1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
|
//-----------------------------------------------------------------------------
//
// Copyright (C) Microsoft Corporation. All Rights Reserved.
//
//-----------------------------------------------------------------------------
import scala.util.parsing.input.Position
import Boogie.Proc, Boogie.NamedType, Boogie.NewBVar, Boogie.Havoc, Boogie.Stmt, Boogie.Const,
Boogie.Decl, Boogie.Expr, Boogie.FunctionApp, Boogie.Axiom, Boogie.BVar, Boogie.BType,
Boogie.VarExpr, Boogie.IndexedType, Boogie.Comment, Boogie.MapUpdate, Boogie.MapSelect,
Boogie.If;
case class ErrorMessage(pos: Position, message: String)
object TranslationOptions {
// note: the initial values should match those Chalice.scala
var defaults = 0: int;
var autoFold = false: Boolean;
var checkLeaks = false: Boolean;
var autoMagic = false: Boolean;
}
class Translator {
import TranslationHelper._;
import TranslationOptions._;
var currentClass = null: Class;
var currentMethod = null: Method;
var modules = Nil: List[String]
var etran = new ExpressionTranslator(null);
def translateProgram(classes: List[Class]): List[Decl] = {
classes flatMap { translateClass(_) }
}
def translateClass(cl: Class): List[Decl] = {
currentClass = cl;
etran = new ExpressionTranslator(cl);
var declarations = Nil: List[Decl]
// add module (if no added yet)
if(modules forall {mname => ! mname.equals(cl.module)}) {
declarations = declarations + Const(ModuleName(cl), true, ModuleType);
modules = modules + cl.module;
}
// add class name
declarations = declarations + Const(cl.id + "#t", true, TypeName);
// translate monitor invariant
declarations = declarations ::: translateMonitorInvariant(cl.Invariants);
// translate each member
for(member <- cl.members) {
declarations = declarations ::: translateMember(member);
}
declarations
}
/**********************************************************************
***************** MEMBERS *****************
**********************************************************************/
def translateMember(member: Member): List[Decl] = {
member match {
case f: Field =>
translateField(f)
case m: Method =>
translateMethod(m)
case f: Function =>
translateFunction(f)
case pred: Predicate =>
translatePredicate(pred)
case inv: MonitorInvariant =>
Nil // already dealt with before
}
}
def translateMonitorInvariant(invs: List[MonitorInvariant]): List[Decl] = {
val (m1V, m1) = NewBVar("m1", tmask, true); val (h1V, h1) = NewBVar("h1", theap, true);
val (m2V, m2) = NewBVar("m2", tmask, true); val (h2V, h2) = NewBVar("h2", theap, true);
val (lkV, lk) = NewBVar("lk", tref, true);
val oldTranslator = new ExpressionTranslator(List(h2, m2), List(h1, m1), currentClass);
Proc(currentClass.id + "$monitorinvariant$checkDefinedness",
List(NewBVarWhere("this", new Type(currentClass))),
Nil,
GlobalNames,
DefaultPrecondition(),
BLocal(h1V) :: BLocal(m1V) ::BLocal(h2V) :: BLocal(m2V) :: BLocal(lkV) ::
bassume(wf(h1, m1)) :: bassume(wf(h2, m2)) ::
(oldTranslator.Mask := ZeroMask) ::
oldTranslator.Inhale(invs map { mi => mi.e}, "monitor invariant", false) :::
(etran.Mask := ZeroMask) ::
Havoc(etran.Heap) ::
// check that invariant is well-defined
etran.WhereOldIs(h2, m2).Inhale(invs map { mi => mi.e}, "monitor invariant", true) :::
(if (!checkLeaks || invs.length == 0) Nil else
// check that there are no loops among .mu permissions in monitors
// !CanWrite[this,mu]
bassert(!etran.CanWrite(VarExpr("this"), "mu"), invs(0).pos, "Monitor invariant is not allowed to hold write permission to this.mu") ::
// (forall lk :: lk != null && lk != this && CanRead[lk,mu] ==>
// CanRead[this,mu] && Heap[this,mu] << Heap[lk,mu])
bassert(
(lk !=@ NullLiteral() && lk !=@ VarExpr("this") && etran.CanRead(lk, "mu")) ==>
(etran.CanRead(VarExpr("this"), "mu") &&
new FunctionApp("MuBelow", etran.Heap.select(VarExpr("this"), "mu"), etran.Heap.select(lk, "mu"))),
invs(0).pos,
"Monitor invariant can hold permission of other o.mu field only this.mu if this.mu<<o.mu")
) :::
//check that invariant is reflexive
etran.UseCurrentAsOld().Exhale(invs map {mi => (mi.e, ErrorMessage(mi.pos, "Monitor invariant might not be reflexive."))}, "invariant reflexive?", false))
}
def translateField(f: Field): List[Decl] = {
Const(f.FullName, true, FieldType(f.typ)) ::
Axiom(NonPredicateField(f.FullName))
}
def translateFunction(f: Function): List[Decl] = {
val myresult = BVar("result", Boogie.ClassType(f.out.typ));
etran.checkTermination = true;
val checkBody = isDefined(f.definition);
etran.checkTermination = false;
// BoogiePL function that represents the dafny function
Boogie.Function(functionName(f), BVar("heap", theap) :: Boogie.BVar("mask", tmask) :: Boogie.BVar("this", tref) :: (f.ins map Variable2BVar), new Boogie.BVar("$myresult", Boogie.ClassType(f.out.typ))) ::
// check definedness of the function's precondition and body
Proc(f.FullName + "$checkDefinedness",
NewBVarWhere("this", new Type(currentClass)) :: (f.ins map {i => Variable2BVarWhere(i)}),
Nil,
GlobalNames,
DefaultPrecondition(),
DefinePreInitialState :::
// check definedness of the precondition
InhaleWithChecking(Preconditions(f.spec) map { p => (if(0<defaults) UnfoldPredicatesWithReceiverThis(p) else p)}, "precondition") :::
bassume(CurrentModule ==@ VarExpr(ModuleName(currentClass))) :: // verify the body assuming that you are in the module
// check definedness of function body
checkBody :::
BLocal(myresult) ::
(Boogie.VarExpr("result") := etran.Tr(f.definition)) ::
// check that postcondition holds
ExhaleWithChecking(Postconditions(f.spec) map { post => ((if(0<defaults) UnfoldPredicatesWithReceiverThis(post) else post), ErrorMessage(f.pos, "Postcondition at " + post.pos + " might not hold."))}, "function postcondition")) ::
// definition axiom
definitionAxiom(f) ::
// framing axiom (+ frame function)
framingAxiom(f) :::
// postcondition axiom(s)
postconditionAxiom(f)
}
def definitionAxiom(f: Function): Axiom = {
val version = Version(Preconditions(f.spec).foldLeft(BoolLiteral(true): Expression)({ (a, b) => And(a, b) }), etran);
val inArgs = (f.ins map {i => Boogie.VarExpr(i.UniqueName)});
val frameFunctionName = "##" + f.FullName;
/* axiom (forall h: HeapType, m: MaskType, this: ref, x_1: t_1, ..., x_n: t_n ::
wf(h, m) && CurrentModule == module#C ==> #C.f(h, m, this, x_1, ..., x_n) == tr(body))
*/
val args = VarExpr("this") :: inArgs;
val applyF = f.apply(List(etran.Heap, etran.Mask) ::: args);
Axiom(new Boogie.Forall(
BVar(HeapName, theap) :: BVar(MaskName, tmask) :: BVar("this", tref) :: (f.ins map Variable2BVar),
List(applyF),
(wf(Heap, Mask) && (CurrentModule ==@ ModuleName(currentClass)))
==>
(applyF ==@ etran.Tr(f.definition)))
)
}
def framingAxiom(f: Function): List[Decl] = {
/* function ##C.f(state, ref, t_1, ..., t_n) returns (t);
axiom (forall h: HeapType, m: MaskType, this: ref, x_1: t_1, ..., x_n: t_n ::
wf(h, m) && IsGoodState(version) ==> #C.f(h, m, this, x_1, ..., x_n) == ##C.f(version, this, x_1, ..., x_n))
*/
val version = Version(Preconditions(f.spec).foldLeft(BoolLiteral(true): Expression)({ (a, b) => And(a, b) }), etran);
val inArgs = (f.ins map {i => Boogie.VarExpr(i.UniqueName)});
val frameFunctionName = "##" + f.FullName;
val args = VarExpr("this") :: inArgs;
val applyF = f.apply(List(etran.Heap, etran.Mask) ::: args);
val applyFrameFunction = FunctionApp(frameFunctionName, version :: args);
Boogie.Function("##" + f.FullName, Boogie.BVar("state", theap) :: Boogie.BVar("this", tref) :: (f.ins map Variable2BVar), new BVar("$myresult", f.out)) ::
Axiom(new Boogie.Forall(
BVar(HeapName, theap) :: BVar(MaskName, tmask) :: BVar("this", tref) :: (f.ins map Variable2BVar),
List(applyF),
(wf(Heap, Mask) && IsGoodState(version) && CanAssumeFunctionDefs)
==>
(applyF ==@ applyFrameFunction))
)
}
def postconditionAxiom(f: Function): List[Decl] = {
/* function ##C.f(state, ref, t_1, ..., t_n) returns (t);
axiom (forall h: HeapType, m: MaskType, this: ref, x_1: t_1, ..., x_n: t_n ::
wf(h, m) && CanAssumeFunctionDefs ==> Q[#C.f(h, m, this, x_1, ..., x_n)/result]
*/
val version = Version(Preconditions(f.spec).foldLeft(BoolLiteral(true): Expression)({ (a, b) => And(a, b) }), etran);
val inArgs = (f.ins map {i => Boogie.VarExpr(i.UniqueName)});
val myresult = Boogie.BVar("result", Boogie.ClassType(f.out.typ));
val args = VarExpr("this") :: inArgs;
val applyF = f.apply(List(Heap, Mask) ::: args)
//postcondition axioms
(Postconditions(f.spec) map { post : Expression =>
Axiom(new Boogie.Forall(
BVar(HeapName, theap) :: BVar(MaskName, tmask) :: BVar("this", tref) :: (f.ins map Variable2BVar),
List(applyF),
(wf(Heap, Mask) && CanAssumeFunctionDefs)
==>
etran.Tr(SubstResult(post, f.apply(ExplicitThisExpr(), f.ins map { arg => new VariableExpr(arg) })))
))
})
}
def translatePredicate(pred: Predicate): List[Decl] = {
// const unique class.name: HeapType;
Const(pred.FullName, true, FieldType(theap)) ::
// axiom PredicateField(f);
Axiom(PredicateField(pred.FullName)) ::
// check definedness of predicate body
Proc(pred.FullName + "$checkDefinedness",
List(NewBVarWhere("this", new Type(currentClass))),
Nil,
GlobalNames,
DefaultPrecondition(),
DefinePreInitialState :::
InhaleWithChecking(List(DefinitionOf(pred)), "predicate definition"))
}
def translateMethod(method: Method): List[Decl] = {
// check definedness of the method contract
Proc(method.FullName + "$checkDefinedness",
NewBVarWhere("this", new Type(currentClass)) :: (method.ins map {i => Variable2BVarWhere(i)}),
method.outs map {i => Variable2BVarWhere(i)},
GlobalNames,
DefaultPrecondition(),
DefinePreInitialState :::
bassume(CanAssumeFunctionDefs) ::
// check precondition
InhaleWithChecking(Preconditions(method.spec), "precondition") :::
DefineInitialState :::
(Mask := ZeroMask) ::
Havoc(etran.Heap) ::
// check postcondition
InhaleWithChecking(Postconditions(method.spec), "postcondition") :::
// check lockchange
(LockChanges(method.spec) flatMap { lc => isDefined(lc)})) ::
// check that method body satisfies the method contract
Proc(method.FullName,
NewBVarWhere("this", new Type(currentClass)) :: (method.ins map {i => Variable2BVarWhere(i)}),
method.outs map {i => Variable2BVarWhere(i)},
GlobalNames,
DefaultPrecondition(),
bassume(CurrentModule ==@ Boogie.VarExpr(ModuleName(currentClass))) ::
bassume(CanAssumeFunctionDefs) ::
DefinePreInitialState :::
Inhale(Preconditions(method.spec) map { p => (if(0<defaults) UnfoldPredicatesWithReceiverThis(p) else p)}, "precondition") :::
DefineInitialState :::
translateStatements(method.body) :::
Exhale(Postconditions(method.spec) map { p => ((if(0<defaults) UnfoldPredicatesWithReceiverThis(p) else p), ErrorMessage(method.pos, "The postcondition at " + p.pos + " might not hold."))}, "postcondition") :::
(if(checkLeaks) isLeaking(method.pos, "Method " + method.FullName + " might leak refereces.") else Nil) :::
bassert(LockFrame(LockChanges(method.spec), etran), method.pos, "Method might lock/unlock more than allowed.")) :: Nil
}
def DefaultPrecondition() : List[String] =
{
List("requires this!=null;", "free requires wf(Heap, Mask);")
}
def DefinePreInitialState = {
Comment("define pre-initial state") ::
(etran.Mask := ZeroMask)
}
def DefineInitialState = {
Comment("define initial state") ::
bassume(etran.Heap ==@ Boogie.Old(etran.Heap)) ::
bassume(etran.Mask ==@ Boogie.Old(etran.Mask))
}
/**********************************************************************
***************** STATEMENTS *****************
**********************************************************************/
def translateStatements(statements: List[Statement]): List[Stmt] = {
statements flatMap translateStatement
}
def translateStatement(s: Statement): List[Stmt] = {
s match {
case Assert(e) =>
val newGlobals = etran.FreshGlobals("assert");
val tmpHeap = Boogie.NewBVar(HeapName, theap, true);
val tmpMask = Boogie.NewBVar(MaskName, tmask, true);
val tmpTranslator = new ExpressionTranslator(List(tmpHeap._1.id, tmpMask._1.id), currentClass);
Comment("assert") ::
// exhale e in a copy of the heap/mask
BLocal(tmpHeap._1) :: (tmpHeap._2 := Heap) ::
BLocal(tmpMask._1) :: (tmpMask._2 := Mask) ::
tmpTranslator.Exhale(List((e, ErrorMessage(s.pos, "Assertion might not hold."))), "assert", true)
case Assume(e) =>
Comment("assume") ::
isDefined(e) :::
bassume(e)
case BlockStmt(ss) =>
translateStatements(ss)
case IfStmt(guard, then, els) =>
val tt = translateStatement(then)
val et = els match {
case None => Nil
case Some(els) => translateStatement(els) }
Comment("if") ::
isDefined(guard) :::
Boogie.If(guard, tt, et)
case w: WhileStmt =>
translateWhile(w)
case Assign(lhs, rhs) =>
def assignOrAssumeEqual(r: Boogie.Expr): List[Boogie.Stmt] = {
if (lhs.v.isInstanceOf[ImmutableVariable]) {
// this must be a "ghost const"
val name = lhs.v.UniqueName
bassert(! VarExpr("assigned$" + name), lhs.pos, "Const variable can be assigned to only once.") ::
bassume(lhs ==@ r) ::
(VarExpr("assigned$" + name) := true)
} else {
lhs := r
}
}
Comment("assigment to " + lhs.id) ::
(rhs match {
case rhs@NewRhs(c, initialization) => // x := new C;
val (nw, ss) = translateAllocation(rhs.typ, initialization);
ss ::: assignOrAssumeEqual(new VarExpr(nw))
case rhs: Expression => // x := E;
isDefined(rhs) ::: assignOrAssumeEqual(rhs)
})
case FieldUpdate(lhs@MemberAccess(target, f), rhs) =>
val (statements, toStore : Expr) =
(rhs match {
case rhs @ NewRhs(c, initialization) =>
// e.f := new C;
val (nw,ss) = translateAllocation(rhs.typ, initialization)
(ss, new VarExpr(nw))
case rhs : Expression =>
// e.f := E;
(isDefined(rhs), TrExpr(rhs))
});
Comment("update field " + f) ::
isDefined(target) :::
bassert(CanWrite(target, lhs.f), s.pos, "Location might not be writable") ::
statements ::: etran.Heap.store(target, lhs.f, toStore) :: bassume(wf(Heap, Mask))
case lv @ LocalVar(id, t, const, ghost, rhs) =>
val bv = Variable2BVarWhere(lv.v)
val isAssignedVar = if (const) new Boogie.BVar("assigned$" + bv.id, Boogie.ClassType(BoolClass)) else null
Comment("local " + (if (ghost) "ghost " else "") + (if (const) "const " else "var ") + id) ::
BLocal(bv) ::
{ if (const)
// havoc x; var assigned$x: bool; assigned$x := false;
Havoc(new Boogie.VarExpr(bv)) ::
BLocal(isAssignedVar) :: (new Boogie.VarExpr(isAssignedVar) := false)
else
List() } :::
{ rhs match {
//update the local, provided a rhs was provided
case None => List()
case Some(rhs) => translateStatement(Assign(new VariableExpr(lv.v), rhs)) }}
case c: Call =>
translateCall(c)
case Install(obj, lowerBounds, upperBounds) =>
Comment("install") ::
isDefined(obj) :::
bassert(nonNull(obj), s.pos, "The target of the install statement might be null.") ::
bassert(isHeld(obj), s.pos, "The lock of the target of the install statement might not be held.") ::
// assert CanWrite(obj.mu); assume lowerbounds < obj.mu < upperBounds;
UpdateMu(obj, false, lowerBounds, upperBounds, ErrorMessage(s.pos, "Install might fail."))
