summaryrefslogtreecommitdiff
path: root/Test/og/treiber-stack.bpl
blob: 9a612eb20e67636cadef487ab0dc8abe76654728 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// RUN: %boogie -noinfer -typeEncoding:m -useArrayTheory "%s" > "%t"
// RUN: %diff "%s.expect" "%t"
type Node = int;
const unique null: Node;
type lmap;
function {:linear "Node"} dom(lmap): [Node]bool;
function map(lmap): [Node]Node;
function {:builtin "MapConst"} MapConstBool(bool) : [Node]bool;

function EmptyLmap(): (lmap);
axiom (dom(EmptyLmap()) == MapConstBool(false));

function Add(x: lmap, i: Node, v: Node): (lmap);
axiom (forall x: lmap, i: Node, v: Node :: dom(Add(x, i, v)) == dom(x)[i:=true] && map(Add(x, i, v)) == map(x)[i := v]);

function Remove(x: lmap, i: Node): (lmap);
axiom (forall x: lmap, i: Node :: dom(Remove(x, i)) == dom(x)[i:=false] && map(Remove(x, i)) == map(x));

procedure {:yields} {:layer 0} ReadTopOfStack() returns (v:Node);
ensures {:right} |{ A: assume dom(Stack)[v] || dom(Used)[v]; return true; }|;

procedure {:yields} {:layer 0} Load(i:Node) returns (v:Node);
ensures {:right} |{ A: assert dom(Stack)[i] || dom(Used)[i]; goto B,C;
	            B: assume dom(Stack)[i]; v := map(Stack)[i]; return true; 
		    C: assume !dom(Stack)[i]; return true; }|;

procedure {:yields} {:layer 0} Store({:linear_in "Node"} l_in:lmap, i:Node, v:Node) returns ({:linear "Node"} l_out:lmap);
ensures {:both} |{ A: assert dom(l_in)[i]; l_out := Add(l_in, i, v); return true; }|;

procedure {:yields} {:layer 0} TransferToStack(oldVal: Node, newVal: Node, {:linear_in "Node"} l_in:lmap) returns (r: bool, {:linear "Node"} l_out:lmap);
ensures {:atomic} |{ A: assert dom(l_in)[newVal];
		        goto B,C;
                        B: assume oldVal == TopOfStack; TopOfStack := newVal; l_out := EmptyLmap(); Stack := Add(Stack, newVal, map(l_in)[newVal]); r := true; return true;
			C: assume oldVal != TopOfStack; l_out := l_in; r := false; return true; }|;

procedure {:yields} {:layer 0} TransferFromStack(oldVal: Node, newVal: Node) returns (r: bool);
ensures {:atomic} |{ A: goto B,C;
                        B: assume oldVal == TopOfStack; TopOfStack := newVal; Used := Add(Used, oldVal, map(Stack)[oldVal]); Stack := Remove(Stack, oldVal); r := true; return true;
		        C: assume oldVal != TopOfStack; r := false; return true; }|;

var {:layer 0} TopOfStack: Node;
var {:linear "Node"} {:layer 0} Stack: lmap;


function {:inline} Inv(TopOfStack: Node, Stack: lmap) : (bool)
{
  BetweenSet(map(Stack), TopOfStack, null)[TopOfStack] &&
  Subset(Difference(BetweenSet(map(Stack), TopOfStack, null), Singleton(null)), dom(Stack))
}

var {:linear "Node"} {:layer 0} Used: lmap;

procedure {:yields} {:layer 1} push(x: Node, {:linear_in "Node"} x_lmap: lmap)
requires {:layer 1} dom(x_lmap)[x];
requires {:layer 1} Inv(TopOfStack, Stack);
ensures {:layer 1} Inv(TopOfStack, Stack);
ensures {:atomic} |{ A: Stack := Add(Stack, x, TopOfStack); TopOfStack := x; return true; }|;
{
  var t: Node;
  var g: bool;
  var {:linear "Node"} t_lmap: lmap;

  yield;
  assert {:layer 1} Inv(TopOfStack, Stack);
  t_lmap := x_lmap;
  while (true)
  invariant {:layer 1} dom(t_lmap) == dom(x_lmap);
  invariant {:layer 1} Inv(TopOfStack, Stack);
  {
    call t := ReadTopOfStack();
    call t_lmap := Store(t_lmap, x, t);
    call g, t_lmap := TransferToStack(t, x, t_lmap); 
    if (g) {
      assert {:layer 1} map(Stack)[x] == t;
      break;
    }
    yield; 
    assert {:layer 1} dom(t_lmap) == dom(x_lmap);
    assert {:layer 1} Inv(TopOfStack, Stack);
  }
  yield; 
  assert {:expand} {:layer 1} Inv(TopOfStack, Stack);
}

