1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
|
//-----------------------------------------------------------------------------
//
// Copyright (C) Microsoft Corporation. All Rights Reserved.
//
//-----------------------------------------------------------------------------
namespace Microsoft.AbstractInterpretationFramework
{
using Microsoft.Contracts;
using System.Collections;
using Microsoft.SpecSharp.Collections;
using Microsoft.Basetypes;
/// <summary>
/// A basic class for function symbols.
/// </summary>
public class FunctionSymbol : IFunctionSymbol
{
private readonly string! display;
private readonly AIType! typ;
public FunctionSymbol(AIType! typ)
: this("FunctionSymbol", typ)
{
}
internal FunctionSymbol(string! display, AIType! typ)
{
this.display = display;
this.typ = typ;
// base();
}
public AIType! AIType { get { return typ; } }
[NoDefaultContract]
[Pure]
public override string! ToString()
{
return display;
}
}
/// <summary>
/// A class for integer constants.
/// </summary>
public class IntSymbol : FunctionSymbol
{
public readonly BigNum Value;
/// <summary>
/// The intention is that this constructor be called only from the Int.Const method.
/// </summary>
internal IntSymbol(BigNum x)
: base((!)x.ToString(), Int.Type)
{
this.Value = x;
}
[Pure][Reads(ReadsAttribute.Reads.Nothing)]
public override bool Equals(object other)
{
IntSymbol isym = other as IntSymbol;
return isym != null && isym.Value.Equals(this.Value);
}
[Pure]
public override int GetHashCode()
{
return Value.GetHashCode();
}
}
/// <summary>
/// A class for bitvector constants.
/// </summary>
public class BvSymbol : FunctionSymbol
{
public readonly BigNum Value;
public readonly int Bits;
/// <summary>
/// The intention is that this constructor be called only from the Int.Const method.
/// </summary>
internal BvSymbol(BigNum x, int y)
: base(x + "bv" + y, Bv.Type)
{
this.Value = x;
this.Bits = y;
}
[Pure][Reads(ReadsAttribute.Reads.Nothing)]
public override bool Equals(object other)
{
BvSymbol isym = other as BvSymbol;
return isym != null && isym.Value == this.Value && isym.Bits == this.Bits;
}
[Pure]
public override int GetHashCode()
{
unchecked {
return Value.GetHashCode() ^ Bits;
}
}
}
public class DoubleSymbol : FunctionSymbol
{
public readonly double Value;
/// <summary>
/// The intention is that this constructor be called only from the Double.Const method.
/// </summary>
internal DoubleSymbol(double x)
: base((!)x.ToString(), Double.Type)
{
this.Value = x;
}
[Pure][Reads(ReadsAttribute.Reads.Nothing)]
public override bool Equals(object other)
{
DoubleSymbol dsym = other as DoubleSymbol;
return dsym != null && dsym.Value == this.Value;
}
[Pure]
public override int GetHashCode()
{
return Value.GetHashCode();
}
}
/// <summary>
/// Function symbol based on a string. Uses the string equality for determining equality
/// of symbol.
/// </summary>
public class NamedSymbol : FunctionSymbol
{
public string! Value { [NoDefaultContract] get { return (!) this.ToString(); } }
public NamedSymbol(string! symbol, AIType! typ)
: base(symbol, typ)
{
}
[NoDefaultContract]
[Pure][Reads(ReadsAttribute.Reads.Nothing)]
public override bool Equals(object other)
{
NamedSymbol nsym = other as NamedSymbol;
return nsym != null && this.Value.Equals(nsym.Value);
}
[NoDefaultContract]
[Pure]
public override int GetHashCode()
{
return Value.GetHashCode();
}
}
//
// In the following, the classes like Value and Prop serve two
// roles. The primary role is to be the base types for AIType.
// The only objects of these classes are the representative
// objects that denote an AIType, which are given by the
// "Type" property. Subtypes in the AIType language are
// encoded by subclassing. This yields some "higher-orderness"
// for checking subtyping in the AIType language, by using
// the Spec#/C# subclassing checks.
//
// The other role is simply as a module for collecting like function
// symbols.
//
//-------------------------- Terms ----------------------------------
/// <summary>
/// A class with the equality symbol and the ValueType.Type.