case Share(obj, lowerBounds, upperBounds) =>
val (preShareMaskV, preShareMask) = Boogie.NewBVar("preShareMask", tmask, true)
Comment("share") ::
// remember the mask immediately before the share
BLocal(preShareMaskV) :: Boogie.Assign(preShareMask, etran.Mask) ::
isDefined(obj) :::
bassert(nonNull(obj), s.pos, "The target of the share statement might be null.") ::
UpdateMu(obj, true, lowerBounds, upperBounds, ErrorMessage(s.pos, "Share might fail.")) :::
bassume(!isHeld(obj) && ! isRdHeld(obj)) :: // follows from o.mu==lockbottom
// no permission to o.held
etran.SetNoPermission(etran.Tr(obj), "held", etran.Mask) ::
// exhale the monitor invariant (using the current state as the old state)
ExhaleInvariants(obj, false, ErrorMessage(s.pos, "Monitor invariant might not hold."), etran.UseCurrentAsOld()) :::
// assume a seen state is the one right before the share
bassume(LastSeenHeap(etran.Heap.select(obj, "mu"), etran.Heap.select(obj, "held")) ==@ etran.Heap) ::
bassume(LastSeenMask(etran.Heap.select(obj, "mu"), etran.Heap.select(obj, "held")) ==@ preShareMask)
case Unshare(obj) =>
val (heldV, held) = Boogie.NewBVar("held", Boogie.NamedType("int"), true)
val o = TrExpr(obj)
Comment("unshare") ::
isDefined(obj) :::
bassert(nonNull(o), s.pos, "The target of the unshare statement might be null.") ::
bassert(CanWrite(o, "mu"), s.pos, "The mu field of the target of the unshare statement might not be writable.") ::
bassert(CanWrite(o, "held"), s.pos, "The held field of the target of the unshare statement might not be writable.") ::
bassert(isShared(o), s.pos, "The target of the unshare statement might not be shared.") ::
bassert(isHeld(o), s.pos, "The target of the unshare statement might not be locked by the current thread.") :: // locked or read-locked
etran.Heap.store(o, "mu", bLockBottom) ::
// havoc o.held where 0<=o.held
BLocal(heldV) :: Boogie.Havoc(held) :: bassume(held <= 0) ::
etran.Heap.store(o, "held", held) ::
// set the permission of o.held to 0
etran.SetNoPermission(o, "held", etran.Mask) ::
// set o.rdheld to false
etran.Heap.store(o, "rdheld", false)
case Acquire(obj) =>
Comment("acquire") ::
isDefined(obj) :::
bassert(nonNull(TrExpr(obj)), s.pos, "The target of the acquire statement might be null.") ::
TrAcquire(s, obj)
case Release(obj) =>
Comment("release") ::
isDefined(obj) :::
bassert(nonNull(TrExpr(obj)), s.pos, "The target of the release statement might be null.") ::
TrRelease(s, obj)
case Lock(e, body, readonly) =>
val objV = new Variable("lock", new Type(e.typ))
val obj = new VariableExpr(objV)
val sname = if (readonly) "rd lock" else "lock"
val o = TrExpr(obj)
Comment(sname) ::
isDefined(e) :::
BLocal(Variable2BVar(objV)) :: (o := TrExpr(e)) ::
bassert(nonNull(o), s.pos, "The target of the " + sname + " statement might be null.") ::
{ if (readonly) {
TrRdAcquire(s, obj) :::
translateStatement(body) :::
TrRdRelease(s, obj)
} else {
TrAcquire(s, obj) :::
translateStatement(body) :::
TrRelease(s, obj)
}
}
case RdAcquire(obj) =>
Comment("rd acquire") ::
isDefined(obj) :::
bassert(nonNull(TrExpr(obj)), s.pos, "The target of the read-acquire statement might be null.") ::
TrRdAcquire(s, obj)
case rdrelease@RdRelease(obj) =>
Comment("rd release") ::
isDefined(obj) :::
bassert(nonNull(TrExpr(obj)), obj.pos, "The target of the read-release statement might be null.") ::
TrRdRelease(s, obj)
case downgrade@Downgrade(obj) =>
val o = TrExpr(obj);
val prevHeapV = new Boogie.BVar("prevHeap", theap, true)
Comment("downgrade") ::
isDefined(obj) :::
bassert(nonNull(o), s.pos, "The target of the downgrade statement might be null.") ::
bassert(isHeld(o), s.pos, "The lock of the target of the downgrade statement might not be held by the current thread.") ::
bassert(! isRdHeld(o), s.pos, "The current thread might hold the read lock.") ::
ExhaleInvariants(obj, false, ErrorMessage(downgrade.pos, "Monitor invariant might not hold.")) :::
BLocal(prevHeapV) ::
InhaleInvariants(obj, true) :::
bassume(etran.Heap ==@ new Boogie.VarExpr(prevHeapV)) ::
etran.Heap.store(o, "rdheld", true)
case Free(obj) =>
val o = TrExpr(obj);
isDefined(obj) :::
bassert(nonNull(o), s.pos, "The target of the free statement might be null.") ::
(for (f <- obj.typ.Fields ++ RootClass.MentionableFields) yield
bassert(CanWrite(o, f.FullName), s.pos, "The field " + f.id + " of the target of the free statement might not be writable.")) :::
(for (f <- obj.typ.Fields ++ RootClass.MentionableFields) yield
etran.SetNoPermission(o, f.FullName, etran.Mask))
// probably need to havoc all the fields! Do we check enough?
case fold@Fold(acc@Access(pred@MemberAccess(e, f), fraction)) =>
val o = TrExpr(e);
var definition = if(fraction.isDefined) FractionOf(SubstThis(DefinitionOf(pred.predicate), e), fraction.get) else SubstThis(DefinitionOf(pred.predicate), e);
Comment("fold") ::
isDefined(e) :::
bassert(nonNull(o), s.pos, "The target of the fold statement might be null.") ::
(if(fraction.isDefined) isDefined(fraction.get) :::
bassert(0 <= etran.Tr(fraction.get), s.pos, "Fraction might be negative.") ::
bassert(etran.Tr(fraction.get) <= 100, s.pos, "Fraction might be larger than 100.") :: Nil else Nil) :::
// remove the definition from the current state, and replace by predicate itself
Exhale(List((definition, ErrorMessage(s.pos, "Fold might fail because the definition of " + pred.predicate.FullName + " does not hold."))), "fold") :::
Inhale(List(acc), "fold") :::
etran.Heap.store(o, pred.predicate.FullName, etran.Heap) :: // Is this necessary?
bassume(wf(etran.Heap, etran.Mask))
case fld@Fold(acc@RdAccess(pred@MemberAccess(e, f), nbEpsilons)) =>
val o = TrExpr(e);
var (definition, checkEpsilons) = nbEpsilons match {
case None => (EpsilonsOf(SubstThis(pred.predicate.definition, e), IntLiteral(1)), Nil)
case Some(None) => throw new Exception("Not supported yet!");
case Some(Some(i)) => (EpsilonsOf(SubstThis(DefinitionOf(pred.predicate), e), i), isDefined(i) ::: bassert(Boogie.IntLiteral(0) <= i, s.pos, "Number of epsilons might be negative.") :: Nil)
}
Comment("fold") ::
isDefined(e) :::
bassert(nonNull(o), s.pos, "The target of the fold statement might be null.") ::
checkEpsilons :::
Exhale(List((definition, ErrorMessage(fld.pos, "Fold might fail because the definition of " + pred.predicate.FullName + " does not hold."))), "fold") :::
Inhale(List(acc), "fold") :::
etran.Heap.store(e, pred.predicate.FullName, etran.Heap) ::
bassume(wf(etran.Heap, etran.Mask))
case unfld@Unfold(acc@Access(pred@MemberAccess(e, f), fraction)) =>
val o = TrExpr(e);
var definition = if(fraction.isDefined) FractionOf(SubstThis(DefinitionOf(pred.predicate), e), fraction.get) else SubstThis(DefinitionOf(pred.predicate), e);
Comment("unfold") ::
isDefined(e) :::
bassert(nonNull(o), s.pos, "The target of the fold statement might be null.") ::
(if(fraction.isDefined) isDefined(fraction.get) :::
bassert(Boogie.IntLiteral(0) <= fraction.get, s.pos, "Fraction might be negative.") ::
bassert(fraction.get <= 100, s.pos, "Fraction might be larger than 100.") :: Nil else Nil) :::
Exhale(List((acc, ErrorMessage(s.pos, "unfold might fail because the predicate " + pred.predicate.FullName + " does not hold."))), "unfold") :::
etran.InhaleFrom(List(definition), "unfold", false, etran.Heap.select(o, pred.predicate.FullName))
case unfld@Unfold(acc@RdAccess(pred@MemberAccess(e, f), nbEpsilons)) =>
val o = TrExpr(e);
var (definition, checkEpsilons) = nbEpsilons match {
case None => (EpsilonsOf(SubstThis(DefinitionOf(pred.predicate), e), IntLiteral(1)), Nil)
case Some(None) => throw new Exception("Not supported yet!");
case Some(Some(i)) => (EpsilonsOf(SubstThis(DefinitionOf(pred.predicate), e), i), isDefined(i) ::: bassert(Boogie.IntLiteral(0) <= i, s.pos, "Number of epsilons might be negative.") :: Nil)
}
Comment("unfold") ::
isDefined(e) :::
bassert(nonNull(o), s.pos, "The target of the fold statement might be null.") ::
checkEpsilons :::
Exhale(List((acc, ErrorMessage(s.pos, "Unold might fail because the predicate " + pred.predicate.FullName + " does not hold."))), "unfold") :::
etran.InhaleFrom(List(definition), "unfold", false, etran.Heap.select(o, pred.predicate.FullName))
case c@CallAsync(declaresLocal, token, obj, id, args) =>
val formalThisV = new Variable("this", new Type(c.m.Parent))
val formalThis = new VariableExpr(formalThisV)
val formalInsV = for (p <- c.m.ins) yield new Variable(p.id, p.t)
val formalIns = for (v <- formalInsV) yield new VariableExpr(v)
val (tokenV,tokenId) = NewBVar("token", tref, true)
val (asyncStateV,asyncState) = NewBVar("asyncstate", tint, true)
val (preCallMaskV, preCallMask) = NewBVar("preCallMask", tmask, true)
val (preCallHeapV, preCallHeap) = NewBVar("preCallHeap", theap, true)
val (argsSeqV, argsSeq) = NewBVar("argsSeq", tArgSeq, true)
val argsSeqLength = 1 + args.length;
Comment("call " + id) ::
// declare the local variable, if needed
{ if (c.local == null)
List[Stmt]()
else
List(BLocal(Variable2BVarWhere(c.local))) } :::
// remember the value of the heap and mask
BLocal(preCallMaskV) :: (preCallMask := etran.Mask) ::
BLocal(preCallHeapV) :: (preCallHeap := etran.Heap) ::
BLocal(argsSeqV) ::
// introduce formal parameters and pre-state globals
(for (v <- formalThisV :: formalInsV) yield BLocal(Variable2BVarWhere(v))) :::
// check definedness of arguments
isDefined(obj) :::
bassert(nonNull(obj), c.pos, "The target of the method call might be null.") ::
(args flatMap { e: Expression => isDefined(e)}) :::
// assign actual ins to formal ins
(formalThis := obj) ::
(for ((v,e) <- formalIns zip args) yield (v := e)) :::
// insert all arguments in the argument sequence
Boogie.AssignMap(argsSeq, 0, formalThis) ::
{ var i = 1
for (v <- formalIns) yield { val r = Boogie.AssignMap(argsSeq, i, v); i += 1; r }
} :::
// exhale preconditions
Exhale(Preconditions(c.m.spec) map
(p => SubstThisAndVars(p, formalThis, c.m.ins, formalIns)) zip (Preconditions(c.m.spec) map { p => ErrorMessage(c.pos, "The precondition at " + p.pos + " might not hold.")}), "precondition") :::
// create a new token
BLocal(tokenV) :: Havoc(tokenId) :: bassume(nonNull(tokenId)) ::
// the following assumes help in proving that the token is fresh
bassume(Heap.select(tokenId, "joinable") ==@ 0) ::
bassume(new Boogie.MapSelect(Mask, tokenId, "joinable", "perm$N")==@ 0) ::
bassume(new Boogie.MapSelect(Mask, tokenId, "joinable", "perm$R")==@ 0) ::
etran.IncPermission(tokenId, "joinable", 100) ::
// create a fresh value for the joinable field
BLocal(asyncStateV) :: Boogie.Havoc(asyncState) :: bassume(asyncState !=@ 0) ::
etran.Heap.store(tokenId, "joinable", asyncState) ::
// assume the pre call state for the token is the state before inhaling the precondition
bassume(CallHeap(asyncState) ==@ preCallHeap) ::
bassume(CallMask(asyncState) ==@ preCallMask) ::
bassume(CallArgs(asyncState) ==@ argsSeq) ::
// assign the returned token to the variable
{ if (token != null) List(token := tokenId) else List() }
case jn@JoinAsync(lhs, token) =>
val formalThisV = new Variable("this", new Type(jn.m.Parent))
val formalThis = new VariableExpr(formalThisV)
val formalInsV = for (p <- jn.m.ins) yield new Variable(p.id, p.t)
val formalIns = for (v <- formalInsV) yield new VariableExpr(v)
val formalOutsV = for (p <- jn.m.outs) yield new Variable(p.id, p.t)
val formalOuts = for (v <- formalOutsV) yield new VariableExpr(v)
val (argsSeqV, argsSeq) = NewBVar("argsSeq", tArgSeq, true)
val (preCallHeapV, preCallHeap) = NewBVar("preCallHeap", theap, true);
val (preCallMaskV, preCallMask) = NewBVar("preCallMask", tmask, true);
val preGlobals = List(preCallHeap, preCallMask);
val postEtran = new ExpressionTranslator(List(etran.Heap, etran.Mask), preGlobals, currentClass);
Comment("join async") ::
// check that we did not join yet
bassert(CanWrite(token, "joinable"), jn.pos, "The joinable field might not be writable.") ::
bassert(etran.Heap.select(token, "joinable") !=@ 0, jn.pos, "The joinable field might not be true.") ::
// lookup token.joinable
BLocal(argsSeqV) :: (argsSeq := CallArgs(etran.Heap.select(token, "joinable"))) ::
// check that token is well-defined
isDefined(token) :::
// retrieve the call's pre-state from token.joinable
BLocal(preCallHeapV) :: (preCallHeap := CallHeap(etran.Heap.select(token, "joinable"))) ::
BLocal(preCallMaskV) :: (preCallMask := CallMask(etran.Heap.select(token, "joinable"))) ::
// introduce locals for the out parameters
(for (v <- formalThisV :: formalInsV ::: formalOutsV) yield BLocal(Variable2BVarWhere(v))) :::
// initialize the in parameters
(formalThis := new MapSelect(argsSeq, 0)) ::
{ var i = 1
(formalIns map { v => val r = (v := new MapSelect(argsSeq, i)); i += 1; r })
} :::
// havoc formal outs
(for (v <- formalOuts) yield Havoc(v)) :::
// set joinable to false
etran.Heap.store(token, "joinable", 0) ::
etran.SetNoPermission(token, "joinable", etran.Mask) ::
// inhale postcondition of the call
postEtran.Inhale(Postconditions(jn.m.spec) map
{ p => SubstThisAndVars(p, formalThis, jn.m.ins ++ jn.m.outs, formalIns ++ formalOuts)}, "postcondition", false) :::