procedure {:yields} {:layer 1} pop()
requires {:layer 1} Inv(TopOfStack, Stack);
ensures {:layer 1} Inv(TopOfStack, Stack);
ensures {:atomic} |{ var t: Node; 
                     A: assume TopOfStack != null; t := TopOfStack; Used := Add(Used, t, map(Stack)[t]); TopOfStack := map(Stack)[t]; Stack := Remove(Stack, t); return true; }|;
{
  var g: bool;
  var x: Node;
  var t: Node;

  yield;
  assert {:layer 1} Inv(TopOfStack, Stack);
  while (true)
  invariant {:layer 1} Inv(TopOfStack, Stack);
  {
    call t := ReadTopOfStack();
    if (t != null) {
      call x := Load(t);
      call g := TransferFromStack(t, x); 
      if (g) { 
        break;
      }
    }
    yield;
    assert {:layer 1} Inv(TopOfStack, Stack);
  }
  yield;
  assert {:layer 1} Inv(TopOfStack, Stack);
}

function Equal([int]bool, [int]bool) returns (bool);
function Subset([int]bool, [int]bool) returns (bool);
function Disjoint([int]bool, [int]bool) returns (bool);

function Empty() returns ([int]bool);
function SetTrue() returns ([int]bool);
function Singleton(int) returns ([int]bool);
function Reachable([int,int]bool, int) returns ([int]bool);
function Union([int]bool, [int]bool) returns ([int]bool);
function Intersection([int]bool, [int]bool) returns ([int]bool);
function Difference([int]bool, [int]bool) returns ([int]bool);
function Inverse(f:[int]int, x:int) returns ([int]bool);

axiom(forall x:int :: !Empty()[x]);
axiom(forall x:int :: SetTrue()[x]);

axiom(forall x:int, y:int :: {Singleton(y)[x]} Singleton(y)[x] <==> x == y);
axiom(forall y:int :: {Singleton(y)} Singleton(y)[y]);

axiom(forall x:int, S:[int]bool, T:[int]bool :: {Union(S,T)[x]}{Union(S,T),S[x]}{Union(S,T),T[x]} Union(S,T)[x] <==> S[x] || T[x]);
axiom(forall x:int, S:[int]bool, T:[int]bool :: {Intersection(S,T)[x]}{Intersection(S,T),S[x]}{Intersection(S,T),T[x]} Intersection(S,T)[x] <==>  S[x] && T[x]);
axiom(forall x:int, S:[int]bool, T:[int]bool :: {Difference(S,T)[x]}{Difference(S,T),S[x]}{Difference(S,T),T[x]} Difference(S,T)[x] <==> S[x] && !T[x]);

axiom(forall S:[int]bool, T:[int]bool :: {Equal(S,T)} Equal(S,T) <==> Subset(S,T) && Subset(T,S));
axiom(forall x:int, S:[int]bool, T:[int]bool :: {S[x],Subset(S,T)}{T[x],Subset(S,T)} S[x] && Subset(S,T) ==> T[x]);
axiom(forall S:[int]bool, T:[int]bool :: {Subset(S,T)} Subset(S,T) || (exists x:int :: S[x] && !T[x]));
axiom(forall x:int, S:[int]bool, T:[int]bool :: {S[x],Disjoint(S,T)}{T[x],Disjoint(S,T)} !(S[x] && Disjoint(S,T) && T[x]));
axiom(forall S:[int]bool, T:[int]bool :: {Disjoint(S,T)} Disjoint(S,T) || (exists x:int :: S[x] && T[x]));

axiom(forall f:[int]int, x:int :: {Inverse(f,f[x])} Inverse(f,f[x])[x]);
axiom(forall f:[int]int, x:int, y:int :: {Inverse(f,y), f[x]} Inverse(f,y)[x] ==> f[x] == y);
axiom(forall f:[int]int, x:int, y:int :: {Inverse(f[x := y],y)} Equal(Inverse(f[x := y],y), Union(Inverse(f,y), Singleton(x))));
axiom(forall f:[int]int, x:int, y:int, z:int :: {Inverse(f[x := y],z)} y == z || Equal(Inverse(f[x := y],z), Difference(Inverse(f,z), Singleton(x))));

////////////////////
// Between predicate
//////////////////// 
function Between(f: [int]int, x: int, y: int, z: int) returns (bool);
function Avoiding(f: [int]int, x: int, y: int, z: int) returns (bool);


//////////////////////////
// Between set constructor
//////////////////////////
function BetweenSet(f: [int]int, x: int, z: int) returns ([int]bool);

