summaryrefslogtreecommitdiff
path: root/absl/synchronization/mutex_benchmark.cc
blob: e35aed8bd649524f4aca6ba1be8b892408cf31e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cstdint>
#include <mutex>  // NOLINT(build/c++11)
#include <vector>

#include "absl/base/config.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/spinlock.h"
#include "absl/synchronization/blocking_counter.h"
#include "absl/synchronization/internal/thread_pool.h"
#include "absl/synchronization/mutex.h"
#include "benchmark/benchmark.h"

namespace {

void BM_Mutex(benchmark::State& state) {
  static absl::Mutex* mu = new absl::Mutex;
  for (auto _ : state) {
    absl::MutexLock lock(mu);
  }
}
BENCHMARK(BM_Mutex)->UseRealTime()->Threads(1)->ThreadPerCpu();

static void DelayNs(int64_t ns, int* data) {
  int64_t end = absl::base_internal::CycleClock::Now() +
                ns * absl::base_internal::CycleClock::Frequency() / 1e9;
  while (absl::base_internal::CycleClock::Now() < end) {
    ++(*data);
    benchmark::DoNotOptimize(*data);
  }
}

template <typename MutexType>
class RaiiLocker {
 public:
  explicit RaiiLocker(MutexType* mu) : mu_(mu) { mu_->Lock(); }
  ~RaiiLocker() { mu_->Unlock(); }
 private:
  MutexType* mu_;
};

template <>
class RaiiLocker<std::mutex> {
 public:
  explicit RaiiLocker(std::mutex* mu) : mu_(mu) { mu_->lock(); }
  ~RaiiLocker() { mu_->unlock(); }
 private:
  std::mutex* mu_;
};

// RAII object to change the Mutex priority of the running thread.
class ScopedThreadMutexPriority {
 public:
  explicit ScopedThreadMutexPriority(int priority) {
    absl::base_internal::ThreadIdentity* identity =
        absl::synchronization_internal::GetOrCreateCurrentThreadIdentity();
    identity->per_thread_synch.priority = priority;
    // Bump next_priority_read_cycles to the infinite future so that the
    // implementation doesn't re-read the thread's actual scheduler priority
    // and replace our temporary scoped priority.
    identity->per_thread_synch.next_priority_read_cycles =
        std::numeric_limits<int64_t>::max();
  }
  ~ScopedThreadMutexPriority() {
    // Reset the "next priority read time" back to the infinite past so that
    // the next time the Mutex implementation wants to know this thread's
    // priority, it re-reads it from the OS instead of using our overridden
    // priority.
    absl::synchronization_internal::GetOrCreateCurrentThreadIdentity()
        ->per_thread_synch.next_priority_read_cycles =
        std::numeric_limits<int64_t>::min();
  }
};

void BM_MutexEnqueue(benchmark::State& state) {
  // In the "multiple priorities" variant of the benchmark, one of the
  // threads runs with Mutex priority 0 while the rest run at elevated priority.
  // This benchmarks the performance impact of the presence of a low priority
  // waiter when a higher priority waiter adds itself of the queue
  // (b/175224064).
  //
  // NOTE: The actual scheduler priority is not modified in this benchmark:
  // all of the threads get CPU slices with the same priority. Only the
  // Mutex queueing behavior is modified.
  const bool multiple_priorities = state.range(0);
  ScopedThreadMutexPriority priority_setter(
      (multiple_priorities && state.thread_index != 0) ? 1 : 0);

  struct Shared {
    absl::Mutex mu;
    std::atomic<int> looping_threads{0};
    std::atomic<int> blocked_threads{0};
    std::atomic<bool> thread_has_mutex{false};
  };
  static Shared* shared = new Shared;