// assign formal outs to actual outs
(for ((v,e) <- lhs zip formalOuts) yield (v :=e))
}
}
def translateAllocation(cl: Class, initialization: List[Init]): (Boogie.BVar, List[Boogie.Stmt]) = {
val (nw, nwe) = NewBVar("nw", Boogie.ClassType(cl), true)
val (ttV,tt) = Boogie.NewTVar("T")
val f = new Boogie.BVar("f", FieldType(tt))
(nw,
Comment("new") ::
BLocal(nw) :: Havoc(nwe) ::
bassume(nonNull(nwe) && (dtype(nwe) ==@ TrType(cl))) ::
bassume(new Boogie.Forall(ttV, f, etran.HasNoPermission(nwe, f.id))) ::
// initial values of fields:
bassume(etran.Heap.select(nwe, "mu") ==@ bLockBottom) ::
bassume(etran.Heap.select(nwe, "held") <= 0) ::
bassume(etran.Heap.select(nwe, "rdheld") ==@ false) ::
// give access to user-defined fields and special fields:
(for (f <- cl.Fields ++ RootClass.MentionableFields) yield
etran.IncPermission(nwe, f.FullName, 100)) :::
// initialize fields according to the initialization
(initialization flatMap { init => isDefined(init.e) ::: etran.Heap.store(nwe, init.f.FullName, init.e) })
)
}
def TrAcquire(s: Statement, nonNullObj: Expression) = {
val o = TrExpr(nonNullObj);
val (lastAcquireVar, lastAcquire) = Boogie.NewBVar("lastAcquire", Boogie.ClassType(IntClass), true)
val (lastSeenHeldV, lastSeenHeld) = Boogie.NewBVar("lastSeenHeld", tint, true)
val (lastSeenMuV, lastSeenMu) = Boogie.NewBVar("lastSeenMu", tmu, true)
bassert(CanRead(o, "mu"), s.pos, "The mu field of the target of the acquire statement might not be readable.") ::
bassert(etran.MaxLockIsBelowX(etran.Heap.select(o,"mu")), s.pos, "The mu field of the target of the acquire statement might not be above maxlock.") ::
bassume(etran.Heap.select(o,"mu") !=@ bLockBottom) :: // this isn't strictly necessary, it seems; but we might as well include it
// remember the state right before releasing
BLocal(lastSeenMuV) :: (lastSeenMu := etran.Heap.select(o, "mu")) ::
BLocal(lastSeenHeldV) :: Havoc(lastSeenHeld) :: (lastSeenHeld := etran.Heap.select(o, "held")) ::
bassume(! isHeld(o) && ! isRdHeld(o)) :: // this assume follows from the previous assert
// update the thread's locking state
BLocal(lastAcquireVar) :: Havoc(lastAcquire) :: bassume(0 < lastAcquire) ::
etran.SetFullPermission(o, "held") ::
etran.Heap.store(o, "held", lastAcquire) ::
InhaleInvariants(nonNullObj, false, etran.WhereOldIs(LastSeenHeap(lastSeenMu, lastSeenHeld), LastSeenMask(lastSeenMu, lastSeenHeld))) :::
// remember values of Heap/Mask globals (for proving history constraint at release)
bassume(AcquireHeap(lastAcquire) ==@ etran.Heap) ::
bassume(AcquireMask(lastAcquire) ==@ etran.Mask)
}
def TrRelease(s: Statement, nonNullObj: Expression) = {
val (heldV, held) = Boogie.NewBVar("held", tint, true)
val (prevLmV, prevLm) = Boogie.NewBVar("prevLM", tref, true)
val (preReleaseMaskV, preReleaseMask) = NewBVar("preReleaseMask", tmask, true)
val (preReleaseHeapV, preReleaseHeap) = NewBVar("preReleaseHeap", theap, true)
val o = TrExpr(nonNullObj);
BLocal(preReleaseMaskV) :: (preReleaseMask := etran.Mask) ::
BLocal(preReleaseHeapV) :: (preReleaseHeap := etran.Heap) ::
bassert(CanWrite(o, "held"), s.pos, "The held field of the target of the release statement might not be writable.") ::
bassert(isHeld(o), s.pos, "The target of the release statement might be not be locked by the current thread.") ::
bassert(!isRdHeld(o), s.pos, "Release might fail because the current thread might hold the read lock.") ::
ExhaleInvariants(nonNullObj, false, ErrorMessage(s.pos, "Monitor invariant might hot hold."), etran.WhereOldIs(AcquireHeap(etran.Heap.select(o, "held")), AcquireMask(etran.Heap.select(o, "held")))) :::
// havoc o.held where 0<=o.held
BLocal(heldV) :: Havoc(held) :: bassume(held <= 0) ::
etran.Heap.store(o, "held", held) ::
etran.SetNoPermission(o, "held", etran.Mask) ::
// assume a seen state is the one right before the share
bassume(LastSeenHeap(etran.Heap.select(o, "mu"), held) ==@ preReleaseHeap) ::
bassume(LastSeenMask(etran.Heap.select(o, "mu"), held) ==@ preReleaseMask)
}
def TrRdAcquire(s: Statement, nonNullObj: Expression) = {
val (heldV, held) = Boogie.NewBVar("held", tint, true)
val o = TrExpr(nonNullObj)
bassert(CanRead(o, "mu"), s.pos, "The mu field of the target of the read-acquire statement might not be readable.") ::
bassert(etran.MaxLockIsBelowX(etran.Heap.select(o, "mu")), s.pos, "The mu field of the target of the read-acquire statement might not be above maxlock.") ::
bassume(etran.Heap.select(o,"mu") !=@ bLockBottom) :: // this isn't strictly necessary, it seems; but we might as well include it
bassume(! isHeld(o) && ! isRdHeld(o)) ::
BLocal(heldV) :: Havoc(held) :: bassume(held <= 0) ::
etran.Heap.store(o, "held", held) ::
etran.Heap.store(o, "rdheld", true) ::
InhaleInvariants(nonNullObj, true)
}
def TrRdRelease(s: Statement, nonNullObj: Expression) = {
val (heldV, held) = Boogie.NewBVar("held", tint, true)
val o = TrExpr(nonNullObj);
bassert(isRdHeld(o), s.pos, "The current thread might not hold the read-lock of the object being released.") ::
ExhaleInvariants(nonNullObj, true, ErrorMessage(s.pos, "Monitor invariant might not hold.")) :::
BLocal(heldV) :: Havoc(held) :: bassume(held <= 0) ::
etran.Heap.store(o, "held", held) ::
etran.Heap.store(o, "rdheld", false)
}
def translateCall(c: Call): List[Stmt] = {
val obj = c.obj;
val lhs = c.lhs;
val id = c.id;
val args = c.args;
val formalThisV = new Variable("this", new Type(c.m.Parent))
val formalThis = new VariableExpr(formalThisV)
val formalInsV = for (p <- c.m.ins) yield new Variable(p.id, p.t)
val formalIns = for (v <- formalInsV) yield new VariableExpr(v)
val formalOutsV = for (p <- c.m.outs) yield new Variable(p.id, p.t)
val formalOuts = for (v <- formalOutsV) yield new VariableExpr(v)
val preGlobals = etran.FreshGlobals("call")
val postEtran = etran.FromPreGlobals(preGlobals)
Comment("call " + id) ::
// introduce formal parameters and pre-state globals
(for (v <- formalThisV :: formalInsV ::: formalOutsV) yield BLocal(Variable2BVarWhere(v))) :::
(for (v <- preGlobals) yield BLocal(v)) :::
// remember values of globals
(for ((o,g) <- preGlobals zip etran.Globals) yield (new Boogie.VarExpr(o) := g)) :::
// check definedness of arguments
isDefined(obj) :::
bassert(nonNull(obj), c.pos, "The target of the method call might be null.") ::
(args flatMap { e: Expression => isDefined(e)}) :::
// assign actual ins to formal ins
(formalThis := obj) ::
(for ((v,e) <- formalIns zip args) yield (v := e)) :::
// exhale preconditions
Exhale(Preconditions(c.m.spec) map
(p => SubstThisAndVars(p, formalThis, c.m.ins, formalIns)) zip (Preconditions(c.m.spec) map { p => ErrorMessage(c.pos, "The precondition at " + p.pos + " might not hold.")}), "precondition") :::
// havoc formal outs
(for (v <- formalOuts) yield Havoc(v)) :::
// havoc lockchanges
LockHavoc(for (e <- LockChanges(c.m.spec) map (p => SubstThisAndVars(p, formalThis, c.m.ins, formalIns))) yield etran.Tr(e), postEtran) :::
// inhale postconditions (using the state before the call as the "old" state)
postEtran.Inhale(Postconditions(c.m.spec) map
(p => SubstThisAndVars(p, formalThis, c.m.ins ++ c.m.outs, formalIns ++ formalOuts)) , "postcondition", false) :::
// assign formal outs to actual outs
(for ((v,e) <- lhs zip formalOuts) yield (v :=e))
}
def translateWhile(w: WhileStmt): List[Stmt] = {
val guard = w.guard;
val invs = w.invs;
val lkch = w. lkch;
val body = w.body;
val preLoopGlobals = etran.FreshGlobals("while")
val loopEtran = etran.FromPreGlobals(preLoopGlobals)
val iterStartGlobals = etran.FreshGlobals("iterStart")
val iterStartEtran = etran.FromPreGlobals(iterStartGlobals)
val saveLocalsV = for (v <- w.LoopTargetsList) yield new Variable(v.id, v.t)
val iterStartLocalsV = for (v <- w.LoopTargetsList) yield new Variable(v.id, v.t)
val lkchOld = lkch map (e => SubstVars(e, w.LoopTargetsList,
for (v <- saveLocalsV) yield new VariableExpr(v)))
val lkchIterStart = lkch map (e => SubstVars(e, w.LoopTargetsList,
for (v <- iterStartLocalsV) yield new VariableExpr(v)))
val oldLocks = lkchOld map (e => loopEtran.oldEtran.Tr(e))
val iterStartLocks = lkchIterStart map (e => iterStartEtran.oldEtran.Tr(e))
val newLocks = lkch map (e => loopEtran.Tr(e));
Comment("while") ::
// save globals
(for (v <- preLoopGlobals) yield BLocal(v)) :::
(loopEtran.oldEtran.Heap := loopEtran.Heap) ::
(loopEtran.oldEtran.Mask := loopEtran.Mask) :: // oldMask is not actually used below
// check invariant on entry to the loop
Exhale(invs map { inv => (inv, ErrorMessage(inv.pos, "The loop invariant might not hold on entry to the loop."))}, "loop invariant, initially") :::
// save values of local-variable loop targets
(for (sv <- saveLocalsV) yield BLocal(Variable2BVarWhere(sv))) :::
(for ((v,sv) <- w.LoopTargetsList zip saveLocalsV) yield
(new VariableExpr(sv) := new VariableExpr(v))) :::
// havoc local-variable loop targets
(w.LoopTargets :\ List[Boogie.Stmt]()) ( (v,vars) => (v match {
case v: ImmutableVariable => Boogie.Havoc(Boogie.VarExpr("assigned$" + v.id))
case _ => Boogie.Havoc(Boogie.VarExpr(v.UniqueName)) }) :: vars) :::
Boogie.If(null,
// 1. CHECK DEFINEDNESS OF INVARIANT
Comment("check loop invariant definedness") ::
//(w.LoopTargets.toList map { v: Variable => Boogie.Havoc(Boogie.VarExpr(v.id)) }) :::
Boogie.Havoc(etran.Heap) :: Boogie.Assign(etran.Mask, ZeroMask) ::
InhaleWithChecking(invs, "loop invariant definedness") :::
bassume(false)
, Boogie.If(null,
// 2. CHECK LOOP BODY
// Renew Heap and Mask: set Mask to ZeroMask, and havoc Heap everywhere except
// at {old(local),local}.{held,rdheld}
Havoc(etran.Heap) :: (etran.Mask := ZeroMask) ::
Inhale(invs, "loop invariant, body") :::
// this is the state at the beginning of the loop iteration; save these values
(for (v <- iterStartGlobals) yield BLocal(v)) :::
(iterStartEtran.oldEtran.Heap := iterStartEtran.Heap) ::
(iterStartEtran.oldEtran.Mask := iterStartEtran.Mask) :: // oldMask is not actually used below
(for (isv <- iterStartLocalsV) yield BLocal(Variable2BVarWhere(isv))) :::
(for ((v,isv) <- w.LoopTargetsList zip iterStartLocalsV) yield
(new VariableExpr(isv) := new VariableExpr(v))) :::
// evaluate the guard
isDefined(guard) ::: List(bassume(guard)) :::
translateStatement(body) :::
// check invariant
Exhale(invs map { inv => (inv, ErrorMessage(w.pos, "The loop invariant at " + inv.pos + " might not be preserved by the loop."))}, "loop invariant, maintained") :::
isLeaking(w.pos, "The loop might leak refereces.") :::
// enforce lockchange
(NumberOfLocksHeldIsInvariant(iterStartLocks, newLocks, iterStartEtran) map { e: Boogie.Expr => bassert(e, w.pos, "The loop might lock/unlock more than the changelock clause allows.") }) :::
bassume(false),
// 3. AFTER LOOP
LockHavoc(oldLocks ++ newLocks, loopEtran) :::
(NumberOfLocksHeldIsInvariant(oldLocks, newLocks, loopEtran) map bassume) :::
Inhale(invs, "loop invariant, after loop") :::
bassume(!guard)))
}
def UpdateMu(o: Expr, allowOnlyFromBottom: boolean,
lowerBounds: List[Expression], upperBounds: List[Expression], error: ErrorMessage): List[Stmt] = {
def BoundIsNullObject(b: Expression): Boogie.Expr = {
if (b.typ.IsMu) false else b ==@ bnull
}
def MuValue(b: Expression): Expr = {
if (b.typ.IsMu) b else etran.Heap.select(b, "mu")
}
def Below(a: Expr, b: Expr) = {
new FunctionApp("MuBelow", a, b)
}
val (muV, mu) = Boogie.NewBVar("mu", Boogie.NamedType("Mu"), true)
// check that bounds are well-defined
((lowerBounds ++ upperBounds) flatMap { bound => isDefined(bound)}) :::
// check that we have full access to mu
bassert(CanWrite(o, "mu"), error.pos, error.message + " The mu field of the target might not be writable.") ::
// ...and that mu starts off as lockbottom, if desired
(if (allowOnlyFromBottom)
List(bassert(etran.Heap.select(o,"mu") ==@ bLockBottom,
error.pos, error.message + " The object may already be shared (i.e., mu may not be LockBottom)"))
else
List()) :::
// check for each bound that if it is a non-null object, then its mu field is readable
(for (bound <- lowerBounds ++ upperBounds if !bound.typ.IsMu) yield
bassert((bound ==@ bnull) || CanRead(bound, "mu"), bound.pos, "The mu field of bound at " + bound.pos + " might not be readable." )) :::
// check that each lower bound is smaller than each upper bound
(for (lb <- lowerBounds; ub <- upperBounds) yield
bassert( (etran.ShaveOffOld(lb), etran.ShaveOffOld(ub)) match {
case ((MaxLockLiteral(),o0), (MaxLockLiteral(),o1)) =>
if (o0 == o1)
false
else
etran.TemporalMaxLockComparison(etran.ChooseEtran(o0), etran.ChooseEtran(o1))
case ((MaxLockLiteral(),o), _) => etran.ChooseEtran(o).MaxLockIsBelowX(MuValue(ub))
case (_, (MaxLockLiteral(),o)) => etran.ChooseEtran(o).MaxLockIsAboveX(MuValue(lb))
case _ => BoundIsNullObject(lb) ||
BoundIsNullObject(ub) ||
Below(MuValue(lb), MuValue(ub)) }, lb.pos, "The lower bound at " + lb.pos + " might not be smaller than the upper bound at " + ub.pos + ".")) :::
// havoc o.mu
BLocal(muV) :: Havoc(mu) :: bassume(mu !=@ bLockBottom) ::
