1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
|
//-----------------------------------------------------------------------------
//
// Copyright (C) Microsoft Corporation. All Rights Reserved.
//
//-----------------------------------------------------------------------------
using System;
using System.Collections.Generic;
using Microsoft.SpecSharp.Collections;
using Microsoft.Contracts;
using System.Text; // for StringBuilder
namespace Graphing{
internal static class Util{
private static string! ListToString<T>(IEnumerable<T> xs){
StringBuilder sb = new StringBuilder();
sb.Append("[");
bool first = true;
foreach(T! x in xs){
if (!first) sb.Append(", ");
sb.Append(x.ToString());
first = false;
}
sb.Append("]");
return sb.ToString();
}
public static string! MapToString<Node>(Dictionary<Node,List<Node>> d){
StringBuilder sb = new StringBuilder();
sb.Append("{");
bool first = true;
foreach (KeyValuePair<Node,List<Node>> de in d){
if (!first) sb.Append(", ");
sb.Append(((!) de.Key).ToString());
sb.Append("~>");
sb.Append(ListToString(de.Value));
first = false;
}
sb.Append("}");
return sb.ToString();
}
}
// own struct to represent possibly undefined values, because Mono does
// not like arrays with element type T! or T?
public struct Maybe<T> {
private T Value;
public bool IsSet; // initialised with false by the default ctor
public T Val {
get { assume IsSet; return Value; }
set { Value = value; IsSet = true; }
}
public void UnSet() {
IsSet = false;
}
}
internal class DomRelation<Node>{
// doms maps (unique) node numbers to the node numbers of the immediate dominator
// to use it on Nodes, one needs the two way mapping between nodes and their numbers.
private int[]? doms; // 0 is unused: means undefined
// here are the two mappings
private Maybe<Node>[]? postOrderNumberToNode;
private Dictionary<Node,int>? nodeToPostOrderNumber;
private int sourceNum; // (number for) root of the graph
private Node source; // root of the graph
private Graph<Node> graph;
private Dictionary<Node,List<Node>>? immediateDominatorMap;
[NotDelayed]
internal DomRelation(Graph<Node> g, Node source){
this.graph = g;
// slot 0 not used: nodes are numbered from 1 to n so zero
// can represent undefined.
this.source = source;
base();
this.NewComputeDominators();
}
public Dictionary<Node,List<Node>> ImmediateDominatorMap{
get { assume this.immediateDominatorMap != null; return this.immediateDominatorMap; }
}
public bool DominatedBy(Node dominee, Node dominator){
assume this.nodeToPostOrderNumber != null;
assume this.doms != null;
int domineeNum = this.nodeToPostOrderNumber[dominee];
int dominatorNum = this.nodeToPostOrderNumber[dominator];
if (domineeNum == dominatorNum) return true;
int currentNodeNum = this.doms[domineeNum];
do {
if (currentNodeNum == dominatorNum) return true;
currentNodeNum = this.doms[currentNodeNum];
} while (currentNodeNum != this.sourceNum);
return false;
}
private Dictionary<Node,List<Node>>? domMap = null;
[Pure][Reads(ReadsAttribute.Reads.Owned)]
public override string ToString(){
assume this.doms != null;
int[] localDoms = this.doms;
assume this.postOrderNumberToNode != null;
if (domMap == null){
domMap = new Dictionary<Node,List<Node>>();
for (int i = 1; i < localDoms.Length; i++){ // 0 slot is not used
int domineeNum = i;
int currentNodeNum = domineeNum;
List<Node> dominators = new List<Node>();
while (currentNodeNum != this.sourceNum){
dominators.Add(this.postOrderNumberToNode[currentNodeNum].Val);
currentNodeNum = this.doms[currentNodeNum];
}
dominators.Add(this.postOrderNumberToNode[this.sourceNum].Val);
domMap.Add(this.postOrderNumberToNode[i].Val,dominators);
}
}
StringBuilder sb = new StringBuilder();
sb.Append("{");
bool first = true;
foreach (KeyValuePair<Node,List<Node>> de in domMap){
if (!first) sb.Append(", ");
sb.Append(((!)de.Key).ToString());
sb.Append("~>");
sb.Append(ListToString(de.Value));
first = false;
}
sb.Append("}");
return sb.ToString();
}
private void PrintIntArray(int[] xs){
Console.Write("[");
for (int i = 0; i < xs.Length; i++){
if (0 < i) Console.Write(", ");
Console.Write(xs[i]);
}
Console.WriteLine("]");
}
public void PrintList<T>(IEnumerable<T> xs){
Console.Write("[");
int i = 0;
foreach(T! x in xs){
if (0 < i) Console.Write(", ");
Console.Write(x.ToString());
i++;
}
Console.WriteLine("]");
}
public string! ListToString<T>(IEnumerable<T> xs){
StringBuilder sb = new StringBuilder();
sb.Append("[");
bool first = true;
foreach(T! x in xs){
if (!first) sb.Append(", ");
sb.Append(x.ToString());
first = false;
}
sb.Append("]");
return sb.ToString();
}
// Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, "A Simple, Fast Dominance Algorithm ", Software Practice and Experience, 2001.