/// </summary>
public class Value : AIType
{
private static readonly AIType! valtype = new Value();
public static AIType! Type { get { return valtype; } }
private static readonly FunctionType[]! funtypeCache = new FunctionType[5];
public static FunctionType! FunctionType(int inParameterCount)
requires 0 <= inParameterCount;
// ensures result.Arity == inParameterCount;
{
FunctionType result;
if (inParameterCount < funtypeCache.Length) {
result = funtypeCache[inParameterCount];
if (result != null) {
return result;
}
}
AIType[] signature = new AIType[1 + inParameterCount];
for (int i = 0; i < signature.Length; i++) {
signature[i] = valtype;
}
result = new FunctionType(signature);
if (inParameterCount < funtypeCache.Length) {
funtypeCache[inParameterCount] = result;
}
return result;
}
[Once] private static AIType! binreltype;
private static AIType! BinrelType {
get {
if (binreltype == null) {
binreltype = new FunctionType(Type, Type, Prop.Type);
}
return binreltype;
}
}
[Once] private static FunctionSymbol! _eq;
public static FunctionSymbol! Eq {
get {
if (_eq == null) {
_eq = new FunctionSymbol("=", BinrelType);
}
return _eq;
}
}
[Once] private static FunctionSymbol! _neq;
public static FunctionSymbol! Neq {
get {
if (_neq == null) {
_neq = new FunctionSymbol("!=", BinrelType);
}
return _neq;
}
}
[Once] private static FunctionSymbol! _subtype;
public static FunctionSymbol! Subtype {
get {
if (_subtype == null) {
_subtype = new FunctionSymbol("<:", BinrelType);
}
return _subtype;
}
}
[Once] private static AIType! typeof_type;
private static AIType! TypeofType {
get {
if (typeof_type == null) {
typeof_type = new FunctionType(Ref.Type, Type);
}
return typeof_type;
}
}
[Once] private static FunctionSymbol! _typeof;
public static FunctionSymbol! Typeof {
get {
if (_typeof == null) {
_typeof = new FunctionSymbol("typeof", TypeofType);
}
return _typeof;
}
}
/// <summary>
/// Value should not be instantiated from the outside, except perhaps in
/// subclasses.
/// </summary>
protected Value() { }
}
public class Int : Value
{
private static readonly AIType! inttype = new Int();
public static AIType! Type { get { return inttype; } }
private static readonly AIType! unaryinttype = new FunctionType(Type, Type);
private static readonly AIType! bininttype = new FunctionType(Type, Type, Type);
private static readonly AIType! relationtype = new FunctionType(Type, Type, Prop.Type);
private static readonly FunctionSymbol! _negate = new FunctionSymbol("~", unaryinttype);
private static readonly FunctionSymbol! _add = new FunctionSymbol("+", bininttype);
private static readonly FunctionSymbol! _sub = new FunctionSymbol("-", bininttype);
private static readonly FunctionSymbol! _mul = new FunctionSymbol("*", bininttype);
private static readonly FunctionSymbol! _div = new FunctionSymbol("/", bininttype);
private static readonly FunctionSymbol! _mod = new FunctionSymbol("%", bininttype);
private static readonly FunctionSymbol! _atmost = new FunctionSymbol("<=", relationtype);
private static readonly FunctionSymbol! _less = new FunctionSymbol("<", relationtype);
private static readonly FunctionSymbol! _greater = new FunctionSymbol(">", relationtype);
private static readonly FunctionSymbol! _atleast = new FunctionSymbol(">=", relationtype);
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Negate { get { return _negate; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Add { get { return _add; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Sub { get { return _sub; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Mul { get { return _mul; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Div { get { return _div; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Mod { get { return _mod; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! AtMost { get { return _atmost; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Less { get { return _less; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Greater { get { return _greater; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! AtLeast { get { return _atleast; } }
public static IntSymbol! Const(BigNum x)
{
// We could cache things here, but for now we don't.
return new IntSymbol(x);
}
/// <summary>
/// Int should not be instantiated from the outside, except perhaps in
/// subclasses.