// assume that o.mu is between the given bounds (or above maxlock if no bounds are given)
(if (lowerBounds == Nil && upperBounds == Nil) {
// assume maxlock << o.mu
List(bassume(etran.MaxLockIsBelowX(mu)))
} else {
(for (lb <- lowerBounds) yield
// assume lb << o.mu
bassume(
if (etran.IsMaxLockLit(lb)) {
val (f,o) = etran.ShaveOffOld(lb)
etran.ChooseEtran(o).MaxLockIsBelowX(mu)
} else
(BoundIsNullObject(lb) || Below(MuValue(lb), mu)))) :::
(for (ub <- upperBounds) yield
// assume o.mu << ub
bassume(
if (etran.IsMaxLockLit(ub)) {
val (f,o) = etran.ShaveOffOld(ub)
etran.ChooseEtran(o).MaxLockIsAboveX(mu)
} else
(BoundIsNullObject(ub) || Below(mu, MuValue(ub)))))
}) :::
// store the mu field
etran.Heap.store(o, "mu", mu)
}
def isLeaking(pos: Position, msg: String): List[Boogie.Stmt] = {
if(checkLeaks) {
var o = Boogie.VarExpr("$o");
var f = "$f";
val (ttV,tt) = Boogie.NewTVar("T")
List(
bassert(new Boogie.Forall(
List(ttV),
List(Boogie.BVar("$o", tref), Boogie.BVar("$f", FieldType(tt))),
Nil,
(o ==@ bnull) || ((new MapSelect(etran.Mask, o, f, "perm$R") ==@ 0) && (new MapSelect(etran.Mask, o, f, "perm$N") ==@ 0))
), pos, msg)
)
} else {
Nil
}
}
def LockFrame(lkch: List[Expression], etran: ExpressionTranslator) =
LocksUnchanged(for (l <- lkch) yield etran.Tr(l), etran)
def LocksUnchanged(exceptions: List[Boogie.Expr], etran: ExpressionTranslator) = {
val (lkV, lk) = Boogie.NewBVar("lk", tref, true)
val b: Boogie.Expr = false
new Boogie.Forall(List(lkV),
List(etran.Heap.select(lk, "held"), etran.Heap.select(lk, "rdheld")),
(((0 < Boogie.MapSelect(etran.Heap, lk, "held")) ==@
(0 < Boogie.MapSelect(etran.oldEtran.Heap, lk, "held"))) &&
(Boogie.MapSelect(etran.Heap, lk, "rdheld") ==@
Boogie.MapSelect(etran.oldEtran.Heap, lk, "rdheld"))) ||
((exceptions :\ b) ((e,ll) => ll || (lk ==@ e))))
}
def LockHavoc(locks: List[Boogie.Expr], etran: ExpressionTranslator) = {
val (heldV, held) = NewBVar("isHeld", Boogie.ClassType(IntClass), true)
val (rdheldV, rdheld) = NewBVar("isRdHeld", Boogie.ClassType(BoolClass), true)
BLocal(heldV) :: BLocal(rdheldV) ::
List.flatten (for (o <- locks) yield { // todo: somewhere we should worry about Df(l)
Havoc(held) :: Havoc(rdheld) ::
bassume(rdheld ==> (0 < held)) ::
MapUpdate(etran.Heap, o, "held", held) ::
MapUpdate(etran.Heap, o, "rdheld", rdheld) })
}
def NumberOfLocksHeldIsInvariant(oldLocks: List[Boogie.Expr], newLocks: List[Boogie.Expr],
etran: ExpressionTranslator) = {
List.flatten (for ((o,n) <- oldLocks zip newLocks) yield {
// oo.held == nn.held && oo.rdheld == nn.rdheld
(((0 < Boogie.MapSelect(etran.oldEtran.Heap, o, "held")) ==@
(0 < Boogie.MapSelect(etran.Heap, n, "held"))) &&
(Boogie.MapSelect(etran.oldEtran.Heap, o, "rdheld") ==@
Boogie.MapSelect(etran.Heap, n, "rdheld"))) ::
// no.held == on.held && no.rdheld == on.rdheld
(((0 < Boogie.MapSelect(etran.Heap, o, "held")) ==@
(0 < Boogie.MapSelect(etran.oldEtran.Heap, n, "held"))) &&
(Boogie.MapSelect(etran.Heap, o, "rdheld") ==@
Boogie.MapSelect(etran.oldEtran.Heap, n, "rdheld"))) ::
// o == n || (oo.held != no.held && (!oo.rdheld || !no.rdheld))
((o ==@ n) ||
(((0 < Boogie.MapSelect(etran.oldEtran.Heap, o, "held")) !=@ (0 < Boogie.MapSelect(etran.Heap, o, "held"))) &&
((! Boogie.MapSelect(etran.oldEtran.Heap, o, "rdheld")) ||
(! Boogie.MapSelect(etran.Heap, o, "rdheld"))))) ::
Nil
})
}
implicit def lift(s: Stmt): List[Stmt] = List(s)
def isDefined(e: Expression) = etran.isDefined(e)(true)
def TrExpr(e: Expression) = etran.Tr(e)
def InhaleInvariants(obj: Expression, readonly: boolean, tran: ExpressionTranslator) = {
val shV = new Variable("sh", new Type(obj.typ))
val sh = new VariableExpr(shV)
BLocal(Variable2BVar(shV)) :: Boogie.Assign(TrExpr(sh), TrExpr(obj)) ::
tran.Inhale(obj.typ.Invariants map
(inv => SubstThis(inv.e, sh)) map
(inv => (if (readonly) SubstRd(inv) else inv)), "monitor invariant", false)
}
def ExhaleInvariants(obj: Expression, readonly: boolean, msg: ErrorMessage, tran: ExpressionTranslator) = {
val shV = new Variable("sh", new Type(obj.typ))
val sh = new VariableExpr(shV)
BLocal(Variable2BVar(shV)) :: Boogie.Assign(TrExpr(sh), TrExpr(obj)) ::
tran.Exhale(obj.typ.Invariants map
(inv => SubstThis(inv.e, sh)) map
(inv => (if (readonly) SubstRd(inv) else inv, msg)), "monitor invariant", false)
}
def InhaleInvariants(obj: Expression, readonly: boolean) = {
val shV = new Variable("sh", new Type(obj.typ))
val sh = new VariableExpr(shV)
BLocal(Variable2BVar(shV)) :: Boogie.Assign(TrExpr(sh), TrExpr(obj)) ::
Inhale(obj.typ.Invariants map
(inv => SubstThis(inv.e, sh)) map
(inv => (if (readonly) SubstRd(inv) else inv)), "monitor invariant")
}
def ExhaleInvariants(obj: Expression, readonly: boolean, msg: ErrorMessage) = {
val shV = new Variable("sh", new Type(obj.typ))
val sh = new VariableExpr(shV)
BLocal(Variable2BVar(shV)) :: Boogie.Assign(TrExpr(sh), TrExpr(obj)) ::
Exhale(obj.typ.Invariants map
(inv => SubstThis(inv.e, sh)) map
(inv => (if (readonly) SubstRd(inv) else inv, msg)), "monitor invariant")
}
def Inhale(predicates: List[Expression], occasion: String): List[Boogie.Stmt] = etran.Inhale(predicates, occasion, false)
def Exhale(predicates: List[(Expression, ErrorMessage)], occasion: String): List[Boogie.Stmt] = etran.Exhale(predicates, occasion, false)
def InhaleWithChecking(predicates: List[Expression], occasion: String): List[Boogie.Stmt] = etran.Inhale(predicates, occasion, true)
def ExhaleWithChecking(predicates: List[(Expression, ErrorMessage)], occasion: String): List[Boogie.Stmt] = etran.Exhale(predicates, occasion, true)
def CanRead(obj: Boogie.Expr, field: Boogie.Expr): Boogie.Expr = etran.CanRead(obj, field)
def CanWrite(obj: Boogie.Expr, field: Boogie.Expr): Boogie.Expr = etran.CanWrite(obj, field)
/**********************************************************************
***************** EXPRESSIONS *****************
**********************************************************************/
class ExpressionTranslator(globals: List[Boogie.Expr], preGlobals: List[Boogie.Expr], currentClass: Class) {
import TranslationHelper._
import TranslationOptions._
val Heap = globals(0);
val Mask = globals(1);
lazy val oldEtran = new ExpressionTranslator(preGlobals, preGlobals, currentClass)
var checkTermination = false; // check that heap required by callee is strictly smaller than heap required by caller
def this(globals: List[Boogie.Expr], cl: Class) = this(globals, globals map (g => Boogie.Old(g)), cl)
def this(cl: Class) = this(for ((id,t) <- S_ExpressionTranslator.Globals) yield Boogie.VarExpr(id), cl)
def Globals = List(Heap, Mask)
def ChooseEtran(chooseOld: boolean) = if (chooseOld) oldEtran else this
// Create a list of fresh global variables
def FreshGlobals(prefix: String) = {
new Boogie.BVar(prefix + "Heap", theap, true) ::
new Boogie.BVar(prefix + "Mask", tmask, true) ::
Nil
}
// Create a new ExpressionTranslator that is a copy of the receiver, but with
// preGlobals as the old global variables
def FromPreGlobals(preGlobals: List[Boogie.BVar]) = {
val g = for ((id,t) <- S_ExpressionTranslator.Globals) yield VarExpr(id)
val pg = preGlobals map (g => new VarExpr(g))
new ExpressionTranslator(g, pg, currentClass)
}
def UseCurrentAsOld() = {
new ExpressionTranslator(globals, globals, currentClass);
}
def WhereOldIs(h: Boogie.Expr, m: Boogie.Expr) = {
new ExpressionTranslator(globals, List(h, m), currentClass);
}
/**********************************************************************
***************** TR/DF *****************
**********************************************************************/
def isDefined(e: Expression)(implicit assumption: Expr): List[Boogie.Stmt] = {
def prove(goal: Expr, pos: Position, msg: String)(implicit assumption: Expr): Boogie.Assert = {
bassert(assumption ==> goal, pos, msg)
}
e match {
case IntLiteral(n) => Nil
case BoolLiteral(b) => Nil
case NullLiteral() => Nil
case MaxLockLiteral() => Nil
case LockBottomLiteral() => Nil
case _:ThisExpr => Nil
case _:Result => Nil
case _:VariableExpr => Nil
case fs @ MemberAccess(e, f) =>
assert(!fs.isPredicate);
isDefined(e) :::
prove(nonNull(Tr(e)), e.pos, "Receiver might be null.") ::
prove(CanRead(Tr(e), fs.f.FullName), fs.pos, "Location might not be readable.")
case _:Access => throw new Exception("acc expression unexpected here")
case _:RdAccess => throw new Exception("rd expression unexpected here")
case _:AccessAll => throw new Exception("acc expression unexpected here")
case _:RdAccessAll => throw new Exception("rd expression unexpected here")
case Holds(e) =>
isDefined(e)
case RdHolds(e) =>
isDefined(e)
case _: Assigned => Nil
case Old(e) =>
oldEtran.isDefined(e)
case IfThenElse(con, then, els) =>
isDefined(con) ::: Boogie.If(Tr(con), isDefined(then), isDefined(els))
case Not(e) =>
isDefined(e)
case func@FunctionApplication(obj, id, args) =>
val newGlobals = FreshGlobals("checkPre");
val (tmpHeapV, tmpHeap) = Boogie.NewBVar("Heap", theap, true);
val (tmpMaskV, tmpMask) = Boogie.NewBVar("Mask", tmask, true);
val tmpTranslator = new ExpressionTranslator(List(tmpHeap,tmpMask), currentClass);
// check definedness of receiver + arguments
(obj :: args flatMap { arg => isDefined(arg) }) :::
// check that receiver is not null
List(prove(nonNull(Tr(obj)), obj.pos, "Receiver might be null.")) :::
// check precondition of the function by exhaling the precondition in tmpHeap/tmpMask
Comment("check precondition of call") ::
bassume(assumption) ::
BLocal(tmpHeapV) :: (tmpHeap := Heap) ::
BLocal(tmpMaskV) :: (tmpMask := Mask) :::
tmpTranslator.Exhale(Preconditions(func.f.spec) map { pre=> (SubstThisAndVars(pre, obj, func.f.ins, args), ErrorMessage(func.pos, "Precondition at " + pre.pos + " might not hold."))},
"function call",
false) :::
// size of the heap of callee must be strictly smaller than size of the heap of the caller
(if(checkTermination) { List(prove(NonEmptyMask(tmpMask), func.pos, "The heap of the callee might not be strictly smaller than the heap of the caller.")) } else Nil)
case unfolding@Unfolding(access, e) =>
val (checks, predicate, definition, from) = access match {
case acc@Access(pred@MemberAccess(obj, f), perm) =>
val receiverOk = isDefined(obj) ::: prove(nonNull(Tr(obj)), obj.pos, "Receiver might be null.");
val body = SubstThis(DefinitionOf(pred.predicate), obj);
perm match {
case None => (receiverOk, acc, body, Heap.select(Tr(obj), pred.predicate.FullName))
case Some(fraction) => (receiverOk ::: isDefined(fraction) ::: prove(0 <= Tr(fraction), fraction.pos, "Fraction might be negative") :: prove(Tr(fraction) <= 100, fraction.pos, "Fraction might exceed 100."), acc, FractionOf(body, fraction), Heap.select(Tr(obj), pred.predicate.FullName))
}
case acc@RdAccess(pred@MemberAccess(obj, f), perm) =>
val receiverOk = isDefined(obj) ::: prove(nonNull(Tr(obj)), obj.pos, "Receiver might be null.");
val body = SubstThis(DefinitionOf(pred.predicate), obj);
perm match {
case None => (receiverOk, acc, EpsilonsOf(body, IntLiteral(1)), Heap.select(Tr(obj), pred.predicate.FullName))
case Some(None) => assert(false); (null, null, null, Heap.select(Tr(obj), pred.predicate.FullName))
case Some(Some(epsilons)) => (receiverOk ::: isDefined(epsilons) ::: prove(0 <= Tr(epsilons), epsilons.pos, "Number of epsilons might be negative"), acc, EpsilonsOf(body, epsilons), Heap.select(Tr(obj), pred.predicate.FullName))
}
}
val newGlobals = FreshGlobals("checkPre");
val (tmpHeapV, tmpHeap) = Boogie.NewBVar("Heap", theap, true);
val (tmpMaskV, tmpMask) = Boogie.NewBVar("Mask", tmask, true);
val tmpTranslator = new ExpressionTranslator(List(tmpHeap, tmpMask), currentClass);
Comment("unfolding") ::
// check definedness
checks :::
// copy state into temporary variables
BLocal(tmpHeapV) :: Boogie.Assign(tmpHeap, Heap) ::
BLocal(tmpMaskV) :: Boogie.Assign(tmpMask, Mask) ::
// exhale the predicate
tmpTranslator.Exhale(List((predicate, ErrorMessage(unfolding.pos, "Unfolding might fail."))), "unfolding", false) :::
// inhale the definition of the predicate
tmpTranslator.InhaleFrom(List(definition), "unfolding", false, from) :::
// check definedness of e in state where the predicate is unfolded
tmpTranslator.isDefined(e)
case Iff(e0,e1) =>
isDefined(e0) ::: isDefined(e1)
case Implies(e0,e1) =>
isDefined(e0) ::: isDefined(e1)(assumption && Tr(e0))
case And(e0,e1) =>
isDefined(e0) ::: isDefined(e1)(assumption && Tr(e0))
case Or(e0,e1) =>
isDefined(e0) ::: isDefined(e1)(assumption && Boogie.UnaryExpr("!", Tr(e0)))
case LockBelow(e0,e1) =>
var df = isDefined(e0) ::: isDefined(e1);
if (e0.typ.IsRef) {
df = df ::: List(prove(nonNull(Tr(e0)), e0.pos, "Receiver might be null."), prove(CanRead(Tr(e0),"mu"), e0.pos, "The mu field might not be readable."));
}
if (e1.typ.IsRef) {
df = df ::: List(prove(nonNull(Tr(e1)), e1.pos, "Receiver might be null."), prove(CanRead(Tr(e1),"mu"), e1.pos, "The mu field might not be readable."));
}
df
case e: CompareExpr =>
isDefined(e.E0) ::: isDefined(e.E1)
case Div(e0,e1) =>
isDefined(e0) ::: isDefined(e1) :::
List(prove(Tr(e1) !=@ 0, e1.pos, "Denominator might be zero."))
