summaryrefslogtreecommitdiff
path: root/Test/vstte2012/Combinators.dfy
blob: 46daf48d8b79ded5085606a0af1e9366d9348c7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// Problem 2 concerns an interpreter for the language of S and K combinators.

// -----------------------------------------------------------------------------
// Definitions

// First, we define the language of combinator terms.  "Apply(x, y)" is what
// the problem description writes as "(x y)".  In the following Dafny
// definition, "car" and "cdr" are declared to be destructors for terms
// constructed by Apply.

datatype Term = S | K | Apply(car: Term, cdr: Term);

// The problem defines values to be a subset of the terms.  More precisely,
// a Value is a Term that fits the following grammar:
//     Value = K | S | (K Value) | (S Value) | ((S Value) Value)
// The following predicate says whether or not a given term is a value.

function method IsValue(t: Term): bool
  ensures IsValue(t) && t.Apply? ==> IsValue(t.car) && IsValue(t.cdr);
{
  match t
  case K => true
  case S => true
  case Apply(a, b) =>
    match a
    case K =>
      assert IsValue(a);
      IsValue(b)
    case S =>
      assert IsValue(a);
      IsValue(b)
    case Apply(x, y) =>
      assert x==S && IsValue(y) && IsValue(b) ==> IsValue(a);
      x==S && IsValue(y) && IsValue(b)
}

// A context is essentially a term with one missing subterm, a "hole".  It
// is defined as follows:

datatype Context = Hole | C_term(Context, Term) | value_C(Term/*Value*/, Context);

// The problem seems to suggest that the value_C form requires a value and
// a context.  To formalize that notion, we define a predicate that checks this
// condition.

function IsContext(C: Context): bool
{
  match C
  case Hole => true                                   // []
  case C_term(D, t) => IsContext(D)                   // (D t)
  case value_C(v, D) => IsValue(v) && IsContext(D)    // (v D)
}

// The EvalExpr function replace the hole in a context with a given term.

function EvalExpr(C: Context, t: Term): Term
  requires IsContext(C);
{
  match C
  case Hole => t
  case C_term(D, u) => Apply(EvalExpr(D, t), u)
  case value_C(v, D) => Apply(v, EvalExpr(D, t))
}

// A term can be reduced.  This reduction operation is defined via
// a single-step reduction operation.  In the problem, the single-step
// reduction has the form:
//   C[t] --> C[r]
// We formalize the single-step reduction by a function Step, which
// performs the reduction if it applies or just returns the given term
// if it does.  We will say that "Step applies" to refer to the first
// case, which is a slight abuse of language, since the function "Step"
// is total.
//
// Since the context C is the same on both sides in the single-step
// reduction above, we don't pass it to function Step.  Rather, Step
// just takes a term "t" and returns the following:
//     match t
//     case ((K v1) v2) => v1
//     case (((S v1) v2) v3) => ((v1 v3) (v2 v3))
//     else t
// As you can see below, it takes more lines than shown here to express
// this matching in Dafny, but this is all that Step does.
//
// Again, note that Step returns the given term if neither or the two
// vs in the problem statement applies.
//
// One more thing:  Step has a postcondition (and the body of Step
// contains three asserts that act as lemmas in proving the postcondition).
// The postcondition has been included for the benefit of Verification
// Task 2, and we describe the functions used in the Step postcondition
// only much later in this file.  For now, the postcondition can be
// ignored, since it is, after all, just a consequence of the body
// of Step.

function method Step(t: Term): Term
  ensures !ContainsS(t) ==>
             !ContainsS(Step(t)) &&
             (Step(t) == t || TermSize(Step(t)) < TermSize(t));
{
  match t
  case S => t
  case K => t
  case Apply(x, y) =>
    match x
    case S => t
    case K => t
    case Apply(m, n) =>
      if m == K && IsValue(n) && IsValue(y) then
        // this is the case t == Apply(Apply(K, n), y)
        assert !ContainsS(t) ==> !ContainsS(x);
        assert TermSize(n) < TermSize(Apply(m, n));
        n
      else if m.Apply? && m.car == S && IsValue(m.cdr) && IsValue(n) && IsValue(y) then
        // t == Apply(Apply(Apply(S, m.cdr), n), y)
        assert ContainsS(m) && ContainsS(t);
        Apply(Apply(m.cdr, y), Apply(n, y))
      else
        t
}