/// </summary>
private Int() { }
}
public class Double : Value
{
private static readonly AIType! doubletype = new Double();
public static AIType! Type { get { return doubletype; } }
public static DoubleSymbol! Const(double x)
{
// We could cache things here, but for now we don't.
return new DoubleSymbol(x);
}
/// <summary>
/// Double should not be instantiated from the outside, except perhaps in
/// subclasses.
/// </summary>
private Double() { }
}
public class Bv : Value
{
private static readonly AIType! bvtype = new Bv();
public static AIType! Type { get { return bvtype; } }
private static readonly AIType! unaryinttype = new FunctionType(Type, Type);
private static readonly AIType! bininttype = new FunctionType(Type, Type, Type);
private static readonly AIType! relationtype = new FunctionType(Type, Type, Prop.Type);
private static readonly FunctionSymbol! _negate = new FunctionSymbol("~", unaryinttype);
private static readonly FunctionSymbol! _add = new FunctionSymbol("+", bininttype);
private static readonly FunctionSymbol! _sub = new FunctionSymbol("-", bininttype);
private static readonly FunctionSymbol! _mul = new FunctionSymbol("*", bininttype);
private static readonly FunctionSymbol! _div = new FunctionSymbol("/", bininttype);
private static readonly FunctionSymbol! _mod = new FunctionSymbol("%", bininttype);
private static readonly FunctionSymbol! _concat = new FunctionSymbol("$concat", bininttype);
private static readonly FunctionSymbol! _extract = new FunctionSymbol("$extract", unaryinttype);
private static readonly FunctionSymbol! _atmost = new FunctionSymbol("<=", relationtype);
private static readonly FunctionSymbol! _less = new FunctionSymbol("<", relationtype);
private static readonly FunctionSymbol! _greater = new FunctionSymbol(">", relationtype);
private static readonly FunctionSymbol! _atleast = new FunctionSymbol(">=", relationtype);
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Negate { get { return _negate; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Add { get { return _add; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Sub { get { return _sub; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Mul { get { return _mul; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Div { get { return _div; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Mod { get { return _mod; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! AtMost { get { return _atmost; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Less { get { return _less; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Greater { get { return _greater; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! AtLeast { get { return _atleast; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Extract { get { return _extract; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Concat { get { return _concat; } }
public static BvSymbol! Const(BigNum x, int y)
{
// We could cache things here, but for now we don't.
return new BvSymbol(x, y);
}
/// <summary>
/// Int should not be instantiated from the outside, except perhaps in
/// subclasses.
/// </summary>
private Bv() { }
}
public class Ref : Value
{
private static readonly AIType! reftype = new Ref();
public static AIType! Type { get { return reftype; } }
private static readonly FunctionSymbol! _null = new FunctionSymbol("null", Type);
public static FunctionSymbol! Null { get { return _null; } }
/// <summary>
/// Ref should not be instantiated from the outside, except perhaps in
/// subclasses.
/// </summary>
private Ref() { }
}
public class HeapStructure : Value
{
private static readonly AIType! reftype = new HeapStructure();
public static AIType! Type { get { return reftype; } }
/// <summary>
/// HeapStructure should not be instantiated from the outside, except perhaps in
/// subclasses.
/// </summary>
private HeapStructure() { }
}
public class FieldName : Value
{
private static readonly AIType! fieldnametype = new FieldName();
public static AIType! Type { get { return fieldnametype; } }
private static readonly FunctionSymbol! _allocated = new FunctionSymbol("$allocated", FieldName.Type);
public static FunctionSymbol! Allocated { get { return _allocated; } }
/// <summary>
/// Is this a boolean field that monotonically goes from false to true?
/// </summary>
public static bool IsBooleanMonotonicallyWeakening(IFunctionSymbol! f)
{
return f.Equals(Allocated);
}
/// <summary>
/// FieldName should not be instantiated from the outside, except perhaps in
/// subclasses.