case Mod(e0,e1) =>
isDefined(e0) ::: isDefined(e1) ::: List(prove(Tr(e1) !=@ 0, e1.pos, "Denominator might be zero."))
case e: ArithmeticExpr =>
isDefined(e.E0) ::: isDefined(e.E1)
case q@Forall(i, Range(min, max), e) =>
// optimize for range
isDefinedForall(q.variables, min, max, e)
case q@Forall(i, seq, e) =>
var newVars = Nil : List[Variable];
for(i <- q.variables) {
newVars = newVars + new Variable(i.UniqueName, new Type(IntClass))
}
isDefinedForall(newVars, IntLiteral(0), Length(seq), SubstVars(e, q.variables, newVars map {newVar => At(seq, new VariableExpr(newVar)) }))
case EmptySeq(t) => Nil
case ExplicitSeq(es) =>
es flatMap { e => isDefined(e) }
case Range(min, max) =>
isDefined(min) ::: isDefined(max)
case Append(e0, e1) =>
isDefined(e0) ::: isDefined(e1)
case at@At(e0, e1) =>
isDefined(e0) ::: isDefined(e1) ::: List(prove(0 <= Tr(e1), at.pos, "Sequence index might be negative."), prove(Tr(e1) < Boogie.FunctionApp("Seq#Length", List(Tr(e0))), at.pos, "Sequence index might be larger than or equal to the length of the sequence."))
case Drop(e0, e1) =>
isDefined(e0) ::: isDefined(e1) ::: List(prove(0 <= Tr(e1), e.pos, "Cannot drop less than zero elements."), prove(Tr(e1) <= Boogie.FunctionApp("Seq#Length", List(Tr(e0))), e.pos, "Cannot drop more than elements than the length of the sequence."))
case Take(e0, e1) =>
isDefined(e0) ::: isDefined(e1) ::: List(prove(0 <= Tr(e1), e.pos, "Cannot take less than zero elements."), prove(Tr(e1) <= Boogie.FunctionApp("Seq#Length", List(Tr(e0))), e.pos, "Cannot take more than elements than the length of the sequence."))
case Length(e) =>
isDefined(e)
case Eval(h, e) =>
val (evalHeap, evalMask, checks, assumptions) = fromEvalState(h);
val evalEtran = new ExpressionTranslator(List(evalHeap, evalMask), currentClass);
evalEtran.isDefined(e)
}
}
def isDefinedForall(is: List[Variable], min: Expression, max: Expression, e: Expression)(implicit assumption: Expr): List[Stmt] = {
var iTmps = Nil: List[Variable];
var assumption2 = assumption;
for(i <- is) {
val iTmp = new Variable(i.UniqueName, new Type(IntClass));
iTmps = iTmps + iTmp;
assumption2 = assumption2 && (Tr(min)<=VarExpr(iTmp.UniqueName)) && (VarExpr(iTmp.UniqueName) < Tr(max))
}
// check definedness of the bounds
isDefined(min) ::: isDefined(max) :::
// introduce a new local iTmp with an arbitrary value
(iTmps map { iTmp =>
BLocal(Boogie.BVar(iTmp.UniqueName, Boogie.NamedType("int")))
}) :::
// prove that the body is well-defined for iTmp, provided iTmp lies betweeen min and max
isDefined(SubstVars(e, is, iTmps map { iTmp => new VariableExpr(iTmp)}))(assumption2)
}
def Tr(e: Expression): Boogie.Expr = e match {
case IntLiteral(n) => n
case BoolLiteral(b) => b
case NullLiteral() => bnull
case MaxLockLiteral() => throw new Exception("maxlock case should be handled in << and == and !=")
case LockBottomLiteral() => bLockBottom
case _:ThisExpr => VarExpr("this")
case _:Result => VarExpr("result")
case ve : VariableExpr => VarExpr(ve.v.UniqueName)
case fs @ MemberAccess(e,_) =>
assert(! fs.isPredicate);
var r = Heap.select(Tr(e), fs.f.FullName);
if (fs.f.isInstanceOf[SpecialField] && fs.f.id == "joinable")
r !=@ 0 // joinable is encoded as an integer
else
r
case _:Access => throw new Exception("acc expression unexpected here")
case _:RdAccess => throw new Exception("rd expression unexpected here")
case _:AccessAll => throw new Exception("acc expression unexpected here")
case _:RdAccessAll => throw new Exception("rd expression unexpected here")
case Holds(e) =>
(0 < Heap.select(Tr(e), "held")) &&
!Heap.select(Tr(e), "rdheld")
case RdHolds(e) =>
Heap.select(Tr(e), "rdheld")
case a: Assigned =>
VarExpr("assigned$" + a.v.UniqueName)
case Old(e) =>
oldEtran.Tr(e)
case IfThenElse(con, then, els) =>
Boogie.Ite(Tr(con), Tr(then), Tr(els)) // of type: VarExpr(TrClass(then.typ))
case Not(e) =>
! Tr(e)
case func@FunctionApplication(obj, id, args) =>
FunctionApp("#" + func.f.Parent.id + "." + id, Heap :: Mask :: (obj :: args map { arg => Tr(arg)}))
case uf@Unfolding(_, e) =>
Tr(e)
case Iff(e0,e1) =>
Tr(e0) <==> Tr(e1)
case Implies(e0,e1) =>
Tr(e0) ==> Tr(e1)
case And(e0,e1) =>
Tr(e0) && Tr(e1)
case Or(e0,e1) =>
Tr(e0) || Tr(e1)
case Eq(e0,e1) =>
(ShaveOffOld(e0), ShaveOffOld(e1)) match {
case ((MaxLockLiteral(),o0), (MaxLockLiteral(),o1)) =>
if (o0 == o1)
true
else
MaxLockPreserved
case ((MaxLockLiteral(),o), (fs@MemberAccess(q, "mu"), useOld)) => isHeldInHeap(Tr(q), ChooseEtran(useOld).Heap) && ChooseEtran(o).MaxLockEqualsX(Tr(fs))
case ((MaxLockLiteral(),o), _) => ChooseEtran(o).MaxLockEqualsX(Tr(e1))
case (_, (MaxLockLiteral(),o)) => ChooseEtran(o).MaxLockEqualsX(Tr(e0))
case _ => if(e0.typ.IsSeq) FunctionApp("Seq#Equal", List(Tr(e0), Tr(e1))) else (Tr(e0) ==@ Tr(e1))
}
case Neq(e0,e1) =>
if (IsMaxLockLit(e0) || IsMaxLockLit(e1))
Tr(Not(Eq(e0,e1)))
else
(Tr(e0) !=@ Tr(e1))
case Less(e0,e1) =>
Tr(e0) < Tr(e1)
case AtMost(e0,e1) =>
Tr(e0) <= Tr(e1)
case AtLeast(e0,e1) =>
Tr(e0) >= Tr(e1)
case Greater(e0,e1) =>
Tr(e0) > Tr(e1)
case LockBelow(e0,e1) => {
def MuValue(b: Expression): Boogie.Expr =
if (b.typ.IsRef) Boogie.MapSelect(Heap, Tr(b), "mu") else Tr(b)
(ShaveOffOld(e0), ShaveOffOld(e1)) match {
case ((MaxLockLiteral(),o0), (MaxLockLiteral(),o1)) =>
if (o0 == o1)
false
else
TemporalMaxLockComparison(ChooseEtran(o0), ChooseEtran(o1))
case ((MaxLockLiteral(),o), _) => ChooseEtran(o).MaxLockIsBelowX(MuValue(e1))
case (_, (MaxLockLiteral(),o)) => ChooseEtran(o).MaxLockIsAboveX(MuValue(e0))
case _ => new FunctionApp("MuBelow", MuValue(e0), MuValue(e1)) }
}
case Plus(e0,e1) =>
Tr(e0) + Tr(e1)
case Minus(e0,e1) =>
Tr(e0) - Tr(e1)
case Times(e0,e1) =>
Tr(e0) * Tr(e1)
case Div(e0,e1) =>
Tr(e0) / Tr(e1)
case Mod(e0,e1) =>
Tr(e0) % Tr(e1)
case q@Forall(is, Range(min, max), e) =>
// optimize translation for range expressions
translateForall(q.variables, min, max, e)
case q@Forall(is, seq, e) =>
var newVars = Nil : List[Variable];
for(i <- q.variables) {
newVars = newVars + new Variable(i.UniqueName, new Type(IntClass))
}
translateForall(newVars, IntLiteral(0), Length(seq), SubstVars(e, q.variables, newVars map {newVar => At(seq, new VariableExpr(newVar)) }))
case EmptySeq(t) =>
createEmptySeq
case ExplicitSeq(es) =>
es match {
case Nil => createEmptySeq
case h :: Nil => createSingletonSeq(Tr(h))
case h :: t => createAppendSeq(createSingletonSeq(Tr(h)), Tr(ExplicitSeq(t)))
}
case Range(min, max) =>
createRange(Tr(min), Tr(max))
case Append(e0, e1) =>
createAppendSeq(Tr(e0), Tr(e1))
case at@At(e0, e1) =>
FunctionApp("Seq#Index", List(Tr(e0), Tr(e1))) // of type: VarExpr(TrClass(e0.typ.parameters(0)))
case Drop(e0, e1) =>
Boogie.FunctionApp("Seq#Drop", List(Tr(e0), Tr(e1)))
case Take(e0, e1) =>
Boogie.FunctionApp("Seq#Take", List(Tr(e0), Tr(e1)))
case Length(e) =>
Boogie.FunctionApp("Seq#Length", List(Tr(e)))
case Eval(h, e) =>
val (evalHeap, evalMask, checks, assumptions) = fromEvalState(h);
val evalEtran = new ExpressionTranslator(List(evalHeap, evalMask), currentClass);
evalEtran.Tr(e)
}
def translateForall(is: List[Variable], min: Expression, max: Expression, e: Expression): Expr = {
var assumption = true: Expr;
for(i <- is) {
assumption = assumption && (Tr(min) <= VarExpr(i.UniqueName) && VarExpr(i.UniqueName) < Tr(max));
}
new Boogie.Forall(is map { i=> Variable2BVar(i)}, Nil, assumption ==> Tr(e))
}
def ShaveOffOld(e: Expression): (Expression, boolean) = e match {
case Old(e) =>
val (f,o) = ShaveOffOld(e)
(f,true)
case _ => (e,false)
}
def IsMaxLockLit(e: Expression) = {
val (f,o) = ShaveOffOld(e)
f.isInstanceOf[MaxLockLiteral]
}
/**********************************************************************
***************** INHALE/EXHALE *****************
**********************************************************************/
def Inhale(predicates: List[Expression], occasion: String, check: Boolean): List[Boogie.Stmt] = {
val (ihV, ih) = Boogie.NewBVar("inhaleHeap", theap, true)
Comment("inhale (" + occasion + ")") ::
BLocal(ihV) :: Boogie.Havoc(ih) ::
bassume(IsGoodInhaleState(ih, Heap, Mask)) ::
List.flatten (for (p <- predicates) yield Inhale(p,ih, check)) :::
bassume(IsGoodMask(Mask)) ::
bassume(wf(Heap, Mask)) ::
Comment("end inhale")
}
def InhaleFrom(predicates: List[Expression], occasion: String, check: Boolean, useHeap: Boogie.Expr): List[Boogie.Stmt] = {
val (ihV, ih) = Boogie.NewBVar("inhaleHeap", theap, true)
Comment("inhale (" + occasion + ")") ::
BLocal(ihV) :: Boogie.Assign(ih, useHeap) ::
bassume(IsGoodInhaleState(ih, Heap, Mask)) ::
List.flatten (for (p <- predicates) yield Inhale(p,ih, check)) :::
bassume(IsGoodMask(Mask)) ::
bassume(wf(Heap, Mask)) ::
Comment("end inhale")
}
def Inhale(p: Expression, ih: Boogie.Expr, check: Boolean): List[Boogie.Stmt] = p match {
case pred@MemberAccess(e, p) if pred.isPredicate =>
val tmp = Access(pred, None);
tmp.pos = pred.pos;
Inhale(tmp, ih, check)
case acc@AccessAll(obj, perm) =>
obj.typ.Fields flatMap { f =>
val ma = MemberAccess(obj, f.id);
ma.f = f;
ma.pos = acc.pos;
val inhalee = Access(ma, perm);
inhalee.pos = acc.pos;
Inhale(inhalee, ih, check) }
case acc@RdAccessAll(obj, perm) =>
obj.typ.Fields flatMap { f =>
val ma = MemberAccess(obj, f.id);
ma.f = f;
ma.pos = acc.pos;
val inhalee = RdAccess(ma, perm);
inhalee.pos = acc.pos;
Inhale(inhalee, ih, check) }
case acc@Access(e,perm) =>
val trE = Tr(e.e)
val module = currentClass.module;
val memberName = if(e.isPredicate) e.predicate.FullName else e.f.FullName;
(if(check) isDefined(e.e)(true)
// List(bassert(nonNull(trE), acc.pos, "The target of the acc predicate might be null."))
