] := a[j];
a[j] := t;
}
// This method is a direct translation of the pseudo
// code given in the problem statement.
// The first postcondition expresses that the resulting
// array is sorted, that is, all occurrences of "false"
// come before all occurrences of "true".
// The second postcondition expresses that the post-state
// array is a permutation of the pre-state array. To express
// this, we use Dafny's built-in multisets. The built-in
// function "multiset" takes an array and yields the
// multiset of the array elements.
// Note that Dafny guesses a suitable ranking function
// for the termination proof of the while loop.
// We use the loop guard from the given pseudo-code. However,
// the program also verifies with the stronger guard "i < j"
// (without changing any of the other specifications or
// annotations).
method two_way_sort(a: array<bool>)
requires a != null;
modifies a;
ensures forall m,n :: 0 <= m < n < a.Length ==> (!a[m] || a[n]);
ensures multiset(a[..]) == old(multiset(a[..]));
{
var i := 0;
var j := a.Length - 1;
while (i <= j)
invariant 0 <= i <= j + 1 <= a.Length;
invariant forall m :: 0 <= m < i ==> !a[m];
invariant forall n :: j < n < a.Length ==> a[n];
invariant multiset(a[..]) == old(multiset(a[..]));
{
if (!a[i]) {
i := i+1;
} else if (a[j]) {
j := j-1;
} else {
swap(a, i, j);
i := i+1;
j := j-1;
}
}
}
|