/// </summary>
private FieldName() { }
}
public class Heap : Value
{
private static readonly AIType! heaptype = new Heap();
public static AIType! Type { get { return heaptype; } }
// the types in the following, select1, select2, are hard-coded;
// these types may not always be appropriate
private static readonly FunctionSymbol! _select1 = new FunctionSymbol("sel1",
// Heap x FieldName -> Prop
new FunctionType(Type, FieldName.Type, Prop.Type)
);
public static FunctionSymbol! Select1 { get { return _select1; } }
private static readonly FunctionSymbol! _select2 = new FunctionSymbol("sel2",
// Heap x Ref x FieldName -> Value
new FunctionType(Type, Ref.Type, FieldName.Type, Value.Type)
);
public static FunctionSymbol! Select2 { get { return _select2; } }
// the types in the following, store1, store2, are hard-coded;
// these types may not always be appropriate
private static readonly FunctionSymbol! _update1 = new FunctionSymbol("upd1",
// Heap x FieldName x Value -> Heap
new FunctionType(Type, FieldName.Type, Value.Type, Type)
);
public static FunctionSymbol! Update1 { get { return _update1; } }
private static readonly FunctionSymbol! _update2 = new FunctionSymbol("upd2",
// Heap x Ref x FieldName x Value -> Heap
new FunctionType(Type, Ref.Type, FieldName.Type, Value.Type, Type)
);
public static FunctionSymbol! Update2 { get { return _update2; } }
private static readonly FunctionSymbol! _unsupportedHeapOp =
new FunctionSymbol("UnsupportedHeapOp",
// Heap x FieldName -> Prop
new FunctionType(Type, FieldName.Type, Prop.Type)
);
public static FunctionSymbol! UnsupportedHeapOp { get { return _unsupportedHeapOp; } }
/// <summary>
/// Heap should not be instantiated from the outside, except perhaps in
/// subclasses.
/// </summary>
private Heap() { }
}
// public class List : Value
// {
// private static IDictionary/*<AIType!,AIType!>*/! lists = new Hashtable();
// public static AIType! Type(AIType! typeParameter)
// {
// if (lists.Contains(typeParameter))
// return lists[typeParameter];
// else
// {
// AIType! result = new List(typeParameter);
// lists[typeParameter] = result;
// return result;
// }
// }
//
// private static IDictionary/*<AIType!,AIType!>*/! nils = new Hashtable();
// public static FunctionSymbol! Nil(AIType! typeParameter)
// {
// if (nils.Contains(typeParameter))
// return nils[typeParameter];
// else
// {
// FunctionSymbol! result = new FunctionSymbol(Type(typeParameter));
// nils[typeParameter] = result;
// return result;
// }
// }
//
// private static IDictionary/*<AIType!,AIType!>*/! cons = new Hashtable();
// public static FunctionSymbol! Cons(AIType! typeParameter)
// {
// if (cons.Contains(typeParameter))
// return cons[typeParameter];
// else
// {
// FunctionSymbol! result = new FunctionSymbol(
// new FunctionType(typeParameter, Type(typeParameter), Type(typeParameter))
// );
// cons[typeParameter] = result;
// return result;
// }
// }
//
// private AIType! typeParameter;
// public AIType! TypeParameter { get { return typeParameter; } }
//
// /// <summary>
// /// List should not be instantiated from the outside.
// /// </summary>
// private List(AIType! typeParameter)
// {
// this.typeParameter = typeParameter;
// }
// }
//
// public class Pair : Value
// {
// private static IDictionary! pairs = new Hashtable();
// public static AIType! Type(AIType! type1, AIType! type2)
// {
// Microsoft.AbstractInterpretationFramework.Collections.Pair typpair
// = new Microsoft.AbstractInterpretationFramework.Collections.Pair(type1, type2);
//
// if (pairs.Contains(typpair))
// return pairs[typpair];
// else
// {
// AIType! result = new Pair(type1, type2);
// pairs[typpair] = result;
// return result;
// }
// }
//
// private static IDictionary! constructs = new Hashtable();
// public static FunctionSymbol! Pair(AIType! type1, AIType! type2)
// {
// Microsoft.AbstractInterpretationFramework.Collections.Pair typpair
// = new Microsoft.AbstractInterpretationFramework.Collections.Pair(type1, type2);
//
// if (constructs.Contains(typpair))
// return constructs[typpair];
// else
// {
// FunctionSymbol! result = new FunctionSymbol(
// new FunctionType(type1, type2, Type(type1, type2))
// );
// constructs[typpair] = result;
// return result;
// }
// }
//
// protected AIType! type1;
// protected AIType! type2;
//
// public AIType! Type1 { get { return type1; } }
// public AIType! Type2 { get { return type2; } }
//
// /// <summary>
// /// Pair should not be instantiated from the outside, except by subclasses.