////////////////////////////////////////////////////
// axioms relating Between and BetweenSet
////////////////////////////////////////////////////
axiom(forall f: [int]int, x: int, y: int, z: int :: {BetweenSet(f, x, z)[y]} BetweenSet(f, x, z)[y] <==> Between(f, x, y, z));
axiom(forall f: [int]int, x: int, y: int, z: int :: {Between(f, x, y, z), BetweenSet(f, x, z)} Between(f, x, y, z) ==> BetweenSet(f, x, z)[y]);
axiom(forall f: [int]int, x: int, z: int :: {BetweenSet(f, x, z)} Between(f, x, x, x));
axiom(forall f: [int]int, x: int, z: int :: {BetweenSet(f, x, z)} Between(f, z, z, z));


//////////////////////////
// Axioms for Between
//////////////////////////

// reflexive
axiom(forall f: [int]int, x: int :: Between(f, x, x, x));

// step
//axiom(forall f: [int]int, x: int :: {f[x]} Between(f, x, f[x], f[x])); 
axiom(forall f: [int]int, x: int, y: int, z: int, w:int :: {Between(f, y, z, w), f[x]} Between(f, x, f[x], f[x])); 

// reach
axiom(forall f: [int]int, x: int, y: int :: {f[x], Between(f, x, y, y)} Between(f, x, y, y) ==> x == y || Between(f, x, f[x], y));

// cycle
axiom(forall f: [int]int, x: int, y:int :: {f[x], Between(f, x, y, y)} f[x] == x && Between(f, x, y, y) ==> x == y);

// sandwich
axiom(forall f: [int]int, x: int, y: int :: {Between(f, x, y, x)} Between(f, x, y, x) ==> x == y);

// order1
axiom(forall f: [int]int, x: int, y: int, z: int :: {Between(f, x, y, y), Between(f, x, z, z)} Between(f, x, y, y) && Between(f, x, z, z) ==> Between(f, x, y, z) || Between(f, x, z, y));

// order2
axiom(forall f: [int]int, x: int, y: int, z: int :: {Between(f, x, y, z)} Between(f, x, y, z) ==> Between(f, x, y, y) && Between(f, y, z, z));

// transitive1
axiom(forall f: [int]int, x: int, y: int, z: int :: {Between(f, x, y, y), Between(f, y, z, z)} Between(f, x, y, y) && Between(f, y, z, z) ==> Between(f, x, z, z));

// transitive2
axiom(forall f: [int]int, x: int, y: int, z: int, w: int :: {Between(f, x, y, z), Between(f, y, w, z)} Between(f, x, y, z) && Between(f, y, w, z) ==> Between(f, x, y, w) && Between(f, x, w, z));

// transitive3
axiom(forall f: [int]int, x: int, y: int, z: int, w: int :: {Between(f, x, y, z), Between(f, x, w, y)} Between(f, x, y, z) && Between(f, x, w, y) ==> Between(f, x, w, z) && Between(f, w, y, z));

// This axiom is required to deal with the incompleteness of the trigger for the reflexive axiom.  
// It cannot be proved using the rest of the axioms.
axiom(forall f: [int]int, u:int, x: int :: {Between(f, u, x, x)} Between(f, u, x, x) ==> Between(f, u, u, x));

// relation between Avoiding and Between
axiom(forall f: [int]int, x: int, y: int, z: int :: {Avoiding(f, x, y, z)} Avoiding(f, x, y, z) <==> (Between(f, x, y, z) || (Between(f, x, y, y) && !Between(f, x, z, z))));
axiom(forall f: [int]int, x: int, y: int, z: int :: {Between(f, x, y, z)} Between(f, x, y, z) <==> (Avoiding(f, x, y, z) && Avoiding(f, x, z, z)));

// update
axiom(forall f: [int]int, u: int, v: int, x: int, p: int, q: int :: {Avoiding(f[p := q], u, v, x)} Avoiding(f[p := q], u, v, x) <==> ((Avoiding(f, u, v, p) && Avoiding(f, u, v, x)) || (Avoiding(f, u, p, x) && p != x && Avoiding(f, q, v, p) && Avoiding(f, q, v, x))));

axiom (forall f: [int]int, p: int, q: int, u: int, w: int :: {BetweenSet(f[p := q], u, w)} Avoiding(f, u, w, p) ==> Equal(BetweenSet(f[p := q], u, w), BetweenSet(f, u, w)));
axiom (forall f: [int]int, p: int, q: int, u: int, w: int :: {BetweenSet(f[p := q], u, w)} p != w && Avoiding(f, u, p, w) && Avoiding(f, q, w, p) ==> Equal(BetweenSet(f[p := q], u, w), Union(BetweenSet(f, u, p), BetweenSet(f, q, w))));
axiom (forall f: [int]int, p: int, q: int, u: int, w: int :: {BetweenSet(f[p := q], u, w)} Avoiding(f, u, w, p) || (p != w && Avoiding(f, u, p, w) && Avoiding(f, q, w, p)) || Equal(BetweenSet(f[p := q], u, w), Empty()));