else Nil) :::
(perm match {
case None => List()
case Some(perm) =>
(if(check) isDefined(perm)(true) ::: bassert(Boogie.IntLiteral(0)<=Tr(perm), perm.pos, "Fraction might be negative.") ::
(if(! e.isPredicate) bassert(Tr(perm) <= Boogie.IntLiteral(100), perm.pos, "Fraction might exceed 100.") :: Nil else Nil) else Nil)
}) :::
bassume(nonNull(trE)) ::
MapUpdate(Heap, trE, memberName, Boogie.MapSelect(ih, trE, memberName)) ::
bassume(wf(Heap, Mask)) ::
(if(e.isPredicate && e.predicate.Parent.module.equals(currentClass.module)) List(bassume(Boogie.MapSelect(ih, trE, memberName) ==@ Heap)) else Nil) :::
(if(e.isPredicate) Nil else List(bassume(TypeInformation(Boogie.MapSelect(Heap, trE, memberName), e.f.typ)))) :::
(perm match {
case None => IncPermission(trE, memberName, 100)
case Some(perm) => IncPermission(trE, memberName, Tr(perm))
}) ::
bassume(IsGoodMask(Mask)) ::
bassume(IsGoodState(Boogie.MapSelect(ih, trE, memberName))) ::
bassume(wf(Heap, Mask)) ::
bassume(wf(ih, Mask))
case rdacc@RdAccess(e,perm) =>
val memberName = if(e.isPredicate) e.predicate.FullName else e.f.FullName;
val trE = Tr(e.e)
val (dfP,p) = perm match {
case None => (List(), Boogie.IntLiteral(1))
case Some(None) => (List(), null)
case Some(Some(p)) => (isDefined(p)(true) ::: bassert(Boogie.IntLiteral(0)<=Tr(p), p.pos, "Number of epsilons might be negative."), Tr(p))
}
(if(check) { isDefined(e.e)(true) :::
// bassert(nonNull(trE), rdacc.pos, "The target of the rd predicate might be null.")
dfP } else Nil) :::
bassume(nonNull(trE)) ::
Boogie.MapUpdate(Heap, trE, memberName,
Boogie.MapSelect(ih, trE, memberName)) ::
bassume(Boogie.FunctionApp("wf", List(Heap, Mask))) ::
(if(e.isPredicate && e.predicate.Parent.module.equals(currentClass.module)) List(bassume(Boogie.MapSelect(ih, trE, memberName) ==@ Heap)) else Nil) :::
(if(e.isPredicate) Nil else List(bassume(TypeInformation(Boogie.MapSelect(Heap, trE, memberName), e.f.typ)))) :::
IncPermissionEpsilon(trE, memberName, p) ::
bassume(IsGoodMask(Mask)) ::
bassume(IsGoodState(Boogie.MapSelect(ih, trE, memberName))) ::
bassume(wf(Heap, Mask)) ::
bassume(wf(ih, Mask))
case Implies(e0,e1) =>
(if(check) isDefined(e0)(true) else Nil) :::
Boogie.If(Tr(e0), Inhale(e1, ih, check), Nil)
case IfThenElse(con, then, els) =>
(if(check) isDefined(con)(true) else Nil) :::
Boogie.If(Tr(con), Inhale(then, ih, check), Inhale(els, ih, check))
case And(e0,e1) =>
Inhale(e0, ih, check) ::: Inhale(e1, ih, check)
case holds@Holds(e) =>
val trE = Tr(e);
(if(check) isDefined(e)(true) :::
List(bassert(nonNull(trE), holds.pos, "The target of the holds predicate might be null.")) else Nil) :::
IncPermission(trE, "held", 100) :::
bassume(IsGoodMask(Mask)) ::
bassume(IsGoodState(Boogie.MapSelect(ih, trE, "held"))) ::
bassume(wf(Heap, Mask)) ::
bassume(wf(ih, Mask)) ::
Boogie.MapUpdate(Heap, trE, "held",
Boogie.MapSelect(ih, trE, "held")) ::
bassume(0 < Boogie.MapSelect(ih, trE, "held")) ::
bassume(! Boogie.MapSelect(ih, trE, "rdheld")) ::
bassume(wf(Heap, Mask)) ::
bassume(IsGoodMask(Mask)) ::
bassume(IsGoodState(Boogie.MapSelect(ih, trE, "held"))) ::
bassume(wf(Heap, Mask)) ::
bassume(wf(ih, Mask))
case Eval(h, e) =>
val (evalHeap, evalMask, checks, proofOrAssume) = fromEvalState(h);
val preGlobals = etran.FreshGlobals("eval")
val preEtran = new ExpressionTranslator(preGlobals map (v => new Boogie.VarExpr(v)), currentClass)
BLocal(preGlobals(0)) :: BLocal(preGlobals(1)) ::
(new VarExpr(preGlobals(1)) := ZeroMask) ::
// Should we start from ZeroMask instead of an arbitrary mask? In that case, assume submask(preEtran.Mask, evalMask); at the end!
(if(check) checks else Nil) :::
// havoc the held field when inhaling eval(o.release, ...)
(if(h.isInstanceOf[ReleaseState]) {
val (freshHeldV, freshHeld) = NewBVar("freshHeld", tint, true);
val obj = Tr(h.target());
List(BLocal(freshHeldV), bassume((0<Heap.select(obj, "held")) <==> (0<freshHeld)), (Heap.select(obj, "held") := freshHeld))
} else Nil) :::
bassume(IsGoodMask(preEtran.Mask)) ::
bassume(wf(preEtran.Heap, preEtran.Mask)) ::
bassume(proofOrAssume) ::
preEtran.Inhale(e, ih, check) :::
bassume(preEtran.Heap ==@ evalHeap) ::
bassume(submask(preEtran.Mask, evalMask))
case e => (if(check) isDefined(e)(true) else Nil) ::: bassume(Tr(e))
}
def Exhale(predicates: List[(Expression, ErrorMessage)], occasion: String, check: Boolean): List[Boogie.Stmt] = {
val (emV, em) = NewBVar("exhaleMask", tmask, true)
Comment("begin exhale (" + occasion + ")") ::
BLocal(emV) :: (em := Mask) ::
(List.flatten (for (p <- predicates) yield Exhale(p._1, em, null, p._2, check))) :::
(Mask := em) ::
bassume(wf(Heap, Mask)) ::
Comment("end exhale")
}
def Exhale(p: Expression, em: Boogie.Expr, eh: Boogie.Expr, error: ErrorMessage, check: Boolean): List[Boogie.Stmt] = p match {
case pred@MemberAccess(e, p) if pred.isPredicate =>
val tmp = Access(pred, None);
tmp.pos = pred.pos;
Exhale(tmp, em , eh, error, check)
case acc@AccessAll(obj, perm) =>
obj.typ.Fields flatMap { f =>
val ma = MemberAccess(obj, f.id);
ma.f = f;
ma.pos = acc.pos;
val exhalee = Access(ma, perm);
exhalee.pos = acc.pos;
Exhale(exhalee, em, eh, error, check) }
case acc@RdAccessAll(obj, perm) =>
obj.typ.Fields flatMap { f =>
val ma = MemberAccess(obj, f.id);
ma.f = f;
ma.pos = acc.pos;
val exhalee = RdAccess(ma, perm);
exhalee.pos = acc.pos;
Exhale(exhalee, em, eh, error, check) }
case acc@Access(e,perm) =>
val memberName = if(e.isPredicate) e.predicate.FullName else e.f.FullName;
// look up the fraction
val (fraction, checkFraction) = perm match {
case None => (IntLiteral(100), Nil)
case Some(fr) => (fr, bassert(0<=Tr(fr), fr.pos, "Fraction might be negative.") :: (if(! e.isPredicate) bassert(Tr(fr)<=100, fr.pos, "Fraction might exceed 100.") :: Nil else Nil) ::: Nil)
}
val (fractionV, frac) = NewBVar("fraction", tint, true);
// check definedness
(if(check) isDefined(e.e)(true) :::
checkFraction :::
bassert(nonNull(Tr(e.e)), error.pos, error.message + " The target of the acc predicate at " + acc.pos + " might be null.") else Nil) :::
BLocal(fractionV) :: (frac := Tr(fraction)) ::
// if the mask does not contain sufficient permissions, try folding acc(e, fraction)
(if(e.isPredicate && autoFold && (!perm.isDefined || canTakeFractionOf(DefinitionOf(e.predicate)))) {
val inhaleTran = new ExpressionTranslator(List(Heap, em), currentClass);
val sourceVar = new Variable("fraction", new Type(IntClass));
val bplVar = Variable2BVar(sourceVar);
BLocal(bplVar) :: (VarExpr(sourceVar.UniqueName) := frac) ::
If(new MapSelect(em, Tr(e.e), memberName, "perm$R") < frac,
Exhale(if(perm.isDefined) FractionOf(SubstThis(DefinitionOf(e.predicate), e.e), new VariableExpr(sourceVar)) else SubstThis(DefinitionOf(e.predicate), e.e), em, eh, ErrorMessage(error.pos, error.message + " Automatic fold might fail."), false) :::
inhaleTran.Inhale(List(if(! perm.isDefined) Access(e, None) else Access(e, Some(new VariableExpr(sourceVar)))), "automatic fold", false)
, Nil) :: Nil}
else Nil) :::
// check that the necessary permissions are there and remove them from the mask
DecPermission(Tr(e.e), memberName, frac, em, error, acc.pos) :::
bassume(IsGoodMask(Mask)) ::
bassume(wf(Heap, Mask)) ::
bassume(wf(Heap, em))
case rd@RdAccess(e,perm) =>
val memberName = if(e.isPredicate) e.predicate.FullName else e.f.FullName;
val (epsilonsV, eps) = NewBVar("epsilons", tint, true);
val (dfP, epsilons) = perm match {
case None => (List(), IntLiteral(1))
case Some(None) => (List(), null)
case Some(Some(p)) => (isDefined(p)(true) ::: List(bassert(0 <= Tr(p), error.pos, error.message + " The number of epsilons at " + rd.pos + " might be negative.")) , p)
}
// check definedness
(if(check) isDefined(e.e)(true) :::
bassert(nonNull(Tr(e.e)), error.pos, error.message + " The target of the rd predicate at " + rd.pos + " might be null.") ::
dfP else Nil) :::
BLocal(epsilonsV) :: (if(epsilons!=null) (eps := Tr(epsilons)) :: Nil else Nil) :::
// if the mask does not contain sufficient permissions, try folding rdacc(e, epsilons)
(if(e.isPredicate && autoFold && canTakeEpsilonsOf(DefinitionOf(e.predicate)) && epsilons!=null) {
val inhaleTran = new ExpressionTranslator(List(Heap, em), currentClass);
val sourceVar = new Variable("epsilons", new Type(IntClass));
val bplVar = Variable2BVar(sourceVar);
BLocal(bplVar) :: (VarExpr(sourceVar.UniqueName) := eps) ::
If(new MapSelect(em, Tr(e.e), memberName, "perm$N") < eps,
Exhale(EpsilonsOf(SubstThis(DefinitionOf(e.predicate), e.e), new VariableExpr(sourceVar)), em, eh, ErrorMessage(error.pos, error.message + " Automatic fold might fail."), false) :::
inhaleTran.Inhale(List(RdAccess(e, Some(Some(new VariableExpr(sourceVar))))), "automatic fold", false)
, Nil) :: Nil}
else Nil) :::
// check that the necessary permissions are there and remove them from the mask
DecPermissionEpsilon(Tr(e.e), memberName, if(epsilons != null) eps else null, em, error, rd.pos) :::
bassume(IsGoodMask(Mask)) ::
bassume(wf(Heap, Mask)) ::
bassume(wf(Heap, em))
case Implies(e0,e1) =>
(if(check) isDefined(e0)(true) else Nil) :::
Boogie.If(Tr(e0), Exhale(e1, em, eh, error, check), Nil)
case IfThenElse(con, then, els) =>
(if(check) isDefined(con)(true) else Nil) :::
Boogie.If(Tr(con), Exhale(then, em, eh, error, check), Exhale(els, em, eh, error, check))
case And(e0,e1) =>
Exhale(e0, em, eh, error, check) ::: Exhale(e1, em, eh, error, check)
case holds@Holds(e) =>
(if(check) isDefined(e)(true) :::
bassert(nonNull(Tr(e)), error.pos, error.message + " The target of the holds predicate at " + holds.pos + " might be null.") :: Nil else Nil) :::
bassert(HasFullPermission(Tr(e), "held", em), error.pos, error.message + " The current thread might not have full permission to the held field at " + holds.pos + ".") ::
bassert(0 < Boogie.MapSelect(Heap, Tr(e), "held"), error.pos, error.message + " The current thread might not hold lock at " + holds.pos + ".") ::
bassert(! Boogie.MapSelect(Heap, Tr(e), "rdheld"), error.pos, error.message + " The current thread might hold the read lock at " + holds.pos + ".") ::
SetNoPermission(Tr(e), "held", em) ::
bassume(IsGoodMask(Mask)) ::
bassume(wf(Heap, Mask)) ::
bassume(wf(Heap, em))
case Eval(h, e) =>
val (evalHeap, evalMask, checks, proofOrAssume) = fromEvalState(h);
val preGlobals = etran.FreshGlobals("eval")
val preEtran = new ExpressionTranslator(List(Boogie.VarExpr(preGlobals(0).id), Boogie.VarExpr(preGlobals(1).id)), currentClass);
BLocal(preGlobals(0)) :: (VarExpr(preGlobals(0).id) := evalHeap) ::
BLocal(preGlobals(1)) :: (VarExpr(preGlobals(1).id) := evalMask) ::
(if(check) checks else Nil) :::
bassume(IsGoodMask(preEtran.Mask)) ::
bassume(wf(preEtran.Heap, preEtran.Mask)) ::
bassert(proofOrAssume, p.pos, "Arguments for joinable might not match up.") ::
preEtran.Exhale(List((e, error)), "eval", check)
case e => (if(check) isDefined(e)(true) else Nil) ::: List(bassert(Tr(e), error.pos, error.message + " The expression at " + e.pos + " might not evaluate to true."))