// The single-step reduction operation may be applied to any subexpression
// of a term that could be considered a hole.  Function FindAndStep
// searches for a (context, term) pair C[u] that denotes a given term "t"
// such that Step applies to "u".  If found, the function returns
// C[Step(u)], which will necessarily be different from "t".  If no such
// C[u] pair exists, this function returns the given "t".
//
// Note, FindAndStep only applies one Step.  We will get to repeated
// applications of steps in the "reduction" method below.
//
// For all definitions above, it was necessary to check (manually) that
// they correspond to the definitions intended in the problem statement.
// That is, the definitions above are all part of the specification.
// For function FindAndStep, the definition given does not require
// such scrutiny.  Rather, we will soon state a theorem that states
// the properties of what FindAndStep returns.
//
// Like Step, FindAndStep has a postcondition, and it is also included to
// support Verification Task 2.

function method FindAndStep(t: Term): Term
  ensures !ContainsS(t) ==>
             !ContainsS(FindAndStep(t)) &&
             (FindAndStep(t) == t || TermSize(FindAndStep(t)) < TermSize(t));
{
  if Step(t) != t then
    Step(t)
  else if !t.Apply? then
    t
  else if FindAndStep(t.car) != t.car then
    Apply(FindAndStep(t.car), t.cdr)
  else if IsValue(t.car) && FindAndStep(t.cdr) != t.cdr then
    Apply(t.car, FindAndStep(t.cdr))
  else
    t
}

// One part of the correctness of FindAndStep (and, indeed, of method
// "reduction" below) is that a term can be terminal, meaning that there is
// no way to apply Step to any part of it.

function IsTerminal(t: Term): bool
{
  !(exists C,u :: IsContext(C) && t == EvalExpr(C,u) && Step(u) != u)
}

// The following theorem states the correctness of the FindAndStep function:

ghost method Theorem_FindAndStep(t: Term)
  // If FindAndStep returns the term it started from, then there is no
  // way to take a step.  More precisely, there is no C[u] == t for which the
  // Step applies to "u".
  ensures FindAndStep(t) == t ==> IsTerminal(t);
  // If FindAndStep returns a term that's different from what it started with,
  // then it chose some C[u] == t for which the Step applies to "u", and then
  // it returned C[Step(u)].
  ensures FindAndStep(t) != t ==>
          exists C,u :: IsContext(C) && t == EvalExpr(C,u) && Step(u) != u &&
                        FindAndStep(t) == EvalExpr(C, Step(u));
{
  // The theorem follows from the following lemma, which itself is proved by
  // induction.
  var r, C, u := Lemma_FindAndStep(t);
}

// This is the lemma that proves the theorem above.  Whereas the theorem talks
// existentially about C and u, the lemma constructs C and u and returns them,
// which is useful in the proof by induction.  The computation inside the
// lemma mimicks that done by function FindAndStep; indeed, the lemma
// computes the value of FindAndStep(t) as it goes along and it returns
// that value.

ghost method Lemma_FindAndStep(t: Term) returns (r: Term, C: Context, u: Term)
  ensures r == FindAndStep(t);
  ensures r == t ==> IsTerminal(t);
  ensures r != t ==>
            IsContext(C) && t == EvalExpr(C,u) && Step(u) != u &&
            r == EvalExpr(C, Step(u));
{
  Lemma_ContextPossibilities(t);
  if (Step(t) != t) {
    // t == Hole[t] and Step applies t.  So, return Hole[Step(t)]
    return Step(t), Hole, t;
  } else if (!t.Apply?) {
    r := t;
  } else {
    r, C, u := Lemma_FindAndStep(t.car);  // (*)
    if (r != t.car) {
      // t has the form (a b) where a==t.car and b==t.cdr, and a==C[u] for some
      // context C and some u to which the Step applies.  t can therefore be
      // denoted by (C[u] b) == (C b)[u] and the Step applies to u.  So, return
      // (C b)[Step(u)] == (C[Step(u)] b).  Note that FindAndStep(a)
      // gives C[Step(u)].
      return Apply(r, t.cdr), C_term(C, t.cdr), u;
    } else if (IsValue(t.car)) {
      r, C, u := Lemma_FindAndStep(t.cdr);
      assert IsTerminal(t.car);  // make sure this is still remembered from (*)

