summaryrefslogtreecommitdiff
path: root/Test/textbook/DivMod.bpl
blob: bdbc4f192e180709e977cb9337c43f5656deb73f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
// RUN: %boogie "%s" > "%t"
// RUN: %diff "%s.expect" "%t"
// This file contains two definitions of integer div/mod (truncated division, as is
// used in C, C#, Java, and several other languages, and Euclidean division, which
// has mathematical appeal and is used by SMT Lib) and proves the correct
// correspondence between the two.
//
// Rustan Leino, 23 Sep 2010

function abs(x: int): int { if 0 <= x then x else -x }

function divt(int, int): int;
function modt(int, int): int;

axiom (forall a,b: int :: divt(a,b)*b + modt(a,b) == a);
axiom (forall a,b: int ::
  (0 <= a ==> 0 <= modt(a,b) && modt(a,b) < abs(b)) &&
  (a < 0 ==> -abs(b) < modt(a,b) && modt(a,b) <= 0));

function dive(int, int): int;
function mode(int, int): int;

axiom (forall a,b: int :: dive(a,b)*b + mode(a,b) == a);
axiom (forall a,b: int :: 0 <= mode(a,b) && mode(a,b) < abs(b));

procedure T_from_E(a,b: int) returns (q,r: int)
  requires b != 0;
  // It would be nice to prove:
  //   ensures q == divt(a,b);
  //   ensures r == modt(a,b);
  // but since we know that the axioms about divt/modt have unique solutions (for
  // non-zero b), we just prove that the axioms hold.
  ensures q*b + r == a;
  ensures 0 <= a ==> 0 <= r && r < abs(b);
  ensures a < 0 ==> -abs(b) < r && r <= 0;
{
  // note, this implementation uses only dive/mode
  var qq,rr: int;
  qq := dive(a,b);
  rr := mode(a,b);

  q := if 0 <= a || rr == 0 then qq else if 0 <= b then qq+1 else qq-1;
  r := if 0 <= a || rr == 0 then rr else if 0 <= b then rr-b else rr+b;
  assume {:captureState "end of T_from_E"} true;
}

procedure E_from_T(a,b: int) returns (q,r: int)
  requires b != 0;
  // It would be nice to prove:
  //   ensures q == dive(a,b);
  //   ensures r == mode(a,b);
  // but since we know that the axioms about dive/mode have unique solutions (for
  // non-zero b), we just prove that the axioms hold.
  ensures q*b + r == a;
  ensures 0 <= r;
  ensures r < abs(b);
{
  // note, this implementation uses only divt/modt
  var qq,rr: int;
  qq := divt(a,b);
  rr := modt(a,b);

  q := if 0 <= rr then qq else if 0 < b then qq-1 else qq+1;
  r := if 0 <= rr then rr else if 0 < b then rr+b else rr-b;
}