}
def fromEvalState(h: EvalState): (Expr, Expr, List[Stmt], Expr) = {
h match {
case AcquireState(obj) =>
(AcquireHeap(Heap.select(Tr(obj), "held")), AcquireMask(Heap.select(Tr(obj), "held")), isDefined(obj)(true), true)
case ReleaseState(obj) =>
(LastSeenHeap(Heap.select(Tr(obj), "mu"), Heap.select(Tr(obj), "held")), LastSeenMask(Heap.select(Tr(obj), "mu"), Heap.select(Tr(obj), "held")), isDefined(obj)(true), true)
case CallState(token, obj, id, args) =>
val argsSeq = CallArgs(Heap.select(Tr(token), "joinable"));
var i : int = 0;
(CallHeap(Heap.select(Tr(token), "joinable")),
CallMask(Heap.select(Tr(token), "joinable")),
isDefined(token)(true) :::
isDefined(obj)(true) :::
(args flatMap { a => isDefined(a)(true)}) :::
bassert(CanRead(Tr(token), "joinable"), obj.pos, "Joinable field of the token might not be readable.") ::
bassert(Heap.select(Tr(token), "joinable") !=@ 0, obj.pos, "Token might not be active."),
(new MapSelect(argsSeq, 0) ==@ Tr(obj) ) &&
(((args zip (1 until args.length+1).toList) map { a => new MapSelect(argsSeq, a._2) ==@ Tr(a._1)}).foldLeft(true: Expr){ (a: Expr, b: Expr) => a && b})
)
}
}
// permissions
def CanRead(obj: Boogie.Expr, field: Boogie.Expr): Boogie.Expr = new Boogie.FunctionApp("CanRead", Mask, obj, field)
def CanRead(obj: Boogie.Expr, field: String): Boogie.Expr = CanRead(obj, new Boogie.VarExpr(field))
def CanWrite(obj: Boogie.Expr, field: Boogie.Expr): Boogie.Expr = new Boogie.FunctionApp("CanWrite", Mask, obj, field)
def CanWrite(obj: Boogie.Expr, field: String): Boogie.Expr = CanWrite(obj, new Boogie.VarExpr(field))
def HasNoPermission(obj: Boogie.Expr, field: String) =
(new Boogie.MapSelect(Mask, obj, field, "perm$R") ==@ Boogie.IntLiteral(0)) &&
(new Boogie.MapSelect(Mask, obj, field, "perm$N") ==@ Boogie.IntLiteral(0))
def SetNoPermission(obj: Boogie.Expr, field: String, mask: Boogie.Expr) =
Boogie.Assign(Boogie.MapSelect(mask, obj, field), Boogie.VarExpr("Permission$Zero"))
def HasFullPermission(obj: Boogie.Expr, field: String, mask: Boogie.Expr) =
(new Boogie.MapSelect(mask, obj, field, "perm$R") ==@ Boogie.IntLiteral(100)) &&
(new Boogie.MapSelect(mask, obj, field, "perm$N") ==@ Boogie.IntLiteral(0))
def SetFullPermission(obj: Boogie.Expr, field: String) =
Boogie.Assign(Boogie.MapSelect(Mask, obj, field), Boogie.VarExpr("Permission$Full"))
def IncPermission(obj: Boogie.Expr, field: String, howMuch: Boogie.Expr) =
MapUpdate3(Mask, obj, field, "perm$R", new Boogie.MapSelect(Mask, obj, field, "perm$R") + howMuch)
def IncPermissionEpsilon(obj: Boogie.Expr, field: String, epsilons: Boogie.Expr) =
if (epsilons != null) {
val g = (new Boogie.MapSelect(Mask, obj, field, "perm$N") !=@ Boogie.VarExpr("Permission$MinusInfinity")) &&
(new Boogie.MapSelect(Mask, obj, field, "perm$N") !=@ Boogie.VarExpr("Permission$PlusInfinity"))
Boogie.If(g,
MapUpdate3(Mask, obj, field, "perm$N", new Boogie.MapSelect(Mask, obj, field, "perm$N") + epsilons) ::
bassume(Boogie.FunctionApp("wf", List(Heap, Mask))) :: Nil
, Nil)
} else {
val g = (new Boogie.MapSelect(Mask, obj, field, "perm$N") !=@ Boogie.VarExpr("Permission$MinusInfinity"))
Boogie.If(g, MapUpdate3(Mask, obj, field, "perm$N", Boogie.VarExpr("Permission$PlusInfinity")), Nil)
}
def DecPermission(obj: Boogie.Expr, field: String, howMuch: Boogie.Expr, mask: Boogie.Expr, error: ErrorMessage, pos: Position) = {
val xyz: Boogie.Expr = new Boogie.MapSelect(mask, obj, field, "perm$R")
bassert(howMuch <= xyz, error.pos, error.message + " Insufficient fraction at " + pos + " for " + field + ".") ::
MapUpdate3(mask, obj, field, "perm$R", new Boogie.MapSelect(mask, obj, field, "perm$R") - howMuch)
}
def DecPermissionEpsilon(obj: Boogie.Expr, field: String, epsilons: Boogie.Expr, mask: Boogie.Expr, error: ErrorMessage, pos: Position) =
if (epsilons != null) {
val g = (new Boogie.MapSelect(mask, obj, field, "perm$N") !=@ Boogie.VarExpr("Permission$MinusInfinity")) &&
(new Boogie.MapSelect(mask, obj, field, "perm$N") !=@ Boogie.VarExpr("Permission$PlusInfinity"))
val xyz = new Boogie.MapSelect(mask, obj, field, "perm$N")
bassert((new Boogie.MapSelect(mask, obj, field, "perm$R") ==@ Boogie.IntLiteral(0)) ==> (epsilons <= xyz), error.pos, error.message + " Insufficient epsilons at " + pos + " for " + field + ".") ::
Boogie.If(g,
MapUpdate3(mask, obj, field, "perm$N", new Boogie.MapSelect(mask, obj, field, "perm$N") - epsilons) ::
bassume(Boogie.FunctionApp("wf", List(Heap, Mask))) :: Nil
, Nil)
} else {
val g = (new Boogie.MapSelect(mask, obj, field, "perm$N") !=@ Boogie.VarExpr("Permission$PlusInfinity"))
bassert((new Boogie.MapSelect(mask, obj, field, "perm$R") ==@ Boogie.IntLiteral(0)) ==>
(new Boogie.MapSelect(mask, obj, field, "perm$N") ==@ Boogie.VarExpr("Permission$PlusInfinity")), error.pos, error.message + " Insufficient epsilons at " + pos + " for " + field + ".") ::
Boogie.If(g, MapUpdate3(mask, obj, field, "perm$N", Boogie.VarExpr("Permission$MinusInfinity")), Nil)
}
var uniqueInt = 0;
def MapUpdate3(m: Boogie.Expr, arg0: Boogie.Expr, arg1: String, arg2: String, rhs: Boogie.Expr) = {
// m[a,b,c] := rhs
// m[a,b][c] := rhs
// m[a,b] := map[a,b][c := rhs]
val m01 = Boogie.MapSelect(m, arg0, arg1)
Boogie.Assign(m01, Boogie.MapStore(m01, arg2, rhs))
}
def DecPerm(m: Expr, e: Expr, f: Expr, i: Expr) = FunctionApp("DecPerm", List(m, e, f, i))
def DecEpsilons(m: Expr, e: Expr, f: Expr, i: Expr) = FunctionApp("DecEpsilons", List(m, e, f, i))
def IncPerm(m: Expr, e: Expr, f: Expr, i: Expr) = FunctionApp("IncPerm", List(m, e, f, i))
def IncEpsilons(m: Expr, e: Expr, f: Expr, i: Expr) = FunctionApp("IncEpsilons", List(m, e, f, i))
def MaxLockIsBelowX(x: Boogie.Expr) = { // maxlock << x
val (oV, o) = Boogie.NewBVar("o", tref, false)
new Boogie.Forall(oV,
(isHeldInHeap(o, Heap)) ==>
new Boogie.FunctionApp("MuBelow", Boogie.MapSelect(Heap, o, "mu"), x))
}
def MaxLockIsAboveX(x: Boogie.Expr) = { // x << maxlock
val (oV, o) = Boogie.NewBVar("o", tref, false)
new Boogie.Exists(oV,
(isHeldInHeap(o, Heap)) &&
new Boogie.FunctionApp("MuBelow", x, Boogie.MapSelect(Heap, o, "mu")))
}
def MaxLockEqualsX(x: Boogie.Expr) = { // maxlock == o.mu
// Note: Instead of the existential below, we could generate a nicer expression if we knew that
// x has the form y.mu--then, we'd replace the existential with y.held. Another possibility
// would be if we had an inverse of .mu (such an inverse exists, but we're not encoding it).
// val (oV, o) = Boogie.NewBVar("o", tref, false)
//new Boogie.Exists(oV,
// (isHeldInHeap(o, Heap)) && (Boogie.MapSelect(Heap, o, "mu") ==@ x)) &&
/*isHeldInHeap(x, Heap) &&*/ IsHighestLock(x)
}
def IsHighestLock(x: Boogie.Expr) = {
// (forall r :: r.held ==> r.mu << x || r.mu == x)
val (rV, r) = Boogie.NewBVar("r", tref, false)
new Boogie.Forall(rV,
(isHeldInHeap(r, Heap)) ==>
(new Boogie.FunctionApp("MuBelow", MapSelect(Heap, r, "mu"), x) ||
(Boogie.MapSelect(Heap, r, "mu") ==@ x)))
}
def MaxLockPreserved = { // old(maxlock) == maxlock
// I don't know what the best encoding of this conding is, so I'll try a disjunction.
// Disjunct b0 is easier to prove, but it is stronger than b1.
// (forall r: ref ::
// old(Heap)[r,held] == Heap[r,held] &&
// (Heap[r,held] ==> old(Heap)[r,mu] == Heap[r,mu]))
val (rV, r) = Boogie.NewBVar("r", tref, false)
val b0 = new Boogie.Forall(rV,
((0 < Boogie.MapSelect(oldEtran.Heap, r, "held")) ==@
(0 < Boogie.MapSelect(Heap, r, "held"))) &&
((0 < Boogie.MapSelect(Heap, r, "held")) ==>
(Boogie.MapSelect(oldEtran.Heap, r, "mu") ==@
Boogie.MapSelect(Heap, r, "mu"))))
// (forall o, p ::
// old(o.held) && (forall r :: old(r.held) ==> old(r.mu) << old(o.mu) || old(r.mu)==old(o.mu)) &&
// p.held && (forall r :: r.held ==> r.mu << p.mu || r.mu == p.mu )
// ==>
// old(o.mu) == p.mu)
val (oV, o) = Boogie.NewBVar("o", tref, false)
val (pV, p) = Boogie.NewBVar("p", tref, false)
val b1 = new Boogie.Forall(List(oV,pV), List(),
((0 < Boogie.MapSelect(oldEtran.Heap, o, "held")) &&
oldEtran.IsHighestLock(Boogie.MapSelect(oldEtran.Heap, o, "mu")) &&
(0 < Boogie.MapSelect(Heap, p, "held")) &&
IsHighestLock(Boogie.MapSelect(Heap, p, "mu")))
==>
(Boogie.MapSelect(oldEtran.Heap, o, "mu") ==@ Boogie.MapSelect(Heap, p, "mu")))
b0 || b1
}
def TemporalMaxLockComparison(e0: ExpressionTranslator, e1: ExpressionTranslator) = { // e0(maxlock) << e1(maxlock)
// (exists o ::
// e1(o.held) &&
// (forall r :: e0(r.held) ==> e0(r.mu) << e1(o.mu)))
val (oV, o) = Boogie.NewBVar("o", tref, false)
new Boogie.Exists(oV,
(0 < Boogie.MapSelect(e0.Heap, o, "held")) &&
e0.MaxLockIsBelowX(Boogie.MapSelect(e1.Heap, o, "mu")))
}
def fractionOk(expr: Expression) = {
bassert(0<=Tr(expr), expr.pos, "Fraction might be negative.") ::
bassert(Tr(expr) <= 100, expr.pos, "Fraction might exceed 100.")
}
}
object S_ExpressionTranslator {
val Globals = {
("Heap", theap) ::
("Mask", tmask) ::
Nil
}
}
// implicit
implicit def string2VarExpr(s: String) = VarExpr(s)
implicit def expression2Expr(e: Expression) = etran.Tr(e)
implicit def field2Expr(f: Field) = VarExpr(f.FullName)
// prelude
def ModuleType = NamedType("ModuleName");
def ModuleName(cl: Class) = "module#" + cl.module.id;
def TypeName = NamedType("TypeName");
def FieldType(tp: BType) = IndexedType("Field", tp);
def bassert(e: Expr, pos: Position, msg: String) = {
val result = Boogie.Assert(e); result.pos = pos; result.message = msg; result
}
def bassume(e: Expr) = Boogie.Assume(e)
def BLocal(id: String, tp: BType) = new Boogie.LocalVar(id, tp)
def BLocal(x: Boogie.BVar) = Boogie.LocalVar(x)
def tArgSeq = NamedType("ArgSeq");
def tref = NamedType("ref");
def tbool = NamedType("bool");
def tmu = NamedType("Mu");
def tint = NamedType("int");
def tseq(arg: BType) = IndexedType("Seq", arg)
def theap = NamedType("HeapType");
def tmask = NamedType("MaskType");
def ZeroMask = VarExpr("ZeroMask");
def HeapName = "Heap";
def MaskName = "Mask";
def Heap = VarExpr(HeapName);
def Mask = VarExpr(MaskName);
def GlobalNames = List(HeapName, MaskName);
def CanAssumeFunctionDefs = VarExpr("CanAssumeFunctionDefs");
def CurrentModule = VarExpr("CurrentModule");
def IsGoodState(e: Expr) = FunctionApp("IsGoodState", List(e));
def dtype(e: Expr) = FunctionApp("dtype", List(e))
def functionName(f: Function) = "#" + f.FullName;
def bnull = Boogie.Null();
def bLockBottom = VarExpr("$LockBottom")
def nonNull(e: Expr): Expr = e !=@ bnull
def isHeld(e: Expr): Expr = (0 < etran.Heap.select(e, "held"))
def isRdHeld(e: Expr): Expr = etran.Heap.select(e, "rdheld")
def isShared(e: Expr): Expr = etran.Heap.select(e, "mu") !=@ bLockBottom
def LastSeenHeap(sharedBit: Expr, heldBit: Expr) = FunctionApp("LastSeen$Heap", List(sharedBit, heldBit))
def LastSeenMask(sharedBit: Expr, heldBit: Expr) = FunctionApp("LastSeen$Mask", List(sharedBit, heldBit))
def AcquireHeap(heldBit: Expr) = FunctionApp("Acquire$Heap", List(heldBit))
def AcquireMask(heldBit: Expr) = FunctionApp("Acquire$Mask", List(heldBit))
def CallHeap(joinableBit: Expr) = FunctionApp("Call$Heap", List(joinableBit))
def CallMask(joinableBit: Expr) = FunctionApp("Call$Mask", List(joinableBit))
def CallArgs(joinableBit: Expr) = FunctionApp("Call$Args", List(joinableBit))
def submask(m1: Expr, m2: Expr) = FunctionApp("submask", List(m1, m2))
object TranslationHelper {
def wf(h: Expr, m: Expr) = FunctionApp("wf", List(h, m));
def IsGoodMask(m: Expr) = FunctionApp("IsGoodMask", List(m))
def IsGoodInhaleState(a: Expr, b: Expr, c: Expr) = FunctionApp("IsGoodInhaleState", List(a, b, c))
def isHeldInHeap(e: Expr, h: Expr) = 0 < h.select(e, "held")
def NonEmptyMask(m: Expr) = ! FunctionApp("EmptyMask", List(m))
def NonPredicateField(f: String) = FunctionApp("NonPredicateField", List(VarExpr(f)))
def PredicateField(f: String) = FunctionApp("PredicateField", List(VarExpr(f)))
def createEmptySeq = FunctionApp("Seq#Empty", List())
def createSingletonSeq(e: Expr) = FunctionApp("Seq#Singleton", List(e))
def createAppendSeq(a: Expr, b: Expr) = FunctionApp("Seq#Append", List(a, b))
def createRange(min: Expr, max: Expr) = FunctionApp("Seq#Range", List(min, max))
def cast(a: Expr, b: Expr) = FunctionApp("cast", List(a, b))
// implicit conversions
implicit def bool2Bool(b: Boolean): Boogie.BoolLiteral = Boogie.BoolLiteral(b)
implicit def int2Int(n: int): Boogie.IntLiteral = Boogie.IntLiteral(n)
implicit def lift(s: Boogie.Stmt): List[Boogie.Stmt] = List(s)
implicit def type2BType(tp: Type): BType = {
val cl = tp.typ;
if(cl.IsRef) {
tref
} else if(cl.IsBool) {
tbool
} else if(cl.IsMu) {
tmu
} else if(cl.IsInt) {
tint
} else if(cl.IsSeq) {
tseq(type2BType(new Type(cl.asInstanceOf[SeqClass].parameter)))
} else {
assert(false); null
}
}
implicit def decl2DeclList(decl: Decl): List[Decl] = List(decl)
implicit def function2RichFunction(f: Function) = RichFunction(f);
case class RichFunction(f: Function) {
def apply(args: List[Expr]) = {
FunctionApp(functionName(f), args)
}
}
