1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
//-----------------------------------------------------------------------------
//
// Copyright (C) Microsoft Corporation. All Rights Reserved.
//
//-----------------------------------------------------------------------------
using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics.Contracts;
using Microsoft.Boogie;
namespace Microsoft.Boogie.AbstractInterpretation
{
/// <summary>
/// Specifies the operations (e.g., join) on a mathematical lattice that depend
/// only on the elements of the lattice.
/// </summary>
public abstract class NativeLattice
{
/// <summary>
/// An element of the lattice. This class should be derived from in any
/// implementation of MathematicalLattice.
/// </summary>
public abstract class Element
{
public abstract Expr ToExpr();
}
public abstract Element Top { get; }
public abstract Element Bottom { get; }
public abstract bool IsTop(Element element);
public abstract bool IsBottom(Element element);
/// <summary>
/// Is 'a' better (or equal) information than 'b'? That is, is 'a' below 'b' in the lattice?
/// </summary>
public abstract bool Below(Element a, Element b);
public abstract Element Meet(Element a, Element b);
public abstract Element Join(Element a, Element b);
public abstract Element Widen(Element a, Element b);
public abstract Element Constrain(Element element, Expr expr);
public abstract Element Update(Element element, AssignCmd cmd); // requiers 'cmd' to be a simple (possibly parallel) assignment command
public abstract Element Eliminate(Element element, Variable v);
/// <summary>
/// Specialize the lattice to implementation "impl", if non-null.
/// If "impl" is null, remove specialization.
/// </summary>
public virtual void Specialize(Implementation impl) {
}
public virtual void Validate() {
Contract.Assert(IsTop(Top));
Contract.Assert(IsBottom(Bottom));
Contract.Assert(!IsBottom(Top));
Contract.Assert(!IsTop(Bottom));
Contract.Assert(Below(Top, Top));
Contract.Assert(Below(Bottom, Top));
Contract.Assert(Below(Bottom, Bottom));
Contract.Assert(IsTop(Join(Top, Top)));
Contract.Assert(IsBottom(Join(Bottom, Bottom)));
}
}
public class NativeAbstractInterpretation
{
public static void RunAbstractInterpretation(Program program) {
Contract.Requires(program != null);
if (!CommandLineOptions.Clo.UseAbstractInterpretation) {
return;
}
Helpers.ExtraTraceInformation("Starting abstract interpretation");
DateTime start = new DateTime(); // to please compiler's definite assignment rules
if (CommandLineOptions.Clo.Trace) {
Console.WriteLine();
Console.WriteLine("Running abstract interpretation...");
start = DateTime.UtcNow;
}
WidenPoints.Compute(program);
NativeLattice lattice = null;
if (CommandLineOptions.Clo.Ai.J_Trivial) {
lattice = new TrivialDomain();
} else if (CommandLineOptions.Clo.Ai.J_Intervals) {
lattice = new NativeIntervallDomain();
}
if (lattice != null) {
Dictionary<Procedure, Implementation[]> procedureImplementations = AbstractionEngine.ComputeProcImplMap(program);
ComputeProgramInvariants(program, procedureImplementations, lattice);
if (CommandLineOptions.Clo.Ai.DebugStatistics) {
Console.Error.WriteLine(lattice);
}
}
if (CommandLineOptions.Clo.Trace) {
DateTime end = DateTime.UtcNow;
TimeSpan elapsed = end - start;
Console.WriteLine(" [{0} s]", elapsed.TotalSeconds);
Console.Out.Flush();
}
}
/// <summary>
/// Compute and apply the invariants for the program using the underlying abstract domain (using native Boogie
/// expressions, not the abstracted AI.Expr's).
