diff options
author | Checkmate50 <dgeisler50@gmail.com> | 2016-06-06 23:14:18 -0600 |
---|---|---|
committer | Checkmate50 <dgeisler50@gmail.com> | 2016-06-06 23:14:18 -0600 |
commit | d652155ae013f36a1ee17653a8e458baad2d9c2c (patch) | |
tree | 067d600fe3cd1723afc11682935f0123a1eab653 /Source/AbsInt/IntervalDomain.cs | |
parent | d7fc0deb2ca6d7ebee094b6ea5430d9b41f163ec (diff) |
Merging complete. Everything looks good *crosses fingers*
Diffstat (limited to 'Source/AbsInt/IntervalDomain.cs')
-rw-r--r-- | Source/AbsInt/IntervalDomain.cs | 2428 |
1 files changed, 1218 insertions, 1210 deletions
diff --git a/Source/AbsInt/IntervalDomain.cs b/Source/AbsInt/IntervalDomain.cs index d5a5efc9..0dd78cbb 100644 --- a/Source/AbsInt/IntervalDomain.cs +++ b/Source/AbsInt/IntervalDomain.cs @@ -1,1210 +1,1218 @@ -using System;
-using System.Numerics;
-using System.Collections.Generic;
-using System.Diagnostics.Contracts;
-using Microsoft.Basetypes;
-
-namespace Microsoft.Boogie.AbstractInterpretation
-{
- class NativeIntervallDomain : NativeLattice
- {
- abstract class E_Common : NativeLattice.Element { }
- class E_Bottom : E_Common
- {
- public override Expr ToExpr() {
- return Expr.False;
- }
- }
- class E : E_Common
- {
- public readonly Node N;
- public E() { }
- public E(Node n) {
- N = n;
- }
-
- public override Expr ToExpr() {
- Expr expr = Expr.True;
- for (var n = N; n != null; n = n.Next) {
- expr = BplAnd(expr, n.ToExpr());
- }
- return expr;
- }
- }
- public class Node
- {
- public readonly Variable V; // variable has type bool or int
- // For an integer variable (Lo,Hi) indicates Lo <= V < Hi, where Lo==null means no lower bound and Hi==null means no upper bound.
- // For a real variable (Lo,Hi) indicates Lo <= V <= Hi, where Lo==null means no lower bound and Hi==null means no upper bound.
- // For a boolean variable, (Lo,Hi) is one of: (null,null) for {false,true}, (null,1) for {false}, and (1,null) for {true}.
- public readonly BigInteger? Lo;
- public readonly BigInteger? Hi;
- public Node Next; // always sorted according to StrictlyBefore; readonly after full initialization
- [Pure]
- public static bool StrictlyBefore(Variable a, Variable b) {
- Contract.Assert(a.UniqueId != b.UniqueId || a == b);
- return a.UniqueId < b.UniqueId;
- }
-
- Node(Variable v, BigInteger? lo, BigInteger? hi, Node next) {
- Contract.Requires(lo != null || hi != null); // don't accept empty constraints
- Contract.Requires(next == null || StrictlyBefore(v, next.V));
- V = v;
- Lo = lo;
- Hi = hi;
- Next = next;
- }
-
- /// <summary>
- /// This constructor leaves Next as null, allowing the caller to fill in Next to finish off the construction.
- /// </summary>
- public Node(Variable v, BigInteger? lo, BigInteger? hi) {
- Contract.Requires(lo != null || hi != null); // don't accept empty constraints
- V = v;
- Lo = lo;
- Hi = hi;
- }
-
- /// <summary>
- /// Returns a Node that has the constraints head.{V,Lo,Hi} plus
- /// all the constraints entailed by Nodes reachable from tail.
- /// Requires that "head" sorts no later than anything in "tail".
- /// Create either returns "head" itself or returns a new Node.
- /// </summary>
- public static Node Create(Node head, Node tail) {
- Contract.Requires(head != null);
- Contract.Requires(tail == null || !StrictlyBefore(tail.V, head.V));
- Contract.Requires(head != tail);
-
- if (head.Next == tail) {
- return head;
- } else if (tail != null && head.V == tail.V) {
- // incorporate both constraints into one Node
- return new Node(head.V, Max(head.Lo, tail.Lo, true), Min(head.Lo, tail.Lo, true), tail.Next);
- } else {
- return new Node(head.V, head.Lo, head.Hi, tail);
- }
- }
-
- public static void GetBounds(Node n, Variable v, out BigInteger? lo, out BigInteger? hi) {
- for (; n != null; n = n.Next) {
- if (n.V == v) {
- lo = n.Lo;
- hi = n.Hi;
- return;
- } else if (StrictlyBefore(v, n.V)) {
- break;
- }
- }
- lo = null;
- hi = null;
- }
-
- /// <summary>
- /// Return the minimum of "a" and "b". If treatNullAsUnit==true, then "null" is
- /// interpreted as positive infinity (the unit element of min); otherwise, it is
- /// treated as negative infinity (the zero element of min).
- /// </summary>
- public static BigInteger? Min(BigInteger? a, BigInteger? b, bool treatNullAsUnit) {
- if (a == null) {
- return treatNullAsUnit ? b : a;
- } else if (b == null) {
- return treatNullAsUnit ? a : b;
- } else {
- return BigInteger.Min((BigInteger)a, (BigInteger)b);
- }
- }
-
- /// <summary>
- /// Return the maximum of "a" and "b". If treatNullAsUnit==true, then "null" is
- /// interpreted as negative infinity (the unit element of max); otherwise, it is
- /// treated as positive infinity (the zero element of max).
- /// </summary>
- public static BigInteger? Max(BigInteger? a, BigInteger? b, bool treatNullAsUnit) {
- if (a == null) {
- return treatNullAsUnit ? b : a;
- } else if (b == null) {
- return treatNullAsUnit ? a : b;
- } else {
- return BigInteger.Max((BigInteger)a, (BigInteger)b);
- }
- }
-
- public static IEnumerable<Tuple<Node, Node>> Merge(Node a, Node b) {
- while (true) {
- if (a == null && b == null) {
- yield break;
- } else if (a == null || b == null) {
- yield return new Tuple<Node, Node>(a, b);
- if (a != null) { a = a.Next; } else { b = b.Next; }
- } else if (a.V == b.V) {
- yield return new Tuple<Node, Node>(a, b);
- a = a.Next; b = b.Next;
- } else if (StrictlyBefore(a.V, b.V)) {
- yield return new Tuple<Node, Node>(a, null);
- a = a.Next;
- } else {
- yield return new Tuple<Node, Node>(null, b);
- b = b.Next;
- }
- }
- }
-
- public Expr ToExpr() {
- if (!V.IsMutable && CommandLineOptions.Clo.InstrumentInfer != CommandLineOptions.InstrumentationPlaces.Everywhere) {
- // omit invariants about readonly variables
- return Expr.True;
- } else if (V.TypedIdent.Type.IsBool) {
- if (Lo == null && Hi == null) {
- return Expr.True;
- } else {
- Contract.Assert((Lo == null && (BigInteger)Hi == 1) || (Hi == null && (BigInteger)Lo == 1));
- var ide = new IdentifierExpr(Token.NoToken, V);
- return Hi == null ? ide : Expr.Not(ide);
- }
- } else if (V.TypedIdent.Type.IsInt) {
- Expr e = Expr.True;
- if (Lo != null && Hi != null && Lo + 1 == Hi) {
- // produce an equality
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type)));
- } else {
- // produce a (possibly empty) conjunction of inequalities
- if (Lo != null) {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide));
- }
- if (Hi != null) {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLt(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type)));
- }
- }
- return e;
- } else if (V.TypedIdent.Type.IsReal){
- Expr e = Expr.True;
- if (Lo != null && Hi != null && Lo == Hi) {
- // produce an equality
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type)));
- } else {
- // produce a (possibly empty) conjunction of inequalities
- if (Lo != null) {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide));
- }
- if (Hi != null) {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLe(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type)));
- }
- }
- return e;
- } else {
- Contract.Assert(V.TypedIdent.Type.IsFloat);
- Expr e = Expr.True;
- if (Lo != null && Hi != null && Lo == Hi)
- {
- // produce an equality
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type)));
- }
- else
- {
- // produce a (possibly empty) conjunction of inequalities
- if (Lo != null)
- {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide));
- }
- if (Hi != null)
- {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLe(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type)));
- }
- }
- return e;
- }
- }
- }
-
- static Expr NumberToExpr(BigInteger n, Type ty) {
- if (n == null) {
- return null;
- } else if (ty.IsReal) {
- return Expr.Literal(Basetypes.BigDec.FromBigInt(n));
- } else if (ty.IsFloat) {
- return Expr.Literal(Basetypes.BigFloat.FromBigInt(n, ty.FloatExponent, ty.FloatMantissa));
- } else {
- Contract.Assume(ty.IsInt);
- return Expr.Literal(Basetypes.BigNum.FromBigInt(n));
- }
- }
-
- List<BigInteger> upThresholds; // invariant: thresholds are sorted
- List<BigInteger> downThresholds; // invariant: thresholds are sorted
-
- /// <summary>
- /// Requires "thresholds" to be sorted.