// http://citeseer.ist.psu.edu/cooper01simple.html
private void NewComputeDominators(){
int n = this.graph.Nodes.Count;
this.postOrderNumberToNode = new Maybe<Node>[n+1];
this.nodeToPostOrderNumber = new Dictionary<Node,int>();
Dictionary<Node,bool> visited = new Dictionary<Node,bool>(n);
int currentNumber = 1;
assume this.source != null;
this.PostOrderVisit(this.source, visited, ref currentNumber);
this.sourceNum = this.nodeToPostOrderNumber[source];
// for (int i = 1; i <= n; i++){ Console.WriteLine(postOrderNumberToNode[i]); }
this.doms = new int[n+1]; // 0 is unused: means undefined
Node start_node = this.source;
this.doms[this.nodeToPostOrderNumber[start_node]] = this.nodeToPostOrderNumber[start_node];
bool changed = true;
// PrintIntArray(doms);
while (changed){
changed = false;
// for all nodes, b, in reverse postorder (except start_node)
for (int nodeNum = n-1; 1 <= nodeNum; nodeNum--){
Node b = this.postOrderNumberToNode[nodeNum].Val;
IEnumerable<Node> predecessors = this.graph.Predecessors(b);
// find a predecessor (i.e., a higher number) for which
// the doms array has been set
int new_idom = 0;
int first_processed_predecessor = 0;
#region new_idom <- number of first (processed) predecessor of b (pick one)
foreach (Node p in predecessors){
if (this.doms[this.nodeToPostOrderNumber[p]] != 0){
int x = this.nodeToPostOrderNumber[p];
new_idom = x;
first_processed_predecessor = x;
break;
}
}
#endregion
#region for all other predecessors, p, of b
foreach (Node p in predecessors){
if (this.nodeToPostOrderNumber[p] == first_processed_predecessor){
continue;
}
if (this.doms[this.nodeToPostOrderNumber[p]] != 0)
new_idom = intersect(this.nodeToPostOrderNumber[p],new_idom,this.doms);
}
#endregion
if (this.doms[this.nodeToPostOrderNumber[b]] != new_idom){
this.doms[this.nodeToPostOrderNumber[b]] = new_idom;
changed = true;
}
}
}
#region Populate the Immediate Dominator Map
int sourceNum = this.nodeToPostOrderNumber[this.source];
immediateDominatorMap = new Dictionary<Node,List<Node>>();
for (int i = 1; i <= n; i++){
Node node = this.postOrderNumberToNode[i].Val;
Node idomNode = this.postOrderNumberToNode[this.doms[i]].Val;
if ( i == sourceNum && this.doms[i] == sourceNum){
continue;
}
if (immediateDominatorMap.ContainsKey(idomNode)){
immediateDominatorMap[idomNode].Add(node);
}else{
List<Node> l = new List<Node>();
l.Add(node);
immediateDominatorMap.Add(idomNode,l);
}
}
#endregion
}
private int intersect(int b1, int b2, int[] doms){
int finger1 = b1;
int finger2 = b2;
while (finger1 != finger2){
while (finger1 < finger2){
finger1 = doms[finger1];
}
while (finger2 < finger1){
finger2 = doms[finger2];
}
}
return finger1;
}
private void PostOrderVisit(Node! n, Dictionary<Node,bool> visited, ref int currentNumber){
if (visited.ContainsKey(n)) return;
visited[n] = true;
foreach(Node! child in this.graph.Successors(n)){
PostOrderVisit(child, visited, ref currentNumber);
}
assume this.postOrderNumberToNode != null;
assume this.nodeToPostOrderNumber != null;
this.postOrderNumberToNode[currentNumber].Val = n;
this.nodeToPostOrderNumber[n] = currentNumber;
currentNumber++;
return;
}
}
public class Graph<Node> {
private Set<Pair<Node!,Node!>> es;
private Set<Node> ns;
private Node source;
private bool reducible;
private Set<Node> headers;
private Map<Node,Set<Node>> backEdgeNodes;