// /// </summary>
// protected Pair(AIType! type1, AIType! type2)
// {
// this.type1 = type1;
// this.type2 = type2;
// }
// }
//-------------------------- Propositions ---------------------------
/// <summary>
/// A class with global propositional symbols and the Prop.Type.
/// </summary>
public sealed class Prop : AIType
{
private static readonly AIType! proptype = new Prop();
public static AIType! Type { get { return proptype; } }
private static readonly AIType! unaryproptype = new FunctionType(Type, Type);
private static readonly AIType! binproptype = new FunctionType(Type, Type, Type);
private static readonly AIType! quantifiertype =
new FunctionType(new FunctionType(Value.Type, Type), Type);
private static readonly FunctionSymbol! _false = new FunctionSymbol("false", Type);
private static readonly FunctionSymbol! _true = new FunctionSymbol("true", Type);
private static readonly FunctionSymbol! _not = new FunctionSymbol("!", unaryproptype);
private static readonly FunctionSymbol! _and = new FunctionSymbol("/\\", binproptype);
private static readonly FunctionSymbol! _or = new FunctionSymbol("\\/", binproptype);
private static readonly FunctionSymbol! _implies = new FunctionSymbol("==>", binproptype);
private static readonly FunctionSymbol! _exists = new FunctionSymbol("Exists", quantifiertype);
private static readonly FunctionSymbol! _forall = new FunctionSymbol("Forall", quantifiertype);
private static readonly FunctionSymbol! _lambda = new FunctionSymbol("Lambda", quantifiertype);
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! False { get { return _false; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! True { get { return _true; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Not { get { return _not; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! And { [Pure] get { return _and; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Or { get { return _or; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Implies { get { return _implies; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Exists { get { return _exists; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Forall { get { return _forall; } }
[Pure][Reads(ReadsAttribute.Reads.Nothing)] public static FunctionSymbol! Lambda { get { return _lambda; } }
/// <summary>
/// Prop should not be instantiated from the outside.
/// </summary>
private Prop() { }
//
// Utility Methods
//
public static IExpr! SimplifiedAnd(IPropExprFactory! factory, IExpr! e0, IExpr! e1)
{
IFunApp fun0 = e0 as IFunApp;
if (fun0 != null)
{
if (fun0.FunctionSymbol.Equals(Prop.True))
{
return e1;
}
else if (fun0.FunctionSymbol.Equals(Prop.False))
{
return e0;
}
}
IFunApp fun1 = e1 as IFunApp;
if (fun1 != null)
{
if (fun1.FunctionSymbol.Equals(Prop.True))
{
return e0;
}
else if (fun1.FunctionSymbol.Equals(Prop.False))
{
return e1;
}
}
return factory.And(e0, e1);
}
public static IExpr! SimplifiedAnd(IPropExprFactory! factory, IEnumerable/*<IExpr!>*/! exprs)
{
IExpr! result = factory.True;
foreach (IExpr! conjunct in exprs)
{
result = SimplifiedAnd(factory, result, conjunct);
}
return result;
}
public static IExpr! SimplifiedOr(IPropExprFactory! factory, IExpr! e0, IExpr! e1)
{
IFunApp fun0 = e0 as IFunApp;
if (fun0 != null)
{
if (fun0.FunctionSymbol.Equals(Prop.False))
{
return e1;
}
else if (fun0.FunctionSymbol.Equals(Prop.True))
{
return e0;
}
}
IFunApp fun1 = e1 as IFunApp;
if (fun1 != null)
{
if (fun1.FunctionSymbol.Equals(Prop.False))
{
return e0;
}
else if (fun1.FunctionSymbol.Equals(Prop.True))
{
return e1;
}
}
return factory.Or(e0, e1);
}
public static IExpr! SimplifiedOr(IPropExprFactory! factory, IEnumerable/*<IExpr!>*/! exprs)
{
IExpr! result = factory.False;
foreach (IExpr! disj in exprs)
{
result = SimplifiedOr(factory, result, disj);
}
return result;
}
/// <summary>
/// Break top-level conjuncts into a list of sub-expressions.