- /// </summary>
- public NativeIntervallDomain() {
- upThresholds = new List<BigInteger>();
- downThresholds = new List<BigInteger>();
- }
-
- public override void Specialize(Implementation impl) {
- if (impl == null) {
- // remove thresholds
- upThresholds = new List<BigInteger>();
- downThresholds = new List<BigInteger>();
- } else {
- var tf = new ThresholdFinder(impl);
- tf.Find(out downThresholds, out upThresholds);
-#if DEBUG_PRINT
- Console.Write("DEBUG: for implementation '{0}', setting downs to [", impl.Name);
- foreach (var i in downThresholds) {
- Console.Write(" {0}", i);
- }
- Console.Write(" ] and ups to [");
- foreach (var i in upThresholds) {
- Console.Write(" {0}", i);
- }
- Console.WriteLine(" ]");
-#endif
- }
- base.Specialize(impl);
- }
-
- private E_Common top = new E();
- private E_Common bottom = new E_Bottom();
-
- public override Element Top { get { return top; } }
- public override Element Bottom { get { return bottom; } }
-
- public override bool IsTop(Element element) {
- var e = element as E;
- return e != null && e.N == null;
- }
- public override bool IsBottom(Element element) {
- return element is E_Bottom;
- }
-
- public override bool Below(Element a, Element b) {
- if (a is E_Bottom) {
- return true;
- } else if (b is E_Bottom) {
- return false;
- } else {
- var aa = (E)a;
- var bb = (E)b;
- // check if every constraint in 'bb' is implied by constraints in 'aa'
- foreach (var t in Node.Merge(aa.N, bb.N)) {
- var x = t.Item1;
- var y = t.Item2;
- if (x == null) {
- // bb constrains a variable that aa does not
- return false;
- } else if (y == null) {
- // aa constrains a variable that bb does not; that's fine
- } else if (y.Lo != null && (x.Lo == null || x.Lo < y.Lo)) {
- // bb has a Lo constraint, and either aa has no Lo constraint or it has a weaker Lo constraint
- return false;
- } else if (y.Hi != null && (x.Hi == null || y.Hi < x.Hi)) {
- // bb has a Hi o constraint, and either aa has no Hi constraint or it has a weaker Hi constraint
- return false;
- }
- }
- return true;
- }
- }
-
- public override Element Meet(Element a, Element b) {
- if (a is E_Bottom) {
- return a;
- } else if (b is E_Bottom) {
- return b;
- } else {
- var aa = (E)a;
- var bb = (E)b;
- Node head = null;
- Node prev = null;
- foreach (var t in Node.Merge(aa.N, bb.N)) {
- var x = t.Item1;
- var y = t.Item2;
- Node n;
- if (x == null) {
- n = new Node(y.V, y.Lo, y.Hi);
- } else if (y == null) {
- n = new Node(x.V, x.Lo, x.Hi);
- } else {
- var lo = Node.Max(x.Lo, y.Lo, true);
- var hi = Node.Min(x.Hi, y.Hi, true);
- // if hi<=lo (or hi<lo for reals), then we're overconstrained
- if (lo != null && hi != null && (x.V.TypedIdent.Type.IsReal ? hi < lo : hi <= lo)) {
- return bottom;
- }
- n = new Node(x.V, lo, hi);
- }
- if (head == null) {
- head = n;
- } else {
- prev.Next = n;
- }
- prev = n;
- }
- return new E(head);
- }
- }
-
- public override Element Join(Element a, Element b) {
- if (a is E_Bottom) {
- return b;
- } else if (b is E_Bottom) {
- return a;
- } else {
- var aa = (E)a;
- var bb = (E)b;
- // for each variable, take the weaker of the constraints
- Node head = null;
- Node prev = null;
- foreach (var t in Node.Merge(aa.N, bb.N)) {
- if (t.Item1 != null && t.Item2 != null) {
- var lo = Node.Min(t.Item1.Lo, t.Item2.Lo, false);
- var hi = Node.Max(t.Item1.Hi, t.Item2.Hi, false);
- if (lo != null || hi != null) {
- var n = new Node(t.Item1.V, lo, hi);
- if (head == null) {
- head = n;
- } else {
- prev.Next = n;
- }
- prev = n;
- }
- }
- }
- return new E(head);
- }
- }
-
- public override Element Widen(Element a, Element b) {
- if (a is E_Bottom) {
- return b; // since this is done just once, we maintain the ascending chains property
- } else if (b is E_Bottom) {
- return a;
- } else {
- var aa = (E)a;
- var bb = (E)b;
- // return a subset of the constraints of aa, namely those that are implied by bb
- Node head = null;
- Node prev = null;
- foreach (var t in Node.Merge(aa.N, bb.N)) {
- var x = t.Item1;
- var y = t.Item2;
- if (x != null && y != null) {
- BigInteger? lo, hi;
- lo = hi = null;
- if (x.Lo != null && y.Lo != null) {
- if (x.Lo <= y.Lo) {
- // okay, we keep the lower bound
- lo = x.Lo;
- } else {
- // set "lo" to the threshold that is below (or equal) y.Lo
- lo = RoundDown((BigInteger)y.Lo);
- }
- }
- if (x.Hi != null && y.Hi != null) {
- if (y.Hi <= x.Hi) {
- // okay, we keep the upper bound
- hi = x.Hi;
- } else {
- // set "hi" to the threshold that is above (or equal) y.Hi
- hi = RoundUp((BigInteger)y.Hi);
- }
- }
- if (lo != null || hi != null) {
- var n = new Node(x.V, lo, hi);
- if (head == null) {
- head = n;
- } else {
- prev.Next = n;
- }
- prev = n;
- }
- }
- }
- return new E(head);
- }
- }
-
- /// <summary>
- /// For a proof of correctness of this method, see Test/dafny2/Intervals.dfy.
- /// A difference is that the this method returns:
- /// let d = Dafny_RoundDown(k);
- /// return d == -1 ? null : downThresholds[d];
- /// </summary>
- BigInteger? RoundDown(BigInteger k)
- {
- if (downThresholds.Count == 0 || k < downThresholds[0]) {
- return null;
- }
- var i = 0;
- var j = downThresholds.Count - 1;
- while (i < j)
- {
- var mid = i + (j - i + 1) / 2;
- if (downThresholds[mid] <= k) {
- i = mid;
- } else {
- j = mid - 1;
- }
- }
- return downThresholds[i];
- }
-
- /// <summary>
- /// For a proof of correctness of this method, see Test/dafny2/Intervals.dfy.
- /// A difference is that the this method returns:
- /// let d = Dafny_RoundUp(k);
- /// return d == thresholds.Count ? null : upThresholds[d];
- /// </summary>
- BigInteger? RoundUp(BigInteger k)
- {
- if (upThresholds.Count == 0 || upThresholds[upThresholds.Count - 1] < k) {
- return null;
- }
- var i = 0;
- var j = upThresholds.Count - 1;
- while (i < j)
- {
- var mid = i + (j - i) / 2;
- if (upThresholds[mid] < k) {
- i = mid + 1;
- } else {
- j = mid;
- }
- }
- return upThresholds[i];
- }
-
- public override Element Constrain(Element element, Expr expr) {
- if (element is E_Bottom) {
- return element;
- } else {
- var e = (E)element;
- var c = Constraint(expr, e.N);
- return c == null ? element : Meet(element, c);
- }
- }
-
- /// <summary>
- /// Returns an Element that corresponds to the constraints implied by "expr" in the
- /// state "state".
- /// Return "null" to indicate no constraints.
- /// </summary>
- E_Common Constraint(Expr expr, Node state) {
- Variable v;
- if (IsVariable(expr, out v)) {
- var n = new Node(v, BigInteger.One, null);
- return new E(n);
- } else if (expr is LiteralExpr) {
- var e = (LiteralExpr)expr;
- return (bool)e.Val ? null : new E_Bottom();
- } else if (expr is NAryExpr) {
- var e = (NAryExpr)expr;
- if (e.Fun is UnaryOperator) {
- if (((UnaryOperator)e.Fun).Op == UnaryOperator.Opcode.Not) {
- if (IsVariable(e.Args[0], out v)) {
- var n = new Node(v, null, BigInteger.One);
- return new E(n);
- }
- }
- } else if (e.Fun is BinaryOperator) {
- var op = ((BinaryOperator)e.Fun).Op;
- var arg0 = e.Args[0];
- var arg1 = e.Args[1];
- switch (op) {
- case BinaryOperator.Opcode.Eq:
- case BinaryOperator.Opcode.Iff: {
- E_Common c = null;
- if (IsVariable(arg0, out v)) {
- BigInteger? lo, hi;
- if (PartiallyEvaluate(arg1, state, out lo, out hi)) {
- var n = new Node(v, lo, hi);
- c = new E(n);
- }
- }
- if (IsVariable(arg1, out v)) {
- BigInteger? lo, hi;
- if (PartiallyEvaluate(arg1, state, out lo, out hi)) {
- var n = new Node(v, lo, hi);
- c = c == null ? new E(n) : (E_Common)Meet(c, new E(n));
- }
- }
- return c;
- }
- case BinaryOperator.Opcode.Neq: {
- E_Common c = null;
- if (IsVariable(arg0, out v)) {
- c = ConstrainNeq(state, v, arg1);
- }
- if (IsVariable(arg1, out v)) {
- var cc = ConstrainNeq(state, v, arg0);
- if (cc != null) {
- c = c == null ? cc : (E_Common)Meet(c, cc);
- }
- }
- return c;
- }
- case BinaryOperator.Opcode.Le: {
- E_Common c = null;
- if (IsVariable(arg1, out v)) {
- BigInteger? lo, hi;
- PartiallyEvaluate(arg0, state, out lo, out hi);
- if (lo != null) {
- var n = new Node(v, lo, null);
- c = new E(n);
- }
- }
- if (IsVariable(arg0, out v)) {
- BigInteger? lo, hi;
- PartiallyEvaluate(arg1, state, out lo, out hi);
- if (hi != null) {
- var n = new Node(v, null, hi);
- c = c == null ? new E(n) : (E_Common)Meet(c, new E(n));
- }
- }
- return c;
- }
- case BinaryOperator.Opcode.Lt: {
- E_Common c = null;
- if (IsVariable(arg1, out v)) {
- BigInteger? lo, hi;
- PartiallyEvaluate(arg0, state, out lo, out hi);
- if (lo != null) {
- var n = new Node(v, v.TypedIdent.Type.IsReal ? lo : lo + 1, null);
- c = new E(n);
- }
- }
- if (IsVariable(arg0, out v)) {
- BigInteger? lo, hi;
- PartiallyEvaluate(arg1, state, out lo, out hi);
- if (hi != null) {
- var n = new Node(v, null, v.TypedIdent.Type.IsReal ? hi : hi - 1);
- c = c == null ? new E(n) : (E_Common)Meet(c, new E(n));
- }
- }
- return c;
- }
- case BinaryOperator.Opcode.Ge: {
- var tmp = arg0; arg0 = arg1; arg1 = tmp;
- goto case BinaryOperator.Opcode.Le;
- }
- case BinaryOperator.Opcode.Gt: {
- var tmp = arg0; arg0 = arg1; arg1 = tmp;
- goto case BinaryOperator.Opcode.Lt;
- }
- default:
- break;
- }
- }
- }
- return null; // approximation
- }
-
- private E ConstrainNeq(Node state, Variable v, Expr arg) {
- BigInteger? lo, hi;
- if (PartiallyEvaluate(arg, state, out lo, out hi)) {
- if (!v.TypedIdent.Type.IsReal && lo != null && hi != null && lo + 1 == hi) {
- var exclude = lo;
- // If the partially evaluated arg (whose value is "exclude") is an end-point of
- // the interval known for "v", then produce a constraint that excludes that bound.