private Map<Pair<Node!,Node!>,Set<Node>> naturalLoops;
private DomRelation<Node>? dominatorMap = null;
private Dictionary<Node, Set<Node>> predCache = new Dictionary<Node, Set<Node>>();
private Dictionary<Node, Set<Node>> succCache = new Dictionary<Node, Set<Node>>();
private bool predComputed;
private class PreHeader {
Node! myHeader;
internal PreHeader(Node! h) { myHeader = h; }
[Pure][Reads(ReadsAttribute.Reads.Owned)]
public override string! ToString() { return "#" + myHeader.ToString(); }
}
public Graph(Set<Pair<Node!,Node!>> edges)
{
es = edges;
// original A#
//ns = Set<Node>{ x : <x,y> in es } + Set<Node>{ y : <x,y> in es };
// closest Spec#
//ns = new Set<Node>{ Pair<Node,Node> p in edges; p.First } + new Set<Node>{ Pair<Node,Node> p in edges; p.Second };
//
Set<Node> temp = new Set<Node>();
foreach (Pair<Node!,Node!> p in edges){
temp.Add(p.First);
temp.Add(p.Second);
}
ns = temp;
}
public Graph()
{ es = new Set<Pair<Node!,Node!>>(); ns = new Set<Node>(); }
// BUGBUG: Set<T>.ToString() should return a non-null string
[Pure][Reads(ReadsAttribute.Reads.Owned)]
public override string! ToString() { return "" + es.ToString(); }
public void AddSource(Node! x)
{
// BUGBUG: This generates bad code in the compiler
//ns += new Set<Node>{x};
ns.Add(x);
source = x;
}
public void AddEdge(Node! source, Node! dest)
{
//es += Set<Edge>{<source,dest>};
//ns += Set<Node>{source, dest};
es.Add(new Pair<Node!,Node!>(source,dest));
ns.Add(source);
ns.Add(dest);
predComputed = false;
}
public Set<Node> Nodes { get { return ns; } }
public IEnumerable<Pair<Node!,Node!>> Edges { get { return es; } }
public bool Edge(Node! x, Node! y) {
// original A#
// return <x,y> in es;
return es.Contains(new Pair<Node!,Node!>(x,y));
}
private void ComputePredSuccCaches()
{
if (predComputed) return;
predComputed = true;
predCache = new Dictionary<Node, Set<Node>>();
succCache = new Dictionary<Node, Set<Node>>();
foreach (Node n in Nodes) {
predCache[n] = new Set<Node>();
succCache[n] = new Set<Node>();
}
foreach(Pair<Node!,Node!> p in Edges){
Set<Node> tmp;
tmp = predCache[p.Second];
tmp.Add(p.First);
predCache[p.Second] = tmp;
tmp = succCache[p.First];
tmp.Add(p.Second);
succCache[p.First] = tmp;
}
}
internal IEnumerable<Node> Predecessors(Node n)
{
// original A#
//Set<Node> result = Set{ x : x in Nodes, Edge(x,n) };
ComputePredSuccCaches();
return predCache[n];
}
internal IEnumerable<Node> Successors(Node n)
{
ComputePredSuccCaches();
return succCache[n];
}
internal DomRelation<Node> /*Map<Node,Set<Node>>*/ DominatorMap
{
get {
assert source != null;
if (this.dominatorMap == null){
this.dominatorMap = new DomRelation<Node>(this, this.source);
}
return this.dominatorMap;
}
}
public Dictionary<Node,List<Node>> ImmediateDominatorMap
{
get {
assert source != null;
if (this.dominatorMap == null){
this.dominatorMap = new DomRelation<Node>(this, this.source);
}
return this.dominatorMap.ImmediateDominatorMap;
}
}
public List<Node> ImmediatelyDominatedBy(Node! n) {
List<Node>? dominees;
this.ImmediateDominatorMap.TryGetValue(n, out dominees);
return dominees == null ? new List<Node>() : dominees;
}
public IEnumerable<Node?> TopologicalSort()
{
bool acyclic;
List<Node?> sortedList;
this.TarjanTopSort(out acyclic, out sortedList);
return acyclic ? sortedList : new List<Node?>();
}
// From Tarjan 1972