      if (r != t.cdr) {
        // t has the form (a b) where a==t.car and b==t.cdr and "a" is a Value,
        // and b==C[u] for some context C and some u to which the Step applies.
        // t can therefore be denoted by (a C[u]) == (C a)[u] and the Step
        // applies to u.  So, return (C a)[Step(u)] == (a C[Step(u)]).  Note
        // that FindAndStep(b) gives C[Step(u)].
        return Apply(t.car, r), value_C(t.car, C), u;
      } else {
        parallel (C,u | IsContext(C) && t == EvalExpr(C,u))
          ensures Step(u) == u;
        {
          // The following assert and the first assert of each "case" are
          // consequences of the Lemma_ContextPossibilities that was invoked
          // above.
          assert t.Apply? && IsValue(t.car);
          match (C) {
            case Hole =>
              assert t == u;
            case C_term(D, bt) =>
              assert bt == t.cdr && t.car == EvalExpr(D, u);
            case value_C(at, D) =>
              assert at == t.car && t.cdr == EvalExpr(D, u);
          }
        }
        r := t;
      }
    } else {
      r := t;
    }
  }
}

// The proof of the lemma above used one more lemma, namely one that enumerates
// lays out the options for how to represent a term as a C[u] pair.

ghost method Lemma_ContextPossibilities(t: Term)
  ensures forall C,u :: IsContext(C) && t == EvalExpr(C, u) ==>
    (C == Hole && t == u) ||
    (t.Apply? && exists D :: C == C_term(D, t.cdr) && t.car == EvalExpr(D, u)) ||
    (t.Apply? && IsValue(t.car) &&
        exists D :: C == value_C(t.car, D) && t.cdr == EvalExpr(D, u));
{
  // Dafny's induction tactic rocks
}

// We now define a way to record a sequence of reduction steps.
// IsTrace(trace, t, r) returns true iff "trace" gives witness to a
// sequence of terms from "t" to "r", each term reducing to its
// successor in the trace.

datatype Trace = EmptyTrace | ReductionStep(Trace, Term);

function IsTrace(trace: Trace, t: Term, r: Term): bool
{
  match trace
  case EmptyTrace =>
    t == r
  case ReductionStep(tr, u) =>
    IsTrace(tr, t, u) && FindAndStep(u) == r
}

// Finally, we are ready to give the requested routine "reduction", which
// keeps applying FindAndStep until quiescence, that is, until Step
// no longer applies.
//
// As required by Verification Task 1, the "reduction" method has two
// postconditions.  One says that the term returned, "r", was obtained
// from the original term, "t", by a sequence of reduction steps.  The
// other says that "r" cannot be reduced any further.
//
// Unlike the other competition problems, this one requested code
// (for "reduction") that may not terminate.  In order to allow reasoning
// about algorithms that may never terminate, Dafny has a special loop
// statement (a "while" loop with a declaration "decreases *") that
// thus comes in handy for "reduction".  (Dafny never allows recursion
// to be non-terminating, only these special loops.)  Note that use
// of the special loop statement does not have any effect on the
// specifications of the enclosing method (but this may change in a
// future version of Dafny).

method reduction(t: Term) returns (r: Term)
  // The result was obtained by a sequence of reductions:
  ensures exists trace :: IsTrace(trace, t, r);
  // The result "r" cannot be reduced any further:
  ensures IsTerminal(r);
{
  r := t;
  ghost var trace := EmptyTrace;
  while (true)
    invariant IsTrace(trace, t, r);
    decreases *;  // allow this statement to loop forever
  {
    var u := FindAndStep(r);
    if (u == r) {
      // we have found a fixpoint
      Theorem_FindAndStep(r);
      return;
    }
    r, trace := u, ReductionStep(trace, r);
  }
}

// -----------------------------------------------------------------------------
// Verification Task 2
//
// This part of the problem asks us to consider the reduction of terms that
// do not contain S.  The following function formalizes what it means for a term
// to contain S:

function method ContainsS(t: Term): bool
{
  match t
  case S => true
  case K => false
  case Apply(x, y) => ContainsS(x) || ContainsS(y)
}