- Node.GetBounds(state, v, out lo, out hi);
- if (lo != null && lo == exclude) {
- var n = new Node(v, lo + 1, null);
- return new E(n);
- } else if (hi != null && exclude + 1 == hi) {
- var n = new Node(v, null, exclude);
- return new E(n);
- }
- }
- }
- return null;
- }
-
- bool IsVariable(Expr expr, out Variable v) {
- var e = expr as IdentifierExpr;
- if (e == null) {
- v = null;
- return false;
- } else {
- v = e.Decl;
- return true;
- }
- }
-
- public override Element Update(Element element, AssignCmd cmd) {
- if (element is E_Bottom) {
- return element;
- }
- var e = (E)element;
- var nn = e.N;
- Contract.Assert(cmd.Lhss.Count == cmd.Rhss.Count);
- for (int i = 0; i < cmd.Lhss.Count; i++) {
- var lhs = cmd.Lhss[i];
- var rhs = cmd.Rhss[i];
- BigInteger? lo;
- BigInteger? hi;
- PartiallyEvaluate(rhs, e.N, out lo, out hi);
- nn = UpdateOne(nn, lhs.DeepAssignedVariable, lo, hi);
- }
- return new E(nn);
- }
-
- bool PartiallyEvaluate(Expr rhs, Node node, out BigInteger? lo, out BigInteger? hi) {
- var pe = new PEVisitor(node);
- pe.VisitExpr(rhs);
- lo = pe.Lo;
- hi = pe.Hi;
- return lo != null || hi != null;
- }
-
- class PEVisitor : ReadOnlyVisitor
- {
- public BigInteger? Lo;
- public BigInteger? Hi;
-
- readonly BigInteger one = BigInteger.One;
-
- Node N;
- public PEVisitor(Node n) {
- N = n;
- }
-
- // Override visitors for all expressions that can return a boolean, integer, or real result
-
- public override Expr VisitExpr(Expr node) {
- Lo = Hi = null;
- return base.VisitExpr(node);
- }
- public override Expr VisitLiteralExpr(LiteralExpr node) {
- if (node.Val is BigNum) {
- var n = ((BigNum)node.Val).ToBigInteger;
- Lo = n;
- Hi = n + 1;
- } else if (node.Val is BigDec) {
- BigInteger floor, ceiling;
- ((BigDec)node.Val).FloorCeiling(out floor, out ceiling);
- Lo = floor;
- Hi = ceiling;
- } else if (node.Val is BigFloat) {
- BigNum floor, ceiling;
- ((BigFloat)node.Val).FloorCeiling(out floor, out ceiling);
- Lo = floor.ToBigInteger;
- Hi = ceiling.ToBigInteger;
- } else if (node.Val is bool) {
- if ((bool)node.Val) {
- // true
- Lo = one;
- Hi = null;
- } else {
- // false
- Lo = null;
- Hi = one;
- }
- }
- return node;
- }
- public override Expr VisitIdentifierExpr(IdentifierExpr node) {
- if (node.Type.IsBool || node.Type.IsInt || node.Type.IsReal) {
- Node.GetBounds(N, node.Decl, out Lo, out Hi);
- }
- return node;
- }
- public override Expr VisitNAryExpr(NAryExpr node) {
- if (node.Fun is UnaryOperator) {
- var op = (UnaryOperator)node.Fun;
- Contract.Assert(node.Args.Count == 1);
- if (op.Op == UnaryOperator.Opcode.Neg) {
- BigInteger? lo, hi;
- VisitExpr(node.Args[0]);
- lo = Lo; hi = Hi;
- if (hi != null) {
- Lo = node.Type.IsReal ? -hi : 1 - hi;
- }
- if (lo != null) {
- Hi = node.Type.IsReal ? -lo : 1 - lo;
- }
- }
- else if (op.Op == UnaryOperator.Opcode.Not) {
- VisitExpr(node.Args[0]);
- Contract.Assert((Lo == null && Hi == null) ||
- (Lo == null && (BigInteger)Hi == 1) ||
- (Hi == null && (BigInteger)Lo == 1));
- var tmp = Lo;
- Lo = Hi;
- Hi = tmp;
- }
- } else if (node.Fun is BinaryOperator) {
- var op = (BinaryOperator)node.Fun;
- Contract.Assert(node.Args.Count == 2);
- BigInteger? lo0, hi0, lo1, hi1;
- VisitExpr(node.Args[0]);
- lo0 = Lo; hi0 = Hi;
- VisitExpr(node.Args[1]);
- lo1 = Lo; hi1 = Hi;
- Lo = Hi = null;
- var isReal = node.Args[0].Type.IsReal;
- switch (op.Op) {
- case BinaryOperator.Opcode.And:
- if (hi0 != null || hi1 != null) {
- // one operand is definitely false, thus so is the result
- Lo = null; Hi = one;
- } else if (lo0 != null && lo1 != null) {
- // both operands are definitely true, thus so is the result
- Lo = one; Hi = null;
- }
- break;
- case BinaryOperator.Opcode.Or:
- if (lo0 != null || lo1 != null) {
- // one operand is definitely true, thus so is the result
- Lo = one; Hi = null;
- } else if (hi0 != null && hi1 != null) {
- // both operands are definitely false, thus so is the result
- Lo = null; Hi = one;
- }
- break;
- case BinaryOperator.Opcode.Imp:
- if (hi0 != null || lo1 != null) {
- // either arg0 false or arg1 is true, so the result is true
- Lo = one; Hi = null;
- } else if (lo0 != null && hi1 != null) {
- // arg0 is true and arg1 is false, so the result is false
- Lo = null; Hi = one;
- }
- break;
- case BinaryOperator.Opcode.Iff:
- if (lo0 != null && lo1 != null) {
- Lo = one; Hi = null;
- } else if (hi0 != null && hi1 != null) {
- Lo = one; Hi = null;
- } else if (lo0 != null && hi1 != null) {
- Lo = null; Hi = one;
- } else if (hi0 != null && lo1 != null) {
- Lo = null; Hi = one;
- }
- if (op.Op == BinaryOperator.Opcode.Neq) {
- var tmp = Lo; Lo = Hi; Hi = tmp;
- }
- break;
- case BinaryOperator.Opcode.Eq:
- case BinaryOperator.Opcode.Neq:
- if (node.Args[0].Type.IsBool) {
- goto case BinaryOperator.Opcode.Iff;
- }
- // For Eq:
- // If the (lo0,hi0) and (lo1,hi1) ranges do not overlap, the answer is false.
- // If both ranges are the same unit range, then the answer is true.
- if (hi0 != null && lo1 != null && (isReal ? hi0 < lo1 : hi0 <= lo1)) {
- // no overlap
- Lo = null; Hi = one;
- } else if (lo0 != null && hi1 != null && (isReal ? hi1 < lo0 : hi1 <= lo0)) {
- Lo = null; Hi = one;
- // no overlaop
- } else if (lo0 != null && hi0 != null && lo1 != null && hi1 != null &&
- lo0 == lo1 && hi0 == hi1 && // ranges are the same
- (isReal ? lo0 == hi0 : lo0 + 1 == hi0)) { // unit range
- // both ranges are the same unit range
- Lo = one; Hi = null;
- }
- if (op.Op == BinaryOperator.Opcode.Neq) {
- var tmp = Lo; Lo = Hi; Hi = tmp;
- }
- break;
- case BinaryOperator.Opcode.Le:
- if (isReal) {
- // If hi0 <= lo1, then the answer is true.
- // If hi1 < lo0, then the answer is false.
- if (hi0 != null && lo1 != null && hi0 <= lo1) {
- Lo = one; Hi = null;
- } else if (hi1 != null && lo0 != null && hi1 < lo0) {
- Lo = null; Hi = one;
- }
- } else {
- // If hi0 - 1 <= lo1, then the answer is true.
- // If hi1 <= lo0, then the answer is false.
- if (hi0 != null && lo1 != null && hi0 - 1 <= lo1) {
- Lo = one; Hi = null;
- } else if (lo0 != null && hi1 != null && hi1 <= lo0) {
- Lo = null; Hi = one;
- }
- }
- break;
- case BinaryOperator.Opcode.Lt:
- if (isReal) {
- // If hi0 < lo1, then the answer is true.
- // If hi1 <= lo0, then the answer is false.
- if (hi0 != null && lo1 != null && hi0 < lo1) {
- Lo = one; Hi = null;
- } else if (hi1 != null && lo0 != null && hi1 <= lo0) {
- Lo = null; Hi = one;
- }
- } else {
- // If hi0 <= lo1, then the answer is true.
- // If hi1 - 1 <= lo0, then the answer is false.