/// </summary>
public static void ComputeProgramInvariants(Program program, Dictionary<Procedure, Implementation[]> procedureImplementations, NativeLattice lattice) {
Contract.Requires(program != null);
Contract.Requires(procedureImplementations != null);
Contract.Requires(lattice != null);
// Gather all the axioms to create the initial lattice element
// Differently stated, it is the \alpha from axioms (i.e. first order formulae) to the underlyng abstract domain
var initialElement = lattice.Top;
Contract.Assert(initialElement != null);
foreach (var decl in program.TopLevelDeclarations) {
var ax = decl as Axiom;
if (ax != null) {
initialElement = lattice.Constrain(initialElement, ax.Expr);
}
}
// analyze each procedure
foreach (var decl in program.TopLevelDeclarations) {
var proc = decl as Procedure;
if (proc != null && procedureImplementations.ContainsKey(proc)) {
// analyze each implementation of the procedure
foreach (var impl in procedureImplementations[proc]) {
// add the precondition to the axioms
Substitution formalProcImplSubst = Substituter.SubstitutionFromHashtable(impl.GetImplFormalMap());
var start = initialElement;
foreach (Requires pre in proc.Requires) {
Expr e = Substituter.Apply(formalProcImplSubst, pre.Condition);
start = lattice.Constrain(start, e);
}
lattice.Specialize(impl);
Analyze(impl, lattice, start);
lattice.Specialize(null);
}
}
}
}
public static void Analyze(Implementation impl, NativeLattice lattice, NativeLattice.Element start) {
// We need to keep track of some information for each(some) block(s). To do that efficiently,
// we number the implementation's blocks sequentially, and then we can use arrays to store
// the additional information.
var pre = new NativeLattice.Element[impl.Blocks.Count]; // set to null if we never compute a join/widen at this block
var post = CommandLineOptions.Clo.InstrumentInfer == CommandLineOptions.InstrumentationPlaces.Everywhere ? new NativeLattice.Element[impl.Blocks.Count] : null;
var iterations = new int[impl.Blocks.Count];
var bottom = lattice.Bottom;
int n = 0;
foreach (var block in impl.Blocks) {
block.aiId = n;
// Note: The forward analysis below will store lattice elements in pre[n] if pre[n] is non-null.
// Thus, the assignment "pre[n] = bottom;" below must be done under the following condition:
// n == 0 || block.widenBlock
// One possible strategy would be to do it only under that condition. Alternatively,
// one could do the assignment under the following condition:
// n == 0 || block.widenBlock || block.Predecessors.Length != 1
// (which would require first setting the Predecessors field). In any case, if
// CommandLineOptions.Clo.InstrumentInfer == CommandLineOptions.InstrumentationPlaces.Everywhere
// then all pre[n] should be set.
pre[n] = bottom;
n++;
}
Contract.Assert(n == impl.Blocks.Count);
var workItems = new Queue<Tuple<Block, NativeLattice.Element>>();
workItems.Enqueue(new Tuple<Block, NativeLattice.Element>(impl.Blocks[0], start));
//ComputeBlockInvariantsNative(impl, );
// compute a fixpoint here
while (workItems.Count > 0) {
var workItem = workItems.Dequeue();
var b = workItem.Item1;
var id = b.aiId;
var e = workItem.Item2;
if (pre[id] == null) {
// no pre information stored here, so just go ahead through the block
} else if (lattice.Below(e, pre[id])) {
// no change
continue;
} else if (b.widenBlock && CommandLineOptions.Clo.StepsBeforeWidening <= iterations[id]) {
e = lattice.Widen(pre[id], e);
pre[id] = e;
iterations[id]++;
} else {
e = lattice.Join(pre[id], e);