  // Set up 'blocked_threads' to count how many threads are currently blocked
  // in Abseil synchronization code.
  //
  // NOTE: Blocking done within the Google Benchmark library itself (e.g.
  // the barrier which synchronizes threads entering and exiting the benchmark
  // loop) does _not_ get registered in this counter. This is because Google
  // Benchmark uses its own synchronization primitives based on std::mutex, not
  // Abseil synchronization primitives. If at some point the benchmark library
  // merges into Abseil, this code may break.
  absl::synchronization_internal::PerThreadSem::SetThreadBlockedCounter(
      &shared->blocked_threads);

  // The benchmark framework may run several iterations in the same process,
  // reusing the same static-initialized 'shared' object. Given the semantics
  // of the members, here, we expect everything to be reset to zero by the
  // end of any iteration. Assert that's the case, just to be sure.
  ABSL_RAW_CHECK(
      shared->looping_threads.load(std::memory_order_relaxed) == 0 &&
          shared->blocked_threads.load(std::memory_order_relaxed) == 0 &&
          !shared->thread_has_mutex.load(std::memory_order_relaxed),
      "Shared state isn't zeroed at start of benchmark iteration");

  static constexpr int kBatchSize = 1000;
  while (state.KeepRunningBatch(kBatchSize)) {
    shared->looping_threads.fetch_add(1);
    for (int i = 0; i < kBatchSize; i++) {
      {
        absl::MutexLock l(&shared->mu);
        shared->thread_has_mutex.store(true, std::memory_order_relaxed);
        // Spin until all other threads are either out of the benchmark loop
        // or blocked on the mutex. This ensures that the mutex queue is kept
        // at its maximal length to benchmark the performance of queueing on
        // a highly contended mutex.
        while (shared->looping_threads.load(std::memory_order_relaxed) -
                   shared->blocked_threads.load(std::memory_order_relaxed) !=
               1) {
        }
        shared->thread_has_mutex.store(false);
      }
      // Spin until some other thread has acquired the mutex before we block
      // again. This ensures that we always go through the slow (queueing)
      // acquisition path rather than reacquiring the mutex we just released.
      while (!shared->thread_has_mutex.load(std::memory_order_relaxed) &&
             shared->looping_threads.load(std::memory_order_relaxed) > 1) {
      }
    }
    // The benchmark framework uses a barrier to ensure that all of the threads
    // complete their benchmark loop together before any of the threads exit
    // the loop. So, we need to remove ourselves from the "looping threads"
    // counter here before potentially blocking on that barrier. Otherwise,
    // another thread spinning above might wait forever for this thread to
    // block on the mutex while we in fact are waiting to exit.
    shared->looping_threads.fetch_add(-1);
  }
  absl::synchronization_internal::PerThreadSem::SetThreadBlockedCounter(
      nullptr);
}

BENCHMARK(BM_MutexEnqueue)
    ->Threads(4)
    ->Threads(64)
    ->Threads(128)
    ->Threads(512)
    ->ArgName("multiple_priorities")
    ->Arg(false)
    ->Arg(true);

template <typename MutexType>
void BM_Contended(benchmark::State& state) {
  int priority = state.thread_index % state.range(1);
  ScopedThreadMutexPriority priority_setter(priority);