- if (hi0 != null && lo1 != null && hi0 <= lo1) {
- Lo = one; Hi = null;
- } else if (lo0 != null && hi1 != null && hi1 - 1 <= lo0) {
- Lo = null; Hi = one;
- }
- }
- break;
- case BinaryOperator.Opcode.Gt:
- // swap the operands and then continue as Lt
- {
- var tmp = lo0; lo0 = lo1; lo1 = tmp;
- tmp = hi0; hi0 = hi1; hi1 = tmp;
- }
- goto case BinaryOperator.Opcode.Lt;
- case BinaryOperator.Opcode.Ge:
- // swap the operands and then continue as Le
- {
- var tmp = lo0; lo0 = lo1; lo1 = tmp;
- tmp = hi0; hi0 = hi1; hi1 = tmp;
- }
- goto case BinaryOperator.Opcode.Le;
- case BinaryOperator.Opcode.Add:
- if (lo0 != null && lo1 != null) {
- Lo = lo0 + lo1;
- }
- if (hi0 != null && hi1 != null) {
- Hi = isReal ? hi0 + hi1 : hi0 + hi1 - 1;
- }
- break;
- case BinaryOperator.Opcode.Sub:
- if (lo0 != null && hi1 != null) {
- Lo = isReal ? lo0 - hi1 : lo0 - hi1 + 1;
- }
- if (hi0 != null && lo1 != null) {
- Hi = hi0 - lo1;
- }
- break;
- case BinaryOperator.Opcode.Mul:
- // this uses an incomplete approximation that could be tightened up
- if (lo0 != null && lo1 != null) {
- if (0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
- Lo = lo0 * lo1;
- Hi = hi0 == null || hi1 == null ? null : isReal ? hi0 * hi1 : (hi0 - 1) * (hi1 - 1) + 1;
- } else if ((BigInteger)lo0 < 0 && (BigInteger)lo1 < 0) {
- Lo = null; // approximation
- Hi = isReal ? lo0 * lo1 : lo0 * lo1 + 1;
- }
- }
- break;
- case BinaryOperator.Opcode.Div:
- // this uses an incomplete approximation that could be tightened up
- if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
- Lo = BigInteger.Zero;
- Hi = hi0;
- }
- break;
- case BinaryOperator.Opcode.Mod:
- // this uses an incomplete approximation that could be tightened up
- if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
- Lo = BigInteger.Zero;
- Hi = hi1;
- }
- break;
- case BinaryOperator.Opcode.RealDiv:
- // this uses an incomplete approximation that could be tightened up
- if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
- Lo = BigInteger.Zero;
- Hi = 1 <= (BigInteger)lo1 ? hi0 : null;
- }
- break;
- case BinaryOperator.Opcode.Pow:
- // this uses an incomplete approximation that could be tightened up
- if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
- Lo = 1 <= (BigInteger)lo1 ? BigInteger.One : BigInteger.Zero;
- Hi = hi1;
- }
- break;
- default:
- break;
- }
- } else if (node.Fun is IfThenElse) {
- var op = (IfThenElse)node.Fun;
- Contract.Assert(node.Args.Count == 3);
- BigInteger? guardLo, guardHi, lo0, hi0, lo1, hi1;
- VisitExpr(node.Args[0]);
- guardLo = Lo; guardHi = Hi;
- VisitExpr(node.Args[1]);
- lo0 = Lo; hi0 = Hi;
- VisitExpr(node.Args[2]);
- lo1 = Lo; hi1 = Hi;
- Contract.Assert(guardLo == null || guardHi == null); // this is a consequence of the guard being boolean
- if (guardLo != null) {
- // guard is always true
- Lo = lo0; Hi = hi0;
- } else if (guardHi != null) {
- // guard is always false
- Lo = lo1; Hi = hi1;
- } else {
- // we don't know which branch will be taken, so join the information from the two branches
- Lo = Node.Min(lo0, lo1, false);
- Hi = Node.Max(hi0, hi1, false);
- }
- } else if (node.Fun is FunctionCall) {
- var call = (FunctionCall)node.Fun;
- // See if this is an identity function, which we do by checking: that the function has
- // exactly one argument and the function has been marked by the user with the attribute {:identity}
- bool claimsToBeIdentity = false;
- if (call.ArgumentCount == 1 && call.Func.CheckBooleanAttribute("identity", ref claimsToBeIdentity) && claimsToBeIdentity && node.Args[0].Type.Equals(node.Type)) {
- VisitExpr(node.Args[0]);
- }
- }
- return node;
- }
- public override BinderExpr VisitBinderExpr(BinderExpr node) {
- // don't recurse on subexpression
- return node;
- }
- public override Expr VisitOldExpr(OldExpr node) {
- // don't recurse on subexpression
- return node;
- }
- public override Expr VisitCodeExpr(CodeExpr node) {
- // don't recurse on subexpression
- return node;
- }
- public override Expr VisitBvConcatExpr(BvConcatExpr node) {
- // don't recurse on subexpression
- return node;
- }
- public override Expr VisitBvExtractExpr(BvExtractExpr node) {
- // don't recurse on subexpression
- return node;
- }
- }
-
- public override Element Eliminate(Element element, Variable v) {
- if (element is E_Bottom) {
- return element;
- }
- var e = (E)element;
- var nn = UpdateOne(e.N, v, null, null);
- if (nn == e.N) {
- return element;
- } else {
- return new E(nn);
- }
- }
-
- Node UpdateOne(Node nn, Variable v, BigInteger? lo, BigInteger? hi) {
- var orig = nn;
- Node head = null;
- Node prev = null;
- var foundV = false;
- for (; nn != null && !Node.StrictlyBefore(v, nn.V); nn = nn.Next) {
- if (nn.V == v) {
- foundV = true;
- nn = nn.Next;
- break; // we found the place where the new node goes
- } else {
- var n = new Node(nn.V, nn.Lo, nn.Hi); // copy this Node
- if (head == null) {
- head = n;
- } else {
- prev.Next = n;
- }
- prev = n;
- }
- }
- Node rest;
- if (lo == null && hi == null) {
- // eliminate all information about "v"
- if (!foundV) {
- return orig;
- }
- rest = nn;
- } else {
- rest = new Node(v, lo, hi);
- rest.Next = nn;
- }
- if (head == null) {
- head = rest;
- } else {
- prev.Next = rest;
- }
- return head;
- }
-
- /// <summary>
- /// Return a resolved/type-checked expression that represents the conjunction of a and b.
- /// Requires a and b to be resolved and type checked already.
- /// </summary>
- public static Expr BplAnd(Expr a, Expr b) {
- if (a == Expr.True) {
- return b;
- } else if (b == Expr.True) {
- return a;
- } else {
- var nary = Expr.Binary(BinaryOperator.Opcode.And, a, b);
- nary.Type = Type.Bool;
- nary.TypeParameters = SimpleTypeParamInstantiation.EMPTY;
- return nary;
- }
- }
-
- /// <summary>
- /// Return a resolved/type-checked expression that represents a EQUALS b.
- /// Requires a and b to be resolved and type checked already.
- /// </summary>
- public static Expr BplEq(Expr a, Expr b) {
- var e = Expr.Eq(a, b);
- e.Type = Type.Bool;
- return e;
- }
-
- /// <summary>
- /// Return a resolved/type-checked expression that represents a LESS-EQUAL b.
- /// Requires a and b to be resolved and type checked already.
- /// </summary>
- public static Expr BplLe(Expr a, Expr b) {
- var e = Expr.Le(a, b);
- e.Type = Type.Bool;
- return e;
- }
- /// <summary>
- /// Return a resolved/type-checked expression that represents a LESS b.
- /// Requires a and b to be resolved and type checked already.
