1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
// RUN: %boogie %s > %t
// RUN: %diff %s.expect %t
// The partition step of Quick Sort picks a 'pivot' element from a specified subsection
// of a given integer array. It then partially sorts the elements of the array so that
// elements smaller than the pivot end up to the left of the pivot and elements larger
// than the pivot end up to the right of the pivot. Finally, the index of the pivot is
// returned.
// The procedure below always picks the first element of the subregion as the pivot.
// The specification of the procedure talks about the ordering of the elements, but
// does not say anything about keeping the multiset of elements the same.
var A: [int]int;
const N: int;
procedure Partition(l: int, r: int) returns (result: int)
requires 0 <= l && l+2 <= r && r <= N;
modifies A;
ensures l <= result && result < r;
ensures (forall k: int, j: int :: l <= k && k < result && result <= j && j < r ==> A[k] <= A[j]);
ensures (forall k: int :: l <= k && k < result ==> A[k] <= old(A)[l]);
ensures (forall k: int :: result <= k && k < r ==> old(A)[l] <= A[k]);
{
var pv, i, j, tmp: int;
pv := A[l];
i := l;
j := r-1;
// swap A[l] and A[j]
tmp := A[l];
A[l] := A[j];
A[j] := tmp;
goto LoopHead;
// The following loop iterates while 'i < j'. In each iteration,
// one of the three alternatives (A, B, or C) is chosen in such
// a way that the assume statements will evaluate to true.
LoopHead:
// The following the assert statements give the loop invariant
assert (forall k: int :: l <= k && k < i ==> A[k] <= pv);
assert (forall k: int :: j <= k && k < r ==> pv <= A[k]);
assert l <= i && i <= j && j < r;
goto A, B, C, exit;
A:
assume i < j;
assume A[i] <= pv;
i := i + 1;
goto LoopHead;
B:
assume i < j;
assume pv <= A[j-1];
j := j - 1;
goto LoopHead;
C:
assume i < j;
assume A[j-1] < pv && pv < A[i];
// swap A[j-1] and A[i]
tmp := A[i];
A[i] := A[j-1];
A[j-1] := tmp;
assert A[i] < pv && pv < A[j-1];
i := i + 1;
j := j - 1;
goto LoopHead;
exit:
assume i == j;
result := i;
}
|