  struct Shared {
    MutexType mu;
    int data = 0;
  };
  static auto* shared = new Shared;
  int local = 0;
  for (auto _ : state) {
    // Here we model both local work outside of the critical section as well as
    // some work inside of the critical section. The idea is to capture some
    // more or less realisitic contention levels.
    // If contention is too low, the benchmark won't measure anything useful.
    // If contention is unrealistically high, the benchmark will favor
    // bad mutex implementations that block and otherwise distract threads
    // from the mutex and shared state for as much as possible.
    // To achieve this amount of local work is multiplied by number of threads
    // to keep ratio between local work and critical section approximately
    // equal regardless of number of threads.
    DelayNs(100 * state.threads, &local);
    RaiiLocker<MutexType> locker(&shared->mu);
    DelayNs(state.range(0), &shared->data);
  }
}
void SetupBenchmarkArgs(benchmark::internal::Benchmark* bm,
                        bool do_test_priorities) {
  const int max_num_priorities = do_test_priorities ? 2 : 1;
  bm->UseRealTime()
      // ThreadPerCpu poorly handles non-power-of-two CPU counts.
      ->Threads(1)
      ->Threads(2)
      ->Threads(4)
      ->Threads(6)
      ->Threads(8)
      ->Threads(12)
      ->Threads(16)
      ->Threads(24)
      ->Threads(32)
      ->Threads(48)
      ->Threads(64)
      ->Threads(96)
      ->Threads(128)
      ->Threads(192)
      ->Threads(256)
      ->ArgNames({"cs_ns", "num_prios"});
  // Some empirically chosen amounts of work in critical section.
  // 1 is low contention, 2000 is high contention and few values in between.
  for (int critical_section_ns : {1, 20, 50, 200, 2000}) {
    for (int num_priorities = 1; num_priorities <= max_num_priorities;
         num_priorities++) {
      bm->ArgPair(critical_section_ns, num_priorities);
    }
  }
}

BENCHMARK_TEMPLATE(BM_Contended, absl::Mutex)
    ->Apply([](benchmark::internal::Benchmark* bm) {
      SetupBenchmarkArgs(bm, /*do_test_priorities=*/true);
    });

BENCHMARK_TEMPLATE(BM_Contended, absl::base_internal::SpinLock)
    ->Apply([](benchmark::internal::Benchmark* bm) {
      SetupBenchmarkArgs(bm, /*do_test_priorities=*/false);
    });

BENCHMARK_TEMPLATE(BM_Contended, std::mutex)
    ->Apply([](benchmark::internal::Benchmark* bm) {
      SetupBenchmarkArgs(bm, /*do_test_priorities=*/false);
    });

// Measure the overhead of conditions on mutex release (when they must be
// evaluated).  Mutex has (some) support for equivalence classes allowing
// Conditions with the same function/argument to potentially not be multiply
// evaluated.
//
// num_classes==0 is used for the special case of every waiter being distinct.
void BM_ConditionWaiters(benchmark::State& state) {
  int num_classes = state.range(0);
  int num_waiters = state.range(1);

  struct Helper {
    static void Waiter(absl::BlockingCounter* init, absl::Mutex* m, int* p) {
      init->DecrementCount();
      m->LockWhen(absl::Condition(
          static_cast<bool (*)(int*)>([](int* v) { return *v == 0; }), p));
      m->Unlock();
    }
  };

  if (num_classes == 0) {
    // No equivalence classes.
    num_classes = num_waiters;
  }

  absl::BlockingCounter init(num_waiters);
  absl::Mutex mu;
  std::vector<int> equivalence_classes(num_classes, 1);

  // Must be declared last to be destroyed first.
  absl::synchronization_internal::ThreadPool pool(num_waiters);

  for (int i = 0; i < num_waiters; i++) {
    // Mutex considers Conditions with the same function and argument
    // to be equivalent.
    pool.Schedule([&, i] {
      Helper::Waiter(&init, &mu, &equivalence_classes[i % num_classes]);
    });
  }
  init.Wait();

  for (auto _ : state) {
    mu.Lock();
    mu.Unlock();  // Each unlock requires Condition evaluation for our waiters.
  }

  mu.Lock();
  for (int i = 0; i < num_classes; i++) {
    equivalence_classes[i] = 0;
  }
  mu.Unlock();
}

// Some configurations have higher thread limits than others.
#if defined(__linux__) && !defined(ABSL_HAVE_THREAD_SANITIZER)
constexpr int kMaxConditionWaiters = 8192;
#else
constexpr int kMaxConditionWaiters = 1024;
#endif
BENCHMARK(BM_ConditionWaiters)->RangePair(0, 2, 1, kMaxConditionWaiters);

}  // namespace