public void TarjanTopSort(out bool acyclic, out List<Node?> sortedNodes)
{
int n = this.Nodes.Count;
if (n == 0) { acyclic = true; sortedNodes = new List<Node?>(); return; }
int[] incomingEdges = new int[n];
// need an arbitrary numbering for the nodes to use as indices into
// the arrays used within this algorithm
Dictionary<Node,int> nodeToNumber = new Dictionary<Node,int>(n);
Maybe<Node>[] numberToNode = new Maybe<Node>[n];
int counter = 0;
foreach (Node node in this.Nodes){
numberToNode[counter].Val = node;
nodeToNumber[node] = counter;
counter++;
}
foreach (Pair<Node!,Node!> e in this.Edges){
Node! target = e.Second;
incomingEdges[nodeToNumber[target]]++;
}
List<Node?> sorted = new List<Node?> ();
int sortedIndex = 0;
while (sortedIndex < n){
// find a root (i.e., its index)
int rootIndex = -1;
for (int i = 0; i < n; i++){
if (incomingEdges[i] == 0){
rootIndex = i;
break;
}
}
if (rootIndex == -1){
acyclic = false; sortedNodes = new List<Node?> (); return;
}
// mark root so it won't be used again
incomingEdges[rootIndex] = -1;
Node root = numberToNode[rootIndex].Val;
sorted.Add(root);
++sortedIndex;
foreach (Node s in this.Successors(root)){
incomingEdges[nodeToNumber[s]]--;
}
}
acyclic = true; sortedNodes = sorted; return;
}
private IEnumerable<Node> OldTopologicalSort()
{
Pair<bool,Seq<Node>> result = this.TopSort();
return result.First ? result.Second : (IEnumerable<Node>)new Seq<Node>();
}
// From AsmL distribution example
private Pair<bool,Seq<Node>> TopSort()
{
Seq<Node> S = new Seq<Node>();
Set<Node> V = this.Nodes;
Set<Node> X = new Set<Node>();
foreach (Node! n in V){ X.Add(n); }
bool change = true;
while ( change )
// invariant: X = V - S
{
change = false;
if (X.Count > 0){
foreach (Node! n in X){
// see if n has any incoming edges from any other node in X
bool inDegreeZero = true;
foreach(Node! u in X){
if (this.Edge(u,n)){
inDegreeZero = false;
break; // no point looking further
}
}
if (inDegreeZero){
S.Add(n);
X.Remove(n);
change = true;
break; // might as well go back and start looking through X from the beginning
}
}
// Then we made it all the way through X without finding a source node
if (!change){
return new Pair<bool,Seq<Node>>(false,new Seq<Node>());
}
}
}
return new Pair<bool,Seq<Node>>(true,S);
}
public static bool Acyclic(Graph<Node> g, Node source)
{
bool acyclic;
List<Node?> sortedList;
g.TarjanTopSort(out acyclic, out sortedList);
return acyclic;
}
//
// [Dragon, pp. 670--671]
// returns map D s.t. d in D(n) iff d dom n
//
static private Map<Node,Set<Node>> OldComputeDominators(Graph<Node> g, Node! source){
assert g.source != null;
Set<Node> N = g.Nodes;
Set<Node> nonSourceNodes = N - new Set<Node>(source);
Map<Node,Set<Node>> D = new Map<Node,Set<Node>>();
D[source] = new Set<Node>(source);
foreach (Node! n in nonSourceNodes){
D[n] = N;
}
bool change = true;
while ( change ){
change = false;
foreach (Node! n in nonSourceNodes){
// original A#
//Set<Set<Node>> allPreds = new Set<Set<Node>>{ Node p in this.Predecessors(n) ; D[p] };
Set<Set<Node>> allPreds = new Set<Set<Node>>();
foreach(Node! p in g.Predecessors(n)) allPreds.Add(D[p]);
Set<Node> temp = new Set<Node>(n) + Set<Node>.BigIntersect(allPreds);
if ( temp != D[n] ){
change = true;
D[n] = temp;
}
}
}
return D;
}
// [Dragon, Fig. 10.15, p. 604. Algorithm for constructing the natural loop.]