def Variable2BVar(v: Variable) = new Boogie.BVar(v.UniqueName, Boogie.ClassType(v.t.typ))
def Variable2BVarWhere(v: Variable) = NewBVarWhere(v.UniqueName, v.t)
def NewBVarWhere(id: String, tp: Type) = {
new Boogie.BVar(id, Boogie.ClassType(tp.typ)){
override val where = TypeInformation(new Boogie.VarExpr(id), tp) }
}
// scale an expression by a fraction
def FractionOf(expr: Expression, fraction: Expression) : Expression = {
val result = expr match {
case Access(e, None) => Access(e, Some(fraction))
case And(lhs, rhs) => And(FractionOf(lhs, fraction), FractionOf(rhs, fraction))
case _ if ! expr.isInstanceOf[PermissionExpr] => expr
case _ => throw new Exception(" " + expr.pos + ": Scaling non-full permissions is not supported yet." + expr);
}
result.pos = expr.pos;
result
}
def canTakeFractionOf(expr: Expression): Boolean = {
expr match {
case Access(e, None) => true
case And(lhs, rhs) => canTakeFractionOf(lhs) && canTakeFractionOf(rhs)
case _ if ! expr.isInstanceOf[PermissionExpr] => true
case _ => false
}
}
// scale an expression by a number of epsilons
def EpsilonsOf(expr: Expression, nbEpsilons: Expression) : Expression = {
val result = expr match {
case Access(e, _) => RdAccess(e, Some(Some(nbEpsilons)))
case And(lhs, rhs) => And(FractionOf(lhs, nbEpsilons), FractionOf(rhs, nbEpsilons))
case _ if ! expr.isInstanceOf[PermissionExpr] => expr
case _ => throw new Exception(" " + expr.pos + ": Scaling non-full permissions is not supported yet." + expr);
}
result.pos = expr.pos;
result
}
def canTakeEpsilonsOf(expr: Expression): Boolean = {
expr match {
case Access(e, _) => true
case And(lhs, rhs) => canTakeEpsilonsOf(lhs) && canTakeEpsilonsOf(rhs)
case _ if ! expr.isInstanceOf[PermissionExpr] => true
case _ => false
}
}
def TrType(cl: Class) = Boogie.VarExpr(cl.id + "#t")
def TypeInformation(e: Boogie.Expr, t: Type): Boogie.Expr = {
if (t.typ.IsRef) {
(e ==@ Boogie.Null()) || (new Boogie.FunctionApp("dtype", e) ==@ TrType(t.typ))
} else {
true
}
}
def Version(expr: Expression, etran: ExpressionTranslator): Boogie.Expr =
{
expr match{
case pred@MemberAccess(e, p) if pred.isPredicate =>
Version(Access(pred, None), etran)
case acc@Access(e,perm) =>
val memberName = if(e.isPredicate) e.predicate.FullName else e.f.FullName;
Boogie.MapSelect(etran.Heap, etran.Tr(e.e), memberName)
case rd@RdAccess(e,perm) =>
val memberName = if(e.isPredicate) e.predicate.FullName else e.f.FullName;
Boogie.MapSelect(etran.Heap, etran.Tr(e.e), memberName)
case Implies(e0,e1) =>
Boogie.Ite(etran.Tr(e0), Version(e1, etran), 0)
case And(e0,e1) =>
Boogie.FunctionApp("combine", List(Version(e0, etran), Version(e1, etran)))
case IfThenElse(con, then, els) =>
Boogie.Ite(etran.Tr(con), Version(then, etran), Version(els, etran))
case e => Boogie.VarExpr("nostate")
}
}
def FieldTp(f: Field): String = {
f match {
case SpecialField("mu", _) => "Mu"
case SpecialField("held", _) => "int"
case SpecialField("rdheld", _) => "bool"
case SpecialField("joinable", _) => "int"
case f: Field => TrClass(f.typ.typ)
}
}
def TrClass(tp: Class): String = {
tp.id match {
case "int" => "int"
case "bool" => "bool"
case "$Mu" => "Mu"
case _ => if(tp.IsSeq) "seq" else "ref"
}
}
def Preconditions(spec: List[Specification]): List[Expression] = {
val result = spec flatMap ( s => s match {
case Precondition(e) => List(e)
case _ => Nil });
if(autoMagic) {
automagic(result.foldLeft(BoolLiteral(true): Expression)({ (a, b) => And(a, b)}), Nil)._1 ::: result
} else {
result
}
}
def Postconditions(spec: List[Specification]): List[Expression] = {
val result = spec flatMap ( s => s match {
case Postcondition(e) => List(e)
case _ => Nil })
if(autoMagic) {
automagic(result.foldLeft(BoolLiteral(true): Expression)({ (a, b) => And(a, b)}), Nil)._1 ::: result
} else {
result
}
}
def automagic(expr: Expression, handled: List[Expression]): (/*assumptions*/ List[Expression], /*newHandled*/List[Expression]) = {
def isHandled(e: Expression) = handled exists { ex => ex.equals(e) }
expr match {
case ma@MemberAccess(obj, f) =>
val (assumptions, handled1) = automagic(obj, handled);
if(isHandled(ma)) {
(assumptions, handled1)
} else {
if(ma.isPredicate){
// assumption: obj!=null
(assumptions ::: Neq(obj, NullLiteral()) :: Nil, handled1 + ma)
} else {
// assumption: obj!=null && acc(obj, f)
(assumptions ::: Neq(obj, NullLiteral()) :: Access(ma, None) :: Nil, handled1 + ma)
}
}
case Access(ma@MemberAccess(obj, f), perm) =>
val (assumptions, handled1) = automagic(obj, handled + ma);
perm match {
case None => (assumptions, handled1);
case Some(fraction) => val result = automagic(fraction, handled1); (assumptions ::: result._1, result._2)
}
case RdAccess(ma@MemberAccess(obj, f), perm) =>
val (assumptions, handled1) = automagic(obj, handled + ma);
perm match {
case None => (assumptions, handled1);
case Some(None) => (assumptions, handled1);
case Some(Some(epsilon)) => val result = automagic(epsilon, handled1); (assumptions ::: result._1, result._2)
}
case AccessAll(obj, perm) =>
automagic(obj, handled)
case RdAccessAll(obj, perm) =>
automagic(obj, handled)
case Holds(e) =>
automagic(e, handled)
case RdHolds(e) =>
automagic(e, handled)
case a: Assigned =>
(Nil, handled)
case Old(e) =>
(Nil, handled) // ??
case IfThenElse(con, then, els) =>
val (assumptions, handled1) = automagic(con, handled);
val (assumptions2, handled2) = automagic(then, handled1);
val result = automagic(els, handled2);
(assumptions ::: assumptions2 ::: result._1, result._2)
case Not(e) =>
automagic(e, handled)
case func@FunctionApplication(obj, id, args) =>
var assumption = Nil: List[Expression];
var newHandled = handled;
for(a <- obj :: args) {
val (ass, hd) = automagic(a, handled);
assumption = assumption ::: ass;
newHandled = hd;
}
(assumption, newHandled)
case uf@Unfolding(_, e) =>
(Nil, handled)
case bin: BinaryExpr =>
val (assumptions, handled1) = automagic(bin.E0, handled);
val result = automagic(bin.E1, handled1);
(assumptions ::: result._1, result._2)
case q@Forall(is, Range(min, max), e) =>
(Nil, handled)
case q@Forall(is, seq, e) =>
(Nil, handled)
case EmptySeq(t) =>
(Nil, handled)
case ExplicitSeq(es) =>
var assumption = Nil: List[Expression];
var newHandled = handled;
for(a <- es) {
val (ass, hd) = automagic(a, handled);
assumption = assumption ::: ass;
newHandled = hd;
}
(assumption, newHandled)
case Range(min, max) =>
val (assumptions, handled1) = automagic(min, handled);
val result = automagic(max, handled1);
(assumptions ::: result._1, result._2)
case Length(e) =>
automagic(e, handled)
case Eval(h, e) =>
(Nil, handled)
case _ => (Nil, handled)
}
}
def DefinitionOf(predicate: Predicate): Expression = {
if(autoMagic) {
And(automagic(predicate.definition, Nil)._1.foldLeft(BoolLiteral(true): Expression)({ (a, b) => And(a, b)}), predicate.definition)
} else {
predicate.definition
}
}
def LockChanges(spec: List[Specification]): List[Expression] = {
spec flatMap ( s => s match {
case LockChange(ee) => ee
case _ => Nil })
}
def SubstRd(e: Expression): Expression = e match {
case Access(e,_) =>
val r = RdAccess(e,None); r.typ = BoolClass; r
case e: RdAccess => e
case Implies(e0,e1) =>
val r = Implies(e0, SubstRd(e1)); r.typ = BoolClass; r
case And(e0,e1) =>
val r = And(SubstRd(e0), SubstRd(e1)); r.typ = BoolClass; r
case e => e
}
}
def UnfoldPredicatesWithReceiverThis(expr: Expression): Expression = {
def unfoldPred(e: Expression): Expression = {
e match {
case pred@MemberAccess(o, f) if pred.isPredicate && o.isInstanceOf[ThisExpr] =>
SubstThis(DefinitionOf(pred.predicate), o)
case Access(pred@MemberAccess(o, f), p) if pred.isPredicate && o.isInstanceOf[ThisExpr] =>
p match {
case None => SubstThis(DefinitionOf(pred.predicate), o)
case Some(p) => FractionOf(SubstThis(DefinitionOf(pred.predicate), o), p)
}
case RdAccess(pred@MemberAccess(o, f), p) if pred.isPredicate && o.isInstanceOf[ThisExpr] =>
p match {
case None => EpsilonsOf(SubstThis(DefinitionOf(pred.predicate), o), IntLiteral(1))
case Some(None) => throw new Exception("not supported yet")
case Some(Some(p)) => EpsilonsOf(SubstThis(DefinitionOf(pred.predicate), o), p)
}
case func@FunctionApplication(obj: ThisExpr, name, args) if 2<=TranslationOptions.defaults =>
SubstThisAndVars(func.f.definition, obj, func.f.ins, args)
case _ => manipulate(e, {ex => unfoldPred(ex)})
}
}
unfoldPred(expr)
}
// needed to do a _simultaneous_ substitution!
def SubstThisAndVars(expr: Expression, thisReplacement: Expression, vs: List[Variable], xs: List[Expression]): Expression = {
def replace(e: Expression): Expression = {
e match {
case _: ThisExpr => thisReplacement
case e: VariableExpr =>
for ((v,x) <- vs zip xs if v == e.v) { return x }
e
case q@Forall(is, seq, e) =>
val sub = vs zip xs filter { xv => is forall { variable => ! variable.id.equals(xv._1)}};
val result = Forall(is, SubstThisAndVars(seq, thisReplacement, vs, xs), SubstThisAndVars(e, thisReplacement, sub map { x => x._1}, sub map { x => x._2}));
result.variables = q.variables;
result
case _ => manipulate(e, {ex => replace(ex)})
}
}
replace(expr)
}
def SubstThis(expr: Expression, x: Expression): Expression = {
def replaceThis(e: Expression): Expression = {
e match {
case _: ThisExpr => x
case _ => manipulate(e, {ex => replaceThis(ex)})
}
}
replaceThis(expr)
}
def SubstResult(expr: Expression, x: Expression): Expression = {
def replaceThis(e: Expression): Expression = {
e match {
case _: Result => x
case _ => manipulate(e, {ex => replaceThis(ex)})
}
}
replaceThis(expr)
}
def SubstVars(expr: Expression, vs: List[Variable], xs: List[Expression]): Expression = {
def replaceThis(e: Expression): Expression = {
e match {
case e: VariableExpr =>
for ((v,x) <- vs zip xs if v == e.v) { return x }
e
case q@Forall(is, seq, e) =>
val sub = vs zip xs filter { xv => is forall { variable => ! variable.id.equals(xv._1)}};
val result = Forall(is, SubstVars(seq, vs, xs), SubstVars(e, sub map { x => x._1}, sub map { x => x._2}));
result.variables = q.variables;
result
case _ => manipulate(e, {ex => replaceThis(ex)})
}
}
replaceThis(expr)
}
def manipulate(expr: Expression, func: Expression => Expression): Expression = {
val result = expr match {
case e: Literal => expr
case _:ThisExpr => expr
case _:Result => expr
case e:VariableExpr => expr
case acc@MemberAccess(e,f) =>
val g = MemberAccess(func(e), f); g.f = acc.f; g.predicate = acc.predicate; g.isPredicate = acc.isPredicate; g
case Access(e, perm) =>
Access(func(e).asInstanceOf[MemberAccess],
perm match { case None => perm case Some(perm) => Some(func(perm)) })
case RdAccess(e, perm) =>
RdAccess(func(e).asInstanceOf[MemberAccess],
perm match { case Some(Some(p)) => Some(Some(func(p))) case _ => perm })
case AccessAll(obj, perm) =>
AccessAll(func(obj),
perm match { case None => perm case Some(perm) => Some(func(perm)) })
case RdAccessAll(obj, perm) =>
RdAccessAll(func(obj),
perm match { case Some(Some(p)) => Some(Some(func(p))) case _ => perm })
case Holds(e) => Holds(func(e))
case RdHolds(e) => RdHolds(func(e))
case e: Assigned => e
case Old(e) => Old(func(e))
case IfThenElse(con, then, els) => IfThenElse(func(con), func(then), func(els))
case Not(e) => Not(func(e))
case funapp@FunctionApplication(obj, id, args) =>
val appl = FunctionApplication(func(obj), id, args map { arg => func(arg)}); appl.f = funapp.f; appl
case Unfolding(pred, e) =>
Unfolding(func(pred).asInstanceOf[PermissionExpr], func(e))
case Iff(e0,e1) => Iff(func(e0), func(e1))
case Implies(e0,e1) => Implies(func(e0), func(e1))
case And(e0,e1) => And(func(e0), func(e1))
case Or(e0,e1) => Or(func(e0), func(e1))
case Eq(e0,e1) => Eq(func(e0), func(e1))
case Neq(e0,e1) => Neq(func(e0), func(e1))
case Less(e0,e1) => Less(func(e0), func(e1))
case AtMost(e0,e1) => AtMost(func(e0), func(e1))
case AtLeast(e0,e1) => AtLeast(func(e0), func(e1))
case Greater(e0,e1) => Greater(func(e0), func(e1))
case LockBelow(e0,e1) => LockBelow(func(e0), func(e1))
case Plus(e0,e1) => Plus(func(e0), func(e1))
case Minus(e0,e1) => Minus(func(e0), func(e1))
case Times(e0,e1) => Times(func(e0), func(e1))
case Div(e0,e1) => Div(func(e0), func(e1))
case Mod(e0,e1) => Mod(func(e0), func(e1))
case forall@Forall(i, seq, e) => val result = Forall(i, func(seq), func(e)); result.variables = forall.variables; result
case ExplicitSeq(es) =>
ExplicitSeq(es map { e => func(e) })
case Range(min, max)=>
Range(func(min), func(max))
case Append(e0, e1) =>
Append(func(e0), func(e1))
case At(e0, e1) =>
At(func(e0), func(e1))
case Drop(e0, e1) =>
Drop(func(e0), func(e1))
case Take(e0, e1) =>
Take(func(e0), func(e1))
case Length(e) =>
Length(func(e))
case Eval(h, e) =>
Eval(h match {
case AcquireState(obj) => AcquireState(func(obj))
case ReleaseState(obj) => ReleaseState(func(obj))
case CallState(token, obj, i, args) => CallState(func(token), func(obj), i, args map { a => func(a)})
}, func(e))
}
if(result.typ == null) {
result.typ = expr.typ;
}
result.pos = expr.pos
result
}
}
|