/// </summary>
/// <param name="e">The expression to examine.</param>
/// <returns>A list of conjuncts.</returns>
internal static IList/*<IExpr!>*/! BreakConjuncts(IExpr! e)
ensures forall{ IExpr sub in result; sub is IFunApp ==> !((IFunApp) sub).FunctionSymbol.Equals(Prop.And) };
{
return BreakJuncts(e, Prop.And);
}
/// <summary>
/// Break top-level disjuncts into a list of sub-expressions.
/// </summary>
/// <param name="e">The expression to examine.</param>
/// <returns>A list of conjuncts.</returns>
internal static IList/*<IExpr!>*/! BreakDisjuncts(IExpr! e)
ensures forall{ IExpr sub in result; sub is IFunApp ==> !((IFunApp) sub).FunctionSymbol.Equals(Prop.Or) };
{
return BreakJuncts(e, Prop.Or);
}
private static IList/*<IExpr!>*/! BreakJuncts(IExpr! e, IFunctionSymbol! sym)
ensures forall{ IExpr sub in result; sub is IFunApp ==> !((IFunApp) sub).FunctionSymbol.Equals(sym) };
{
ArrayList/*<IExpr!>*/! result = new ArrayList();
IFunApp f = e as IFunApp;
if (f != null)
{
// If it is a sym, go down into sub-expressions.
if (f.FunctionSymbol.Equals(sym))
{
foreach (IExpr! arg in f.Arguments)
{
result.AddRange(BreakJuncts(arg,sym));
}
}
// Otherwise, stop.
else
{
result.Add(e);
}
}
else
{
result.Add(e);
}
return result;
}
}
/// <summary>
/// A callback to produce a function body given the bound variable.
/// </summary>
/// <param name="var">The bound variable to use.</param>
/// <returns>The function body.</returns>
public delegate IExpr! FunctionBody(IVariable! var);
/// <summary>
/// An interface for constructing propositional expressions.
///
/// This interface should be implemented by the client. An implementation of
/// of this class should generally be used as a singleton object.
/// </summary>
public interface IPropExprFactory
{
IFunApp! False { get /*ensures result.FunctionSymbol.Equals(Prop.False);*/; }
IFunApp! True { get /*ensures result.FunctionSymbol.Equals(Prop.True);*/; }
IFunApp! Not(IExpr! p) /*ensures result.FunctionSymbol.Equals(Prop.Not);*/;
IFunApp! And(IExpr! p, IExpr! q) /*ensures result.FunctionSymbol.Equals(Prop.And);*/;
IFunApp! Or(IExpr! p, IExpr! q) /*ensures result.FunctionSymbol.Equals(Prop.Or);*/;
IFunApp! Implies(IExpr! p, IExpr! q) /*ensures result.FunctionSymbol.Equals(Prop.Implies);*/;
}
/// <summary>
/// Like IPropExprFactory, but also with quantifiers.
/// </summary>
public interface IQuantPropExprFactory : IPropExprFactory {
/// <summary>
/// Produce an existential given the lambda-expression.
/// </summary>
/// <param name="p">The lambda-expression.</param>
/// <returns>The existential.</returns>
IFunApp! Exists(IFunction! p) /*ensures result.FunctionSymbol.Equals(Prop.Exists);*/;
IFunApp! Forall(IFunction! p) /*ensures result.FunctionSymbol.Equals(Prop.Forall);*/;
/// <summary>
/// Produce an existential given a callback that can produce a function body given the
/// bound variable to use. The implementer of this method is responsible for generating
/// a fresh new variable to pass to the FunctionBody callback to use as the bound variable.
/// </summary>
/// <param name="body">The function body callback.</param>
/// <returns>The existential.</returns>
IFunApp! Exists(AIType paramType, FunctionBody! body) /*ensures result.FunctionSymbol.Equals(Prop.Exists);*/;
IFunApp! Forall(AIType paramType, FunctionBody! body) /*ensures result.FunctionSymbol.Equals(Prop.Forall);*/;
}
/// <summary>
/// An interface for constructing value expressions.