- /// </summary>
- public static Expr BplLt(Expr a, Expr b) {
- var e = Expr.Lt(a, b);
- e.Type = Type.Bool;
- return e;
- }
- }
-
- public class ThresholdFinder : ReadOnlyVisitor
- {
- readonly Implementation Impl;
- public ThresholdFinder(Implementation impl) {
- Contract.Requires(impl != null);
- Impl = impl;
- }
- HashSet<BigInteger> downs = new HashSet<BigInteger>();
- HashSet<BigInteger> ups = new HashSet<BigInteger>();
- public void Find(out List<BigInteger> downThresholds, out List<BigInteger> upThresholds) {
- // always include -1, 0, 1 as down-thresholds
- downs.Clear();
- downs.Add(-1);
- downs.Add(0);
- downs.Add(1);
- // always include 0 and 1 as up-thresholds
- ups.Clear();
- ups.Add(0);
- ups.Add(1);
-
- foreach (Requires p in Impl.Proc.Requires) {
- Visit(p.Condition);
- }
- foreach (Ensures p in Impl.Proc.Ensures) {
- Visit(p.Condition);
- }
- foreach (var b in Impl.Blocks) {
- foreach (Cmd c in b.Cmds) {
- Visit(c);
- }
- }
-
- // convert the HashSets to sorted Lists and return
- downThresholds = new List<BigInteger>();
- foreach (var i in downs) {
- downThresholds.Add(i);
- }
- downThresholds.Sort();
- upThresholds = new List<BigInteger>();
- foreach (var i in ups) {
- upThresholds.Add(i);
- }
- upThresholds.Sort();
- }
-
- public override Expr VisitNAryExpr(NAryExpr node) {
- if (node.Fun is BinaryOperator) {
- var op = (BinaryOperator)node.Fun;
- Contract.Assert(node.Args.Count == 2);
- var arg0 = node.Args[0];
- var arg1 = node.Args[1];
- var offset = arg0.Type.IsReal ? 0 : 1;
- BigInteger? k;
- switch (op.Op) {
- case BinaryOperator.Opcode.Eq:
- case BinaryOperator.Opcode.Neq:
- k = AsIntLiteral(arg0);
- if (k != null) {
- var i = (BigInteger)k;
- downs.Add(i - 1);
- downs.Add(i);
- ups.Add(i + 1);
- ups.Add(i + 2);
- }
- k = AsIntLiteral(arg1);
- if (k != null) {
- var i = (BigInteger)k;
- downs.Add(i - 1);
- downs.Add(i);
- ups.Add(i + 1);
- ups.Add(i + 2);
- }
- break;
- case BinaryOperator.Opcode.Le:
- k = AsIntLiteral(arg0);
- if (k != null) {
- var i = (BigInteger)k;
- downs.Add(i - 1);
- downs.Add(i);
- }
- k = AsIntLiteral(arg1);
- if (k != null) {
- var i = (BigInteger)k;
- ups.Add(i + offset);
- ups.Add(i + 1 + offset);
- }
- break;
- case BinaryOperator.Opcode.Lt:
- k = AsIntLiteral(arg0);
- if (k != null) {
- var i = (BigInteger)k;
- downs.Add(i );
- downs.Add(i + 1);
- }
- k = AsIntLiteral(arg1);
- if (k != null) {
- var i = (BigInteger)k;
- ups.Add(i - 1 + offset);
- ups.Add(i + offset);
- }
- break;
- case BinaryOperator.Opcode.Ge:
- { var tmp = arg0; arg0 = arg1; arg1 = tmp; }
- goto case BinaryOperator.Opcode.Le;
- case BinaryOperator.Opcode.Gt:
- { var tmp = arg0; arg0 = arg1; arg1 = tmp; }
- goto case BinaryOperator.Opcode.Lt;
- default:
- break;
- }
- }
- return base.VisitNAryExpr(node);
- }
-
- BigInteger? AsIntLiteral(Expr e) {
- var lit = e as LiteralExpr;
- if (lit != null && lit.isBigNum) {
- BigNum bn = lit.asBigNum;
- return bn.ToBigInteger;
- }
- return null;
- }
- }
-
-}
+using System; +using System.Numerics; +using System.Collections.Generic; +using System.Diagnostics.Contracts; +using Microsoft.Basetypes; + +namespace Microsoft.Boogie.AbstractInterpretation +{ + class NativeIntervallDomain : NativeLattice + { + abstract class E_Common : NativeLattice.Element { } + class E_Bottom : E_Common + { + public override Expr ToExpr() { + return Expr.False; + } + } + class E : E_Common + { + public readonly Node N; + public E() { } + public E(Node n) { + N = n; + } + + public override Expr ToExpr() { + Expr expr = Expr.True; + for (var n = N; n != null; n = n.Next) { + expr = BplAnd(expr, n.ToExpr()); + } + return expr; + } + } + public class Node + { + public readonly Variable V; // variable has type bool or int + // For an integer variable (Lo,Hi) indicates Lo <= V < Hi, where Lo==null means no lower bound and Hi==null means no upper bound. + // For a real variable (Lo,Hi) indicates Lo <= V <= Hi, where Lo==null means no lower bound and Hi==null means no upper bound. + // For a boolean variable, (Lo,Hi) is one of: (null,null) for {false,true}, (null,1) for {false}, and (1,null) for {true}. + public readonly BigInteger? Lo; + public readonly BigInteger? Hi; + public Node Next; // always sorted according to StrictlyBefore; readonly after full initialization + [Pure] + public static bool StrictlyBefore(Variable a, Variable b) { + Contract.Assert(a.UniqueId != b.UniqueId || a == b); + return a.UniqueId < b.UniqueId; + } + + Node(Variable v, BigInteger? lo, BigInteger? hi, Node next) { + Contract.Requires(lo != null || hi != null); // don't accept empty constraints + Contract.Requires(next == null || StrictlyBefore(v, next.V)); + V = v; + Lo = lo; + Hi = hi; + Next = next; + } + + /// <summary> + /// This constructor leaves Next as null, allowing the caller to fill in Next to finish off the construction. + /// </summary> + public Node(Variable v, BigInteger? lo, BigInteger? hi) { + Contract.Requires(lo != null || hi != null); // don't accept empty constraints + V = v; + Lo = lo; + Hi = hi; + } + + /// <summary> + /// Returns a Node that has the constraints head.{V,Lo,Hi} plus + /// all the constraints entailed by Nodes reachable from tail. + /// Requires that "head" sorts no later than anything in "tail". + /// Create either returns "head" itself or returns a new Node. + /// </summary> + public static Node Create(Node head, Node tail) { + Contract.Requires(head != null); + Contract.Requires(tail == null || !StrictlyBefore(tail.V, head.V)); + Contract.Requires(head != tail); + + if (head.Next == tail) { + return head; + } else if (tail != null && head.V == tail.V) { + // incorporate both constraints into one Node + return new Node(head.V, Max(head.Lo, tail.Lo, true), Min(head.Lo, tail.Lo, true), tail.Next); + } else { + return new Node(head.V, head.Lo, head.Hi, tail); + } + } + + public static void GetBounds(Node n, Variable v, out BigInteger? lo, out BigInteger? hi) { + for (; n != null; n = n.Next) { + if (n.V == v) { + lo = n.Lo; + hi = n.Hi; + return; + } else if (StrictlyBefore(v, n.V)) { + break; + } + } + lo = null; + hi = null; + } + + /// <summary> + /// Return the minimum of "a" and "b". If treatNullAsUnit==true, then "null" is + /// interpreted as positive infinity (the unit element of min); otherwise, it is + /// treated as negative infinity (the zero element of min). + /// </summary> + public static BigInteger? Min(BigInteger? a, BigInteger? b, bool treatNullAsUnit) { + if (a == null) { + return treatNullAsUnit ? b : a; + } else if (b == null) { + return treatNullAsUnit ? a : b; + } else { + return BigInteger.Min((BigInteger)a, (BigInteger)b); + } + } + + /// <summary> + /// Return the maximum of "a" and "b". If treatNullAsUnit==true, then "null" is + /// interpreted as negative infinity (the unit element of max); otherwise, it is + /// treated as positive infinity (the zero element of max). + /// </summary> + public static BigInteger? Max(BigInteger? a, BigInteger? b, bool treatNullAsUnit) { + if (a == null) { + return treatNullAsUnit ? b : a; + } else if (b == null) { + return treatNullAsUnit ? a : b; + } else { + return BigInteger.Max((BigInteger)a, (BigInteger)b); + } + } + + public static IEnumerable<Tuple<Node, Node>> Merge(Node a, Node b) { + while (true) { + if (a == null && b == null) { + yield break; + } else if (a == null || b == null) { + yield return new Tuple<Node, Node>(a, b); + if (a != null) { a = a.Next; } else { b = b.Next; } + } else if (a.V == b.V) { + yield return new Tuple<Node, Node>(a, b); + a = a.Next; b = b.Next; + } else if (StrictlyBefore(a.V, b.V)) { + yield return new Tuple<Node, Node>(a, null); + a = a.Next; + } else { + yield return new Tuple<Node, Node>(null, b); + b = b.Next; + } + } + } + + public Expr ToExpr() { + if (!V.IsMutable && CommandLineOptions.Clo.InstrumentInfer != CommandLineOptions.InstrumentationPlaces.Everywhere) { + // omit invariants about readonly variables + return Expr.True; + } else if (V.TypedIdent.Type.IsBool) { + if (Lo == null && Hi == null) { + return Expr.True; + } else { + Contract.Assert((Lo == null && (BigInteger)Hi == 1) || (Hi == null && (BigInteger)Lo == 1)); + var ide = new IdentifierExpr(Token.NoToken, V); + return Hi == null ? ide : Expr.Not(ide); + } + } else if (V.TypedIdent.Type.IsInt) { + Expr e = Expr.True; + if (Lo != null && Hi != null && Lo + 1 == Hi) { + // produce an equality + var ide = new IdentifierExpr(Token.NoToken, V); + e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type))); + } else { + // produce a (possibly empty) conjunction of inequalities + if (Lo != null) { + var ide = new IdentifierExpr(Token.NoToken, V); + e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide)); + } + if (Hi != null) { + var ide = new IdentifierExpr(Token.NoToken, V); + e = Expr.And(e, BplLt(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type))); + } + } + return e; + } else if (V.TypedIdent.Type.IsReal){ + Expr e = Expr.True; + if (Lo != null && Hi != null && Lo == Hi) { + // produce an equality + var ide = new IdentifierExpr(Token.NoToken, V); + e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type))); + } else { + // produce a (possibly empty) conjunction of inequalities + if (Lo != null) { + var ide = new IdentifierExpr(Token.NoToken, V); + e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide)); + } + if (Hi != null) { + var ide = new IdentifierExpr(Token.NoToken, V); + e = Expr.And(e, BplLe(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type))); + } + } + return e; + } else { + Contract.Assert(V.TypedIdent.Type.IsFloat); + Expr e = Expr.True; + if (Lo != null && Hi != null && Lo == Hi) + { + // produce an equality + var ide = new IdentifierExpr(Token.NoToken, V); + e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type))); + } + else + { + // produce a (possibly empty) conjunction of inequalities + if (Lo != null) + { + var ide = new IdentifierExpr(Token.NoToken, V); + e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide)); + } + if (Hi != null) + { + var ide = new IdentifierExpr(Token.NoToken, V); + e = Expr.And(e, BplLe(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type))); + } + } + return e; + } + } + } + + static Expr NumberToExpr(BigInteger n, Type ty) { + if (n == null) { + return null; + } else if (ty.IsReal) { + return Expr.Literal(Basetypes.BigDec.FromBigInt(n)); + } else if (ty.IsFloat) { + return Expr.Literal(Basetypes.BigFloat.FromBigInt(n, ty.FloatExponent, ty.FloatMantissa)); + } else { + Contract.Assume(ty.IsInt); + return Expr.Literal(Basetypes.BigNum.FromBigInt(n)); + } + } + + List<BigInteger> upThresholds; // invariant: thresholds are sorted + List<BigInteger> downThresholds; // invariant: thresholds are sorted + + /// <summary> + /// Requires "thresholds" to be sorted. + /// </summary> + public NativeIntervallDomain() { + upThresholds = new List<BigInteger>(); + downThresholds = new List<BigInteger>(); + } + + public override void Specialize(Implementation impl) { + if (impl == null) { + // remove thresholds + upThresholds = new List<BigInteger>(); + downThresholds = new List<BigInteger>(); + } else { + var tf = new ThresholdFinder(impl); + tf.Find(out downThresholds, out upThresholds); +#if DEBUG_PRINT + Console.Write("DEBUG: for implementation '{0}', setting downs to [", impl.Name); + foreach (var i in downThresholds) { + Console.Write(" {0}", i); + } + Console.Write(" ] and ups to ["); + foreach (var i in upThresholds) { + Console.Write(" {0}", i); + } + Console.WriteLine(" ]"); +#endif + } + base.Specialize(impl); + } + + private E_Common top = new E(); + private E_Common bottom = new E_Bottom(); + + public override Element Top { get { return top; } } + public override Element Bottom { get { return bottom; } } + + public override bool IsTop(Element element) { + var e = element as E; + return e != null && e.N == null; + } + public override bool IsBottom(Element element) { + return element is E_Bottom; + } + + public override bool Below(Element a, Element b) { + if (a is E_Bottom) { + return true; + } else if (b is E_Bottom) { + return false; + } else { + var aa = (E)a; + var bb = (E)b; + // check if every constraint in 'bb' is implied by constraints in 'aa' + foreach (var t in Node.Merge(aa.N, bb.N)) { + var x = t.Item1; + var y = t.Item2; + if (x == null) { + // bb constrains a variable that aa does not + return false; + } else if (y == null) { + // aa constrains a variable that bb does not; that's fine + } else if (y.Lo != null && (x.Lo == null || x.Lo < y.Lo)) { + // bb has a Lo constraint, and either aa has no Lo constraint or it has a weaker Lo constraint + return false; + } else if (y.Hi != null && (x.Hi == null || y.Hi < x.Hi)) { + // bb has a Hi o constraint, and either aa has no Hi constraint or it has a weaker Hi constraint + return false; + } + } + return true; + } + } + + public override Element Meet(Element a, Element b) { + if (a is E_Bottom) { + return a; + } else if (b is E_Bottom) { + return b; + } else { + var aa = (E)a; + var bb = (E)b; + Node head = null; + Node prev = null; + foreach (var t in Node.Merge(aa.N, bb.N)) { + var x = t.Item1; + var y = t.Item2; + Node n; + if (x == null) { + n = new Node(y.V, y.Lo, y.Hi); + } else if (y == null) { + n = new Node(x.V, x.Lo, x.Hi); + } else { + var lo = Node.Max(x.Lo, y.Lo, true); + var hi = Node.Min(x.Hi, y.Hi, true); + // if hi<=lo (or hi<lo for reals), then we're overconstrained + if (lo != null && hi != null && (x.V.TypedIdent.Type.IsReal ? hi < lo : hi <= lo)) { + return bottom; + } + n = new Node(x.V, lo, hi); + } + if (head == null) { + head = n; + } else { + prev.Next = n; + } + prev = n; + } + return new E(head); + } + } + + public override Element Join(Element a, Element b) { + if (a is E_Bottom) { + return b; + } else if (b is E_Bottom) { + return a; + } else { + var aa = (E)a; + var bb = (E)b; + // for each variable, take the weaker of the constraints + Node head = null; + Node prev = null; + foreach (var t in Node.Merge(aa.N, bb.N)) { + if (t.Item1 != null && t.Item2 != null) { + var lo = Node.Min(t.Item1.Lo, t.Item2.Lo, false); + var hi = Node.Max(t.Item1.Hi, t.Item2.Hi, false); + if (lo != null || hi != null) { + var n = new Node(t.Item1.V, lo, hi); + if (head == null) { + head = n; + } else { + prev.Next = n; + } + prev = n; + } + } + } + return new E(head); + } + } + + public override Element Widen(Element a, Element b) { + if (a is E_Bottom) { + return b; // since this is done just once, we maintain the ascending chains property + } else if (b is E_Bottom) { + return a; + } else { + var aa = (E)a; + var bb = (E)b; + // return a subset of the constraints of aa, namely those that are implied by bb + Node head = null; + Node prev = null; + foreach (var t in Node.Merge(aa.N, bb.N)) { + var x = t.Item1; + var y = t.Item2; + if (x != null && y != null) { + BigInteger? lo, hi; + lo = hi = null; + if (x.Lo != null && y.Lo != null) { + if (x.Lo <= y.Lo) { + // okay, we keep the lower bound + lo = x.Lo; + } else { + // set "lo" to the threshold that is below (or equal) y.Lo + lo = RoundDown((BigInteger)y.Lo); + } + } + if (x.Hi != null && y.Hi != null) { + if (y.Hi <= x.Hi) { + // okay, we keep the upper bound + hi = x.Hi; + } else { + // set "hi" to the threshold that is above (or equal) y.Hi + hi = RoundUp((BigInteger)y.Hi); + } + } + if (lo != null || hi != null) { + var n = new Node(x.V, lo, hi); + if (head == null) { + head = n; + } else { + prev.Next = n; + } + prev = n; + } + } + } + return new E(head); + } + } + + /// <summary> + /// For a proof of correctness of this method, see Test/dafny2/Intervals.dfy. + /// A difference is that the this method returns: + /// let d = Dafny_RoundDown(k); + /// return d == -1 ? null : downThresholds[d]; + /// </summary> + BigInteger? RoundDown(BigInteger k) + { + if (downThresholds.Count == 0 || k < downThresholds[0]) { + return null; + } + var i = 0; + var j = downThresholds.Count - 1; + while (i < j) + { + var mid = i + (j - i + 1) / 2; + if (downThresholds[mid] <= k) { + i = mid; + } else { + j = mid - 1; + } + } + return downThresholds[i]; + } + + /// <summary> + /// For a proof of correctness of this method, see Test/dafny2/Intervals.dfy. + /// A difference is that the this method returns: + /// let d = Dafny_RoundUp(k); + /// return d == thresholds.Count ? null : upThresholds[d]; + /// </summary> + BigInteger? RoundUp(BigInteger k) + { + if (upThresholds.Count == 0 || upThresholds[upThresholds.Count - 1] < k) { + return null; + } + var i = 0; + var j = upThresholds.Count - 1; + while (i < j) + { + var mid = i + (j - i) / 2; + if (upThresholds[mid] < k) { + i = mid + 1; + } else { + j = mid; + } + } + return upThresholds[i]; + } + + public override Element Constrain(Element element, Expr expr) { + if (element is E_Bottom) { + return element; + } else { + var e = (E)element; + var c = Constraint(expr, e.N); + return c == null ? element : Meet(element, c); + } + } + + /// <summary> + /// Returns an Element that corresponds to the constraints implied by "expr" in the + /// state "state". + /// Return "null" to indicate no constraints. + /// </summary> + E_Common Constraint(Expr expr, Node state) { + Variable v; + if (IsVariable(expr, out v)) { + var n = new Node(v, BigInteger.One, null); + return new E(n); + } else if (expr is LiteralExpr) { + var e = (LiteralExpr)expr; + return (bool)e.Val ? null : new E_Bottom(); + } else if (expr is NAryExpr) { + var e = (NAryExpr)expr; + if (e.Fun is UnaryOperator) { + if (((UnaryOperator)e.Fun).Op == UnaryOperator.Opcode.Not) { + if (IsVariable(e.Args[0], out v)) { + var n = new Node(v, null, BigInteger.One); + return new E(n); + } + } + } else if (e.Fun is BinaryOperator) { + var op = ((BinaryOperator)e.Fun).Op; + var arg0 = e.Args[0]; + var arg1 = e.Args[1]; + switch (op) { + case BinaryOperator.Opcode.Eq: + case BinaryOperator.Opcode.Iff: { + E_Common c = null; + if (IsVariable(arg0, out v)) { + BigInteger? lo, hi; + if (PartiallyEvaluate(arg1, state, out lo, out hi)) { + var n = new Node(v, lo, hi); + c = new E(n); + } + } + if (IsVariable(arg1, out v)) { + BigInteger? lo, hi; + if (PartiallyEvaluate(arg1, state, out lo, out hi)) { + var n = new Node(v, lo, hi); + c = c == null ? new E(n) : (E_Common)Meet(c, new E(n)); + } + } + return c; + } + case BinaryOperator.Opcode.Neq: { + E_Common c = null; + if (IsVariable(arg0, out v)) { + c = ConstrainNeq(state, v, arg1); + } + if (IsVariable(arg1, out v)) { + var cc = ConstrainNeq(state, v, arg0); + if (cc != null) { + c = c == null ? cc : (E_Common)Meet(c, cc); + } + } + return c; + } + case BinaryOperator.Opcode.Le: { + E_Common c = null; + if (IsVariable(arg1, out v)) { + BigInteger? lo, hi; + PartiallyEvaluate(arg0, state, out lo, out hi); + if (lo != null) { + var n = new Node(v, lo, null); + c = new E(n); + } + } + if (IsVariable(arg0, out v)) { + BigInteger? lo, hi; + PartiallyEvaluate(arg1, state, out lo, out hi); + if (hi != null) { + var n = new Node(v, null, hi); + c = c == null ? new E(n) : (E_Common)Meet(c, new E(n)); + } + } + return c; + } + case BinaryOperator.Opcode.Lt: { + E_Common c = null; + if (IsVariable(arg1, out v)) { + BigInteger? lo, hi; + PartiallyEvaluate(arg0, state, out lo, out hi); + if (lo != null) { + var n = new Node(v, v.TypedIdent.Type.IsReal ? lo : lo + 1, null); + c = new E(n); + } + } + if (IsVariable(arg0, out v)) { + BigInteger? lo, hi; + PartiallyEvaluate(arg1, state, out lo, out hi); + if (hi != null) { + var n = new Node(v, null, v.TypedIdent.Type.IsReal ? hi : hi - 1); + c = c == null ? new E(n) : (E_Common)Meet(c, new E(n)); + } + } + return c; + } + case BinaryOperator.Opcode.Ge: { + var tmp = arg0; arg0 = arg1; arg1 = tmp; + goto case BinaryOperator.Opcode.Le; + } + case BinaryOperator.Opcode.Gt: { + var tmp = arg0; arg0 = arg1; arg1 = tmp; + goto case BinaryOperator.Opcode.Lt; + } + default: + break; + } + } + } + return null; // approximation + } + + private E ConstrainNeq(Node state, Variable v, Expr arg) { + BigInteger? lo, hi; + if (PartiallyEvaluate(arg, state, out lo, out hi)) { + if (!v.TypedIdent.Type.IsReal && lo != null && hi != null && lo + 1 == hi) { + var exclude = lo; + // If the partially evaluated arg (whose value is "exclude") is an end-point of + // the interval known for "v", then produce a constraint that excludes that bound. + Node.GetBounds(state, v, out lo, out hi); + if (lo != null && lo == exclude) { + var n = new Node(v, lo + 1, null); + return new E(n); + } else if (hi != null && exclude + 1 == hi) { + var n = new Node(v, null, exclude); + return new E(n); + } + } + } + return null; + } + + bool IsVariable(Expr expr, out Variable v) { + var e = expr as IdentifierExpr; + if (e == null) { + v = null; + return false; + } else { + v = e.Decl; + return true; + } + } + + public override Element Update(Element element, AssignCmd cmd) { + if (element is E_Bottom) { + return element; + } + var e = (E)element; + var nn = e.N; + Contract.Assert(cmd.Lhss.Count == cmd.Rhss.Count); + for (int i = 0; i < cmd.Lhss.Count; i++) { + var lhs = cmd.Lhss[i]; + var rhs = cmd.Rhss[i]; + BigInteger? lo; + BigInteger? hi; + PartiallyEvaluate(rhs, e.N, out lo, out hi); + nn = UpdateOne(nn, lhs.DeepAssignedVariable, lo, hi); + } + return new E(nn); + } + + bool PartiallyEvaluate(Expr rhs, Node node, out BigInteger? lo, out BigInteger? hi) { + var pe = new PEVisitor(node); + pe.VisitExpr(rhs); + lo = pe.Lo; + hi = pe.Hi; + return lo != null || hi != null; + } + + class PEVisitor : ReadOnlyVisitor + { + public BigInteger? Lo; + public BigInteger? Hi; + + readonly BigInteger one = BigInteger.One; + + Node N; + public PEVisitor(Node n) { + N = n; + } + + // Override visitors for all expressions that can return a boolean, integer, or real result + + public override Expr VisitExpr(Expr node) { + Lo = Hi = null; + return base.VisitExpr(node); + } + public override Expr VisitLiteralExpr(LiteralExpr node) { + if (node.Val is BigNum) { + var n = ((BigNum)node.Val).ToBigInteger; + Lo = n; + Hi = n + 1; + } else if (node.Val is BigDec) { + BigInteger floor, ceiling; + ((BigDec)node.Val).FloorCeiling(out floor, out ceiling); + Lo = floor; + Hi = ceiling; + } else if (node.Val is BigFloat) { + BigNum floor, ceiling; + ((BigFloat)node.Val).FloorCeiling(out floor, out ceiling); + Lo = floor.ToBigInteger; + Hi = ceiling.ToBigInteger; + } else if (node.Val is bool) { + if ((bool)node.Val) { + // true + Lo = one; + Hi = null; + } else { + // false + Lo = null; + Hi = one; + } + } + return node; + } + public override Expr VisitIdentifierExpr(IdentifierExpr node) { + if (node.Type.IsBool || node.Type.IsInt || node.Type.IsReal) { + Node.GetBounds(N, node.Decl, out Lo, out Hi); + } + return node; + } + public override Expr VisitNAryExpr(NAryExpr node) { + if (node.Fun is UnaryOperator) { + var op = (UnaryOperator)node.Fun; + Contract.Assert(node.Args.Count == 1); + if (op.Op == UnaryOperator.Opcode.Neg) { + BigInteger? lo, hi; + VisitExpr(node.Args[0]); + lo = Lo; hi = Hi; + if (hi != null) { + Lo = node.Type.IsReal ? -hi : 1 - hi; + } else { + Lo = null; + } + if (lo != null) { + Hi = node.Type.IsReal ? -lo : 1 - lo; + } else { + Hi = null; + } + } + else if (op.Op == UnaryOperator.Opcode.Not) { + VisitExpr(node.Args[0]); + Contract.Assert((Lo == null && Hi == null) || + (Lo == null && (BigInteger)Hi == 1) || + (Hi == null && (BigInteger)Lo == 1)); + var tmp = Lo; + Lo = Hi; + Hi = tmp; + } + } else if (node.Fun is BinaryOperator) { + var op = (BinaryOperator)node.Fun; + Contract.Assert(node.Args.Count == 2); + BigInteger? lo0, hi0, lo1, hi1; + VisitExpr(node.Args[0]); + lo0 = Lo; hi0 = Hi; + VisitExpr(node.Args[1]); + lo1 = Lo; hi1 = Hi; + Lo = Hi = null; + var isReal = node.Args[0].Type.IsReal; + switch (op.Op) { + case BinaryOperator.Opcode.And: + if (hi0 != null || hi1 != null) { + // one operand is definitely false, thus so is the result + Lo = null; Hi = one; + } else if (lo0 != null && lo1 != null) { + // both operands are definitely true, thus so is the result + Lo = one; Hi = null; + } + break; + case BinaryOperator.Opcode.Or: + if (lo0 != null || lo1 != null) { + // one operand is definitely true, thus so is the result + Lo = one; Hi = null; + } else if (hi0 != null && hi1 != null) { + // both operands are definitely false, thus so is the result + Lo = null; Hi = one; + } + break; + case BinaryOperator.Opcode.Imp: + if (hi0 != null || lo1 != null) { + // either arg0 false or arg1 is true, so the result is true + Lo = one; Hi = null; + } else if (lo0 != null && hi1 != null) { + // arg0 is true and arg1 is false, so the result is false + Lo = null; Hi = one; + } + break; + case BinaryOperator.Opcode.Iff: + if (lo0 != null && lo1 != null) { + Lo = one; Hi = null; + } else if (hi0 != null && hi1 != null) { + Lo = one; Hi = null; + } else if (lo0 != null && hi1 != null) { + Lo = null; Hi = one; + } else if (hi0 != null && lo1 != null) { + Lo = null; Hi = one; + } + if (op.Op == BinaryOperator.Opcode.Neq) { + var tmp = Lo; Lo = Hi; Hi = tmp; + } + break; + case BinaryOperator.Opcode.Eq: + case BinaryOperator.Opcode.Neq: + if (node.Args[0].Type.IsBool) { + goto case BinaryOperator.Opcode.Iff; + } + // For Eq: + // If the (lo0,hi0) and (lo1,hi1) ranges do not overlap, the answer is false. + // If both ranges are the same unit range, then the answer is true. + if (hi0 != null && lo1 != null && (isReal ? hi0 < lo1 : hi0 <= lo1)) { + // no overlap + Lo = null; Hi = one; + } else if (lo0 != null && hi1 != null && (isReal ? hi1 < lo0 : hi1 <= lo0)) { + Lo = null; Hi = one; + // no overlaop + } else if (lo0 != null && hi0 != null && lo1 != null && hi1 != null && + lo0 == lo1 && hi0 == hi1 && // ranges are the same + (isReal ? lo0 == hi0 : lo0 + 1 == hi0)) { // unit range + // both ranges are the same unit range + Lo = one; Hi = null; + } + if (op.Op == BinaryOperator.Opcode.Neq) { + var tmp = Lo; Lo = Hi; Hi = tmp; + } + break; + case BinaryOperator.Opcode.Le: + if (isReal) { + // If hi0 <= lo1, then the answer is true. + // If hi1 < lo0, then the answer is false. + if (hi0 != null && lo1 != null && hi0 <= lo1) { + Lo = one; Hi = null; + } else if (hi1 != null && lo0 != null && hi1 < lo0) { + Lo = null; Hi = one; + } + } else { + // If hi0 - 1 <= lo1, then the answer is true. + // If hi1 <= lo0, then the answer is false. + if (hi0 != null && lo1 != null && hi0 - 1 <= lo1) { + Lo = one; Hi = null; + } else if (lo0 != null && hi1 != null && hi1 <= lo0) { + Lo = null; Hi = one; + } + } + break; + case BinaryOperator.Opcode.Lt: + if (isReal) { + // If hi0 < lo1, then the answer is true. + // If hi1 <= lo0, then the answer is false. + if (hi0 != null && lo1 != null && hi0 < lo1) { + Lo = one; Hi = null; + } else if (hi1 != null && lo0 != null && hi1 <= lo0) { + Lo = null; Hi = one; + } + } else { + // If hi0 <= lo1, then the answer is true. + // If hi1 - 1 <= lo0, then the answer is false. + if (hi0 != null && lo1 != null && hi0 <= lo1) { + Lo = one; Hi = null; + } else if (lo0 != null && hi1 != null && hi1 - 1 <= lo0) { + Lo = null; Hi = one; + } + } + break; + case BinaryOperator.Opcode.Gt: + // swap the operands and then continue as Lt + { + var tmp = lo0; lo0 = lo1; lo1 = tmp; + tmp = hi0; hi0 = hi1; hi1 = tmp; + } + goto case BinaryOperator.Opcode.Lt; + case BinaryOperator.Opcode.Ge: + // swap the operands and