static Set<Node> NaturalLoop(Graph<Node> g, Pair<Node!,Node!> backEdge)
{
Node! n = backEdge.First;
Node! d = backEdge.Second;
Seq<Node> stack = new Seq<Node>();
Set<Node> loop = new Set<Node>(d);
if ( !n.Equals(d) ) // then n is not in loop
{
loop.Add(n);
stack = new Seq<Node>(n) + stack; // push n onto stack
}
while ( stack.Count > 0) // not empty
{
Node m = stack.Head;
stack = stack.Tail; // pop stack
foreach (Node! p in g.Predecessors(m))
{
if ( !(loop.Contains(p)) )
{
loop.Add(p);
stack = new Seq<Node>(p) + stack; // push p onto stack
}
}
}
return loop;
}
internal struct ReducibleResult{
internal bool reducible;
internal Set<Node> headers;
internal Map<Node,Set<Node>> backEdgeNodes;
internal Map<Pair<Node!,Node!>,Set<Node>> naturalLoops;
internal ReducibleResult(bool b,
Set<Node> headers,
Map<Node,Set<Node>> backEdgeNodes,
Map<Pair<Node!,Node!>,Set<Node>> naturalLoops){
this.reducible = b;
this.headers = headers;
this.backEdgeNodes = backEdgeNodes;
this.naturalLoops = naturalLoops;
}
}
// [Dragon, p. 606]
static ReducibleResult ComputeReducible(Graph<Node> g, Node source) {
// first, compute the dom relation
DomRelation<Node> /*Map<Node,Set<Node>>*/ D = g.DominatorMap;
return ComputeReducible(g,source,D);
}
// [Dragon, p. 606]
static ReducibleResult ComputeReducible(Graph<Node> g,
Node source,
DomRelation<Node>! DomRelation) {
//Console.WriteLine("[" + DateTime.Now +"]: begin ComputeReducible");
IEnumerable<Pair<Node!,Node!>> edges = g.Edges;
Set<Pair<Node!,Node!>> backEdges = new Set<Pair<Node!,Node!>>();
Set<Pair<Node!,Node!>> nonBackEdges = new Set<Pair<Node!,Node!>>();
foreach (Pair<Node!,Node!> e in edges){
Node x = e.First;
Node y = e.Second; // so there is an edge from x to y
if ( DomRelation.DominatedBy(x,y) ){ // y dom x: which means y dominates x
backEdges.Add(e);
}else{
nonBackEdges.Add(e);
}
}
if ( !Acyclic(new Graph<Node>(nonBackEdges), source) ){
return new ReducibleResult(false,
new Set<Node>(),
new Map<Node,Set<Node>>(),
new Map<Pair<Node!,Node!>,Set<Node>>());
}else{
// original A#:
//Set<Node> headers = Set{ d : <n,d> in backEdges };
Set<Node> headers = new Set<Node>();
foreach(Pair<Node!,Node!> e in backEdges)
headers.Add(e.Second);
// original A#:
//Map<Node,Set<Node>> backEdgeNodes = Map{ h -> bs : h in headers, bs = Set<Node>{ b : <b,x> in backEdges, x == h } };
Map<Node,Set<Node>> backEdgeNodes = new Map<Node,Set<Node>>();
foreach(Node! h in headers){
Set<Node> bs = new Set<Node>();
foreach(Pair<Node!,Node!> backedge in backEdges){
if (backedge.Second.Equals(h)){
bs.Add(backedge.First);
}
}
backEdgeNodes.Add(h,bs);
}
// original A#:
//Map<Pair<Node,Node>,Set<Node>> naturalLoops = Map{ e -> NaturalLoop(g,e) : e in backEdges };
Map<Pair<Node!,Node!>,Set<Node>> naturalLoops = new Map<Pair<Node!,Node!>,Set<Node>>();
foreach (Pair<Node!,Node!> e in backEdges){
naturalLoops.Add(e,NaturalLoop(g,e));
}