pre[id] = e;
iterations[id]++;
}
// propagate'e' through b.Cmds
foreach (Cmd cmd in b.Cmds) {
e = Step(lattice, cmd, e);
}
if (post != null && pre[id] != null) {
post[id] = e;
}
var g = b.TransferCmd as GotoCmd;
if (g != null) { // if g==null, it's a pity we didn't pay attention to that earlier, because then we could have skipped analyzing the code in this block
foreach (Block succ in g.labelTargets) {
workItems.Enqueue(new Tuple<Block, NativeLattice.Element>(succ, e));
}
}
}
Instrument(impl, pre, post);
}
static void Instrument(Implementation impl, NativeLattice.Element[] pre, NativeLattice.Element[] post) {
Contract.Requires(impl != null);
Contract.Requires(pre != null);
foreach (var b in impl.Blocks) {
var element = pre[b.aiId];
if (element != null && (b.widenBlock || CommandLineOptions.Clo.InstrumentInfer == CommandLineOptions.InstrumentationPlaces.Everywhere)) {
CmdSeq newCommands = new CmdSeq();
Expr inv = element.ToExpr();
PredicateCmd cmd;
var kv = new QKeyValue(Token.NoToken, "inferred", new List<object>(), null);
if (CommandLineOptions.Clo.InstrumentWithAsserts) {
cmd = new AssertCmd(Token.NoToken, inv, kv);
} else {
cmd = new AssumeCmd(Token.NoToken, inv, kv);
}
newCommands.Add(cmd);
newCommands.AddRange(b.Cmds);
if (post != null && post[b.aiId] != null) {
inv = post[b.aiId].ToExpr();
kv = new QKeyValue(Token.NoToken, "inferred", new List<object>(), null);
if (CommandLineOptions.Clo.InstrumentWithAsserts) {
cmd = new AssertCmd(Token.NoToken, inv, kv);
} else {
cmd = new AssumeCmd(Token.NoToken, inv, kv);
}
newCommands.Add(cmd);
}
b.Cmds = newCommands; // destructively replace the commands of the block
}
}
}
/// <summary>
/// The abstract transition relation.
/// 'cmd' is allowed to be a StateCmd.
/// </summary>
static NativeLattice.Element Step(NativeLattice lattice, Cmd cmd, NativeLattice.Element elmt) {
Contract.Requires(lattice != null);
Contract.Requires(cmd != null);
Contract.Requires(elmt != null);
Contract.Ensures(Contract.Result<NativeLattice.Element>() != null);
if (cmd is AssignCmd) { // parallel assignment
var c = (AssignCmd)cmd;
elmt = lattice.Update(elmt, c.AsSimpleAssignCmd);
} else if (cmd is HavocCmd) {
var c = (HavocCmd)cmd;
foreach (IdentifierExpr id in c.Vars) {
Contract.Assert(id != null);
elmt = lattice.Eliminate(elmt, id.Decl);
}
} else if (cmd is PredicateCmd) {
var c = (PredicateCmd)cmd;
var conjuncts = new List<Expr>();
foreach (var ee in Conjuncts(c.Expr)) {
Contract.Assert(ee != null);
elmt = lattice.Constrain(elmt, ee);
}
} else if (cmd is StateCmd) {
var c = (StateCmd)cmd;
// Iterate the abstract transition on all the commands in the desugaring of the call
foreach (Cmd callDesug in c.Cmds) {
Contract.Assert(callDesug != null);
elmt = Step(lattice, callDesug, elmt);
}
// Project out the local variables of the StateCmd
foreach (Variable local in c.Locals) {
Contract.Assert(local != null);
elmt = lattice.Eliminate(elmt, local);
}
} else if (cmd is SugaredCmd) {
var c = (SugaredCmd)cmd;
elmt = Step(lattice, c.Desugaring, elmt);
} else if (cmd is CommentCmd) {
// skip
} else {
Contract.Assert(false); // unknown command
}
return elmt;
}
/// <summary>
/// Yields the conjuncts of 'expr'.
/// </summary>
public static IEnumerable<Expr> Conjuncts(Expr expr) {
Contract.Requires(expr != null);
var e = expr as NAryExpr;
if (e != null && e.Fun.FunctionName == "&&") { // if it is a conjunction
foreach (Expr ee in e.Args) {
Contract.Assert(ee != null);
foreach (var c in Conjuncts(ee)) {
yield return c;
}
}
} else {
yield return expr;
}
}
}
}
|