then continue as Le + { + var tmp = lo0; lo0 = lo1; lo1 = tmp; + tmp = hi0; hi0 = hi1; hi1 = tmp; + } + goto case BinaryOperator.Opcode.Le; + case BinaryOperator.Opcode.Add: + if (lo0 != null && lo1 != null) { + Lo = lo0 + lo1; + } + if (hi0 != null && hi1 != null) { + Hi = isReal ? hi0 + hi1 : hi0 + hi1 - 1; + } + break; + case BinaryOperator.Opcode.Sub: + if (lo0 != null && hi1 != null) { + Lo = isReal ? lo0 - hi1 : lo0 - hi1 + 1; + } + if (hi0 != null && lo1 != null) { + Hi = hi0 - lo1; + } + break; + case BinaryOperator.Opcode.Mul: + // this uses an incomplete approximation that could be tightened up + if (lo0 != null && lo1 != null) { + if (0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) { + Lo = lo0 * lo1; + Hi = hi0 == null || hi1 == null ? null : isReal ? hi0 * hi1 : (hi0 - 1) * (hi1 - 1) + 1; + } else if ((BigInteger)lo0 < 0 && (BigInteger)lo1 < 0) { + Lo = null; // approximation + Hi = isReal ? lo0 * lo1 : lo0 * lo1 + 1; + } + } + break; + case BinaryOperator.Opcode.Div: + // this uses an incomplete approximation that could be tightened up + if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) { + Lo = BigInteger.Zero; + Hi = hi0; + } + break; + case BinaryOperator.Opcode.Mod: + // this uses an incomplete approximation that could be tightened up + if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) { + Lo = BigInteger.Zero; + Hi = hi1; + if (lo0 < lo1 && hi0 != null && hi0 < lo1) { + Lo = lo0; + Hi = hi0; + } + } + break; + case BinaryOperator.Opcode.RealDiv: + // this uses an incomplete approximation that could be tightened up + if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) { + Lo = BigInteger.Zero; + Hi = 1 <= (BigInteger)lo1 ? hi0 : null; + } + break; + case BinaryOperator.Opcode.Pow: + // this uses an incomplete approximation that could be tightened up + if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) { + Lo = 1 <= (BigInteger)lo1 ? BigInteger.One : BigInteger.Zero; + Hi = hi1; + } + break; + default: + break; + } + } else if (node.Fun is IfThenElse) { + var op = (IfThenElse)node.Fun; + Contract.Assert(node.Args.Count == 3); + BigInteger? guardLo, guardHi, lo0, hi0, lo1, hi1; + VisitExpr(node.Args[0]); + guardLo = Lo; guardHi = Hi; + VisitExpr(node.Args[1]); + lo0 = Lo; hi0 = Hi; + VisitExpr(node.Args[2]); + lo1 = Lo; hi1 = Hi; + Contract.Assert(guardLo == null || guardHi == null); // this is a consequence of the guard being boolean + if (guardLo != null) { + // guard is always true + Lo = lo0; Hi = hi0; + } else if (guardHi != null) { + // guard is always false + Lo = lo1; Hi = hi1; + } else { + // we don't know which branch will be taken, so join the information from the two branches + Lo = Node.Min(lo0, lo1, false); + Hi = Node.Max(hi0, hi1, false); + } + } else if (node.Fun is FunctionCall) { + var call = (FunctionCall)node.Fun; + // See if this is an identity function, which we do by checking: that the function has + // exactly one argument and the function has been marked by the user with the attribute {:identity} + bool claimsToBeIdentity = false; + if (call.ArgumentCount == 1 && call.Func.CheckBooleanAttribute("identity", ref claimsToBeIdentity) && claimsToBeIdentity && node.Args[0].Type.Equals(node.Type)) { + VisitExpr(node.Args[0]); + } + } + return node; + } + public override BinderExpr VisitBinderExpr(BinderExpr node) { + // don't recurse on subexpression + return node; + } + public override Expr VisitOldExpr(OldExpr node) { + // don't recurse on subexpression + return node; + } + public override Expr VisitCodeExpr(CodeExpr node) { + // don't recurse on subexpression + return node; + } + public override Expr VisitBvConcatExpr(BvConcatExpr node) { + // don't recurse on subexpression + return node; + } + public override Expr VisitBvExtractExpr(BvExtractExpr node) { + // don't recurse on subexpression + return node; + } + } + + public override Element Eliminate(Element element, Variable v) { + if (element is E_Bottom) { + return element; + } + var e = (E)element; + var nn = UpdateOne(e.N, v, null, null); + if (nn == e.N) { + return element; + } else { + return new E(nn); + } + } + + Node UpdateOne(Node nn, Variable v, BigInteger? lo, BigInteger? hi) { + var orig = nn; + Node head = null; + Node prev = null; + var foundV = false; + for (; nn != null && !Node.StrictlyBefore(v, nn.V); nn = nn.Next) { + if (nn.V == v) { + foundV = true; + nn = nn.Next; + break; // we found the place where the new node goes + } else { + var n = new Node(nn.V, nn.Lo, nn.Hi); // copy this Node + if (head == null) { + head = n; + } else { + prev.Next = n; + } + prev = n; + } + } + Node rest; + if (lo == null && hi == null) { + // eliminate all information about "v" + if (!foundV) { + return orig; + } + rest = nn; + } else { + rest = new Node(v, lo, hi); + rest.Next = nn; + } + if (head == null) { + head = rest; + } else { + prev.Next = rest; + } + return head; + } + + /// <summary> + /// Return a resolved/type-checked expression that represents the conjunction of a and b. + /// Requires a and b to be resolved and type checked already. + /// </summary> + public static Expr BplAnd(Expr a, Expr b) { + if (a == Expr.True) { + return b; + } else if (b == Expr.True) { + return a; + } else { + var nary = Expr.Binary(BinaryOperator.Opcode.And, a, b); + nary.Type = Type.Bool; + nary.TypeParameters = SimpleTypeParamInstantiation.EMPTY; + return nary; + } + } + + /// <summary> + /// Return a resolved/type-checked expression that represents a EQUALS b. + /// Requires a and b to be resolved and type checked already. + /// </summary> + public static Expr BplEq(Expr a, Expr b) { + var e = Expr.Eq(a, b); + e.Type = Type.Bool; + return e; + } + + /// <summary> + /// Return a resolved/type-checked expression that represents a LESS-EQUAL b. + /// Requires a and b to be resolved and type checked already. + /// </summary> + public static Expr BplLe(Expr a, Expr b) { + var e = Expr.Le(a, b); + e.Type = Type.Bool; + return e; + } + /// <summary> + /// Return a resolved/type-checked expression that represents a LESS b. + /// Requires a and b to be resolved and type checked already. + /// </summary> + public static Expr BplLt(Expr a, Expr b) { + var e = Expr.Lt(a, b); + e.Type = Type.Bool; + return e; + } + } + + public class ThresholdFinder : ReadOnlyVisitor + { + readonly Implementation Impl; + public ThresholdFinder(Implementation impl) { + Contract.Requires(impl != null); + Impl = impl; + } + HashSet<BigInteger> downs = new HashSet<BigInteger>(); + HashSet<BigInteger> ups = new HashSet<BigInteger>(); + public void Find(out List<BigInteger> downThresholds, out List<BigInteger> upThresholds) { + // always include -1, 0, 1 as down-thresholds + downs.Clear(); + downs.Add(-1); + downs.Add(0); + downs.Add(1); + // always include 0 and 1 as up-thresholds + ups.Clear(); + ups.Add(0); + ups.Add(1); + + foreach (Requires p in Impl.Proc.Requires) { + Visit(p.Condition); + } + foreach (Ensures p in Impl.Proc.Ensures) { + Visit(p.Condition); + } + foreach (var b in Impl.Blocks) { + foreach (Cmd c in b.Cmds) { + Visit(c); + } + } + + // convert the HashSets to sorted Lists and return + downThresholds = new List<BigInteger>(); + foreach (var i in downs) { + downThresholds.Add(i); + } + downThresholds.Sort(); + upThresholds = new List<BigInteger>(); + foreach (var i in ups) { + upThresholds.Add(i); + } + upThresholds.Sort(); + } + + public override Expr VisitNAryExpr(NAryExpr node) { + if (node.Fun is BinaryOperator) { + var op = (BinaryOperator)node.Fun; + Contract.Assert(node.Args.Count == 2); + var arg0 = node.Args[0]; + var arg1 = node.Args[1]; + var offset = arg0.Type.IsReal ? 0 : 1; + BigInteger? k; + switch (op.Op) { + case BinaryOperator.Opcode.Eq: + case BinaryOperator.Opcode.Neq: + k = AsIntLiteral(arg0); + if (k != null) { + var i = (BigInteger)k; + downs.Add(i - 1); + downs.Add(i); + ups.Add(i + 1); + ups.Add(i + 2); + } + k = AsIntLiteral(arg1); + if (k != null) { + var i = (BigInteger)k; + downs.Add(i - 1); + downs.Add(i); + ups.Add(i + 1); + ups.Add(i + 2); + } + break; + case BinaryOperator.Opcode.Le: + k = AsIntLiteral(arg0); + if (k != null) { + var i = (BigInteger)k; + downs.Add(i - 1); + downs.Add(i); + } + k = AsIntLiteral(arg1); + if (k != null) { + var i = (BigInteger)k; + ups.Add(i + offset); + ups.Add(i + 1 + offset); + } + break; + case BinaryOperator.Opcode.Lt: + k = AsIntLiteral(arg0); + if (k != null) { + var i = (BigInteger)k; + downs.Add(i ); + downs.Add(i + 1); + } + k = AsIntLiteral(arg1); + if (k != null) { + var i = (BigInteger)k; + ups.Add(i - 1 + offset); + ups.Add(i + offset); + } + break; + case BinaryOperator.Opcode.Ge: + { var tmp = arg0; arg0 = arg1; arg1 = tmp; } + goto case BinaryOperator.Opcode.Le; + case BinaryOperator.Opcode.Gt: + { var tmp = arg0; arg0 = arg1; arg1 = tmp; } + goto case BinaryOperator.Opcode.Lt; + default: + break; + } + } + return base.VisitNAryExpr(node); + } + + BigInteger? AsIntLiteral(Expr e) { + var lit = e as LiteralExpr; + if (lit != null && lit.isBigNum) { + BigNum bn = lit.asBigNum; + return bn.ToBigInteger; + } + return null; + } + } + +} |