//Console.WriteLine("[" + DateTime.Now +"]: end ComputeReducible");
return new ReducibleResult(true, headers, backEdgeNodes, naturalLoops);
}
}
public bool Reducible { get { return reducible; } }
public IEnumerable<Node> Headers { get { return headers; } }
public IEnumerable<Node> BackEdgeNodes(Node! h){
// original A#:
//return h in backEdgeNodes ? backEdgeNodes[h] : null;
return (backEdgeNodes.ContainsKey(h) ? backEdgeNodes[h] : (IEnumerable<Node>)new Seq<Node>());
}
public IEnumerable<Node> NaturalLoops(Node! header, Node! backEdgeNode)
{
Pair<Node!,Node!> e = new Pair<Node!,Node!>(backEdgeNode,header);
return naturalLoops.ContainsKey(e) ? naturalLoops[e] : (IEnumerable<Node>)new Seq<Node>();
}
public void ComputeLoops()
{
ReducibleResult r = ComputeReducible(this,this.source);
this.reducible = r.reducible;
this.headers = r.headers;
this.backEdgeNodes = r.backEdgeNodes;
this.naturalLoops = r.naturalLoops;
return;
}
} // end: class Graph
public class GraphProgram
{
static void TestGraph<T>(T! source, params Pair<T!,T!>[] edges){
Set<Pair<T!,T!>> es = new Set<Pair<T!,T!>>();
foreach (Pair<T!,T!> e in edges) es.Add(e);
Graph<T> g = new Graph<T>(es);
g.AddSource(source);
Console.WriteLine("G = " + g);
g.ComputeLoops();
Console.WriteLine("G's Dominator Map = " + g.DominatorMap);
Console.WriteLine("G's Immediate Dominator Map = " + Util.MapToString(g.ImmediateDominatorMap));
Console.WriteLine("G is reducible: " + (g.Reducible ? "yes" : "no"));
}
static void Main(string[] args)
//requires forall{string s in args; s != null};
{
Console.WriteLine("Spec# says hello!");
// This generates bad IL -- need to fix a bug in the compiler
//Graph<int> g = new Graph<int>(new Set<Pair<int,int>>{ new Pair<int,int>(1,2), new Pair<int,int>(1,3), new Pair<int,int>(2,3) });
Console.WriteLine("");
TestGraph<char>('a',
new Pair<char,char>('a','b'),
new Pair<char,char>('a','c'),
new Pair<char,char>('b','c')
);
Console.WriteLine("");
TestGraph<char>('a',
new Pair<char,char>('a','b'),
new Pair<char,char>('a','c'),
new Pair<char,char>('b','d'),
new Pair<char,char>('c','e'),
new Pair<char,char>('c','f'),
new Pair<char,char>('d','e'),
new Pair<char,char>('e','d'),
new Pair<char,char>('e','f'),
new Pair<char,char>('f','e')
);
Console.WriteLine("");
TestGraph<char>('a',
new Pair<char,char>('a','b'),
new Pair<char,char>('a','c'),
new Pair<char,char>('b','c'),
new Pair<char,char>('c','b')
);
Console.WriteLine("");
TestGraph<int>(1,
new Pair<int,int>(1,2),
new Pair<int,int>(1,3),
new Pair<int,int>(2,3)
);
Console.WriteLine("");
TestGraph<int>(1,
new Pair<int,int>(1,2),
new Pair<int,int>(1,3),
new Pair<int,int>(2,3),
new Pair<int,int>(3,2)
);
Console.WriteLine("");
TestGraph<int>(2,
new Pair<int,int>(2,3),
new Pair<int,int>(2,4),
new Pair<int,int>(3,2)
);
Console.WriteLine("");
TestGraph<char>('a',
new Pair<char,char>('a','b'),
new Pair<char,char>('a','c'),
new Pair<char,char>('b','c'),
new Pair<char,char>('b','b')
);
}
}
}
|