///
/// This interface should be implemented by the client. An implementation of
/// of this class should generally be used as a singleton object.
/// </summary>
public interface IValueExprFactory
{
IFunApp! Eq(IExpr! e0, IExpr! e1) /*ensures result.FunctionSymbol.Equals(Value.Eq);*/;
IFunApp! Neq(IExpr! e0, IExpr! e1) /*ensures result.FunctionSymbol.Equals(Value.Neq);*/;
}
/// <summary>
/// An interface for constructing value expressions having to with null.
///
/// This interface should be implemented by the client. An implementation of
/// of this class should generally be used as a singleton object.
/// </summary>
public interface INullnessFactory
{
IFunApp! Eq(IExpr! e0, IExpr! e1) /*ensures result.FunctionSymbol.Equals(Value.Eq);*/;
IFunApp! Neq(IExpr! e0, IExpr! e1) /*ensures result.FunctionSymbol.Equals(Value.Neq);*/;
IFunApp! Null { get; /*ensures result.FunctionSymbol.Equals(Ref.Null);*/ }
}
/// <summary>
/// An interface for constructing integer expressions.
///
/// This interface should be implemented by the client. An implementation of
/// of this class should generally be used as a singleton object.
/// </summary>
public interface IIntExprFactory : IValueExprFactory
{
IFunApp! Const(BigNum i) /*ensures result.FunctionSymbol.Equals(new IntSymbol(i));*/;
}
/// <summary>
/// An interface for constructing linear integer expressions.
///
/// This interface should be implemented by the client. An implementation of
/// of this class should generally be used as a singleton object.
/// </summary>
public interface ILinearExprFactory : IIntExprFactory
{
IFunApp! AtMost(IExpr! e0, IExpr! e1) /*ensures result.FunctionSymbol.Equals(Value.AtMost);*/;
IFunApp! Add(IExpr! e0, IExpr! e1) /*ensures result.FunctionSymbol.Equals(Value.Add);*/;
/// <summary>
/// If "var" is null, returns an expression representing r.
/// Otherwise, returns an expression representing r*var.
/// </summary>
IExpr! Term(Microsoft.Basetypes.Rational r, IVariable var);
IFunApp! False { get /*ensures result.FunctionSymbol.Equals(Prop.False);*/; }
IFunApp! True { get /*ensures result.FunctionSymbol.Equals(Prop.True);*/; }
IFunApp! And(IExpr! p, IExpr! q) /*ensures result.FunctionSymbol.Equals(Prop.And);*/;
}
/// <summary>
/// An interface for constructing type expressions and performing some type operations.
/// The types are assumed to be arranged in a rooted tree.
///
/// This interface should be implemented by the client. An implementation of
/// of this class should generally be used as a singleton object.
/// </summary>
public interface ITypeExprFactory
{
/// <summary>
/// Returns an expression denoting the top of the type hierarchy.
/// </summary>
IExpr! RootType { get; }
/// <summary>
/// Returns true iff "t" denotes a type constant.
/// </summary>
[Pure]
bool IsTypeConstant(IExpr! t);
/// <summary>
/// Returns true iff t0 and t1 are types such that t0 and t1 are equal.
/// </summary>
[Pure]
bool IsTypeEqual(IExpr! t0, IExpr! t1);
/// <summary>
/// Returns true iff t0 and t1 are types such that t0 is a subtype of t1.
/// </summary>
[Pure]
bool IsSubType(IExpr! t0, IExpr! t1);
/// <summary>
/// Returns the most derived supertype of both "t0" and "t1". A precondition is
/// that "t0" and "t1" both represent types.
/// </summary>
IExpr! JoinTypes(IExpr! t0, IExpr! t1);
IFunApp! IsExactlyA(IExpr! e, IExpr! type) /*requires IsTypeConstant(type); ensures result.FunctionSymbol.Equals(Value.Eq);*/;
IFunApp! IsA(IExpr! e, IExpr! type) /*requires IsTypeConstant(type); ensures result.FunctionSymbol.Equals(Value.Subtype);*/;
}
}
|