// The verification task itself is to prove that "reduction" terminates on any
// term that does not contain S.  To prove this, we need to supply a loop variant
// for the loop in "reduction".  However, Dafny does not allow one loop to be
// proved to terminate in some cases and allowed not to terminate in other cases.
// There, we meet Verification Task 2 by manually copying the body of "reduction"
// into a new method (called VerificationTask2) and proving that this new method
// terminates.  Of course, Dafny does not check that we copy the body correctly,
// so that needs to be checked by a human.
//
// In method VerificationTask2, we added not just the precondition given in the
// Verification Task and a loop variant, but we also added two loop invariants
// and one more postcondition.  One of the loop invariants keep track of that
// there are no S's.  The other loop invariant and the postcondition are for
// the benefit of Verification Task 3, as we explain later.

method VerificationTask2(t: Term) returns (r: Term)
  requires !ContainsS(t);  // a sufficient condition for termination
  // The result was obtained by a sequence of reductions:
  ensures exists trace :: IsTrace(trace, t, r);
  // The result "r" cannot be reduced any further:
  ensures IsTerminal(r);
  // Later in this file, we define a function TerminatingReduction, and the
  // following postcondition says that TerminatingReduction computes the same
  // term as this method does.
  ensures r == TerminatingReduction(t);
{
  r := t;
  ghost var trace := EmptyTrace;
  while (true)
    invariant IsTrace(trace, t, r) && !ContainsS(r);
    invariant TerminatingReduction(t) == TerminatingReduction(r);
    decreases TermSize(r);
  {
    var u := FindAndStep(r);
    if (u == r) {
      // we have found a fixpoint
      Theorem_FindAndStep(r);
      return;
    }
    r, trace := u, ReductionStep(trace, r);
  }
}

// What now follows is the definition TermSize, which is used in the
// loop variant.  When a Step is applied to a term without S, TermSize
// is reduced, which is stated as a postcondition of both Step and
// FindAndStep.  That postcondition of FindAndStep is used in the
// proof of termination of method VerificationTask2.

// The loop variant is simply the count of nodes in the term:

function TermSize(t: Term): nat
{
  match t
  case S => 1
  case K => 1
  case Apply(x, y) => 1 + TermSize(x) + TermSize(y)
}

// We have already given two methods for computing a reduction:
// method "reduction", which may or may not terminate, and method
// "VerificationTask2", whose precondition is strong enough to let
// us prove that the method will terminate.  The correspondence
// between the two methods is checked by hand, seeing that
// VerificationTask2 includes the postconditions of "reduction" and
// seeing that the code is the same.
//
// We now define a third way of computing reductions, this time
// using a function (not a method).  To prove that this function
// computes the same thing as method VerificationTask2, we had
// added a postcondition to VerificationTask2 above.  This function
// is introduced for the benefit of stating and verifying Verification
// Task 3.

function TerminatingReduction(t: Term): Term
  requires !ContainsS(t);  // a sufficient condition for termination
  decreases TermSize(t);
{
  if FindAndStep(t) == t then
    t  // we have reached a fixpoint
  else
    TerminatingReduction(FindAndStep(t))
}

// -----------------------------------------------------------------------------
// Verification Task 3

// Here is the function "ks" from Verification Task 3.  It produces a particular
// family of terms that contain only Apply and K.  Hence, we can establish, as a
// postcondition of the function, that ks(n) does not contain S.

function method ks(n: nat): Term
  ensures !ContainsS(ks(n));
{
  if n == 0 then K else Apply(ks(n-1), K)
}

// Verification Task 3 is now established by the following theorem.  It says
// that reducing ks(n) results in either K and (K K), depending on the parity
// of n.  The theorem uses function TerminatingReduction to speak of the
// reduction--remember that (by the last postcondition of method
// VerificationTask2) it computes the same thing as method VerificationTask2
// does.

ghost method VerificationTask3()
  ensures forall n: nat ::
    TerminatingReduction(ks(n)) == if n % 2 == 0 then K else Apply(K, K);
{
  parallel (n: nat) {
    VT3(n);
  }
}

ghost method VT3(n: nat)
  ensures TerminatingReduction(ks(n)) == if n % 2 == 0 then K else Apply(K, K);
{
  // Dafny's (way cool) induction tactic kicks in and proves the following
  // assertion automatically:
  assert forall p :: 2 <= p ==> FindAndStep(ks(p)) == ks(p-2);
  // And then Dafny's (cool beyond words) induction tactic for ghost methods kicks
  // in to prove the postcondition.  (If this got you curious, scope out Leino's
  // VMCAI 2012 paper "Automating Induction with an SMT Solver".)
}