1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
|
// Copyright 2021 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/cord_rep_btree.h"
#include <cassert>
#include <cstdint>
#include <iostream>
#include <ostream>
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/optimization.h"
#include "absl/strings/internal/cord_data_edge.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_consume.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr size_t CordRepBtree::kMaxCapacity;
#endif
namespace {
using NodeStack = CordRepBtree * [CordRepBtree::kMaxDepth];
using EdgeType = CordRepBtree::EdgeType;
using OpResult = CordRepBtree::OpResult;
using CopyResult = CordRepBtree::CopyResult;
constexpr auto kFront = CordRepBtree::kFront;
constexpr auto kBack = CordRepBtree::kBack;
inline bool exhaustive_validation() {
return cord_btree_exhaustive_validation.load(std::memory_order_relaxed);
}
// Implementation of the various 'Dump' functions.
// Prints the entire tree structure or 'rep'. External callers should
// not specify 'depth' and leave it to its default (0) value.
// Rep may be a CordRepBtree tree, or a SUBSTRING / EXTERNAL / FLAT node.
void DumpAll(const CordRep* rep,
bool include_contents,
std::ostream& stream,
size_t depth = 0) {
// Allow for full height trees + substring -> flat / external nodes.
assert(depth <= CordRepBtree::kMaxDepth + 2);
std::string sharing = const_cast<CordRep*>(rep)->refcount.IsOne()
? std::string("Private")
: absl::StrCat("Shared(", rep->refcount.Get(), ")");
std::string sptr = absl::StrCat("0x", absl::Hex(rep));
// Dumps the data contents of `rep` if `include_contents` is true.
// Always emits a new line character.
auto maybe_dump_data = [&stream, include_contents](const CordRep* r) {
if (include_contents) {
// Allow for up to 60 wide display of content data, which with some
// indentation and prefix / labels keeps us within roughly 80-100 wide.
constexpr size_t kMaxDataLength = 60;
stream << ", data = \""
<< EdgeData(r).substr(0, kMaxDataLength)
<< (r->length > kMaxDataLength ? "\"..." : "\"");
}
stream << '\n';
};
// For each level, we print the 'shared/private' state and the rep pointer,
// indented by two spaces per recursive depth.
stream << std::string(depth * 2, ' ') << sharing << " (" << sptr << ") ";
if (rep->IsBtree()) {
const CordRepBtree* node = rep->btree();
std::string label =
node->height() ? absl::StrCat("Node(", node->height(), ")") : "Leaf";
stream << label << ", len = " << node->length
<< ", begin = " << node->begin() << ", end = " << node->end()
<< "\n";
for (CordRep* edge : node->Edges()) {
DumpAll(edge, include_contents, stream, depth + 1);
}
} else if (rep->tag == SUBSTRING) {
const CordRepSubstring* substring = rep->substring();
stream << "Substring, len = " << rep->length
<< ", start = " << substring->start;
maybe_dump_data(rep);
DumpAll(substring->child, include_contents, stream, depth + 1);
} else if (rep->tag >= FLAT) {
stream << "Flat, len = " << rep->length
<< ", cap = " << rep->flat()->Capacity();
maybe_dump_data(rep);
} else if (rep->tag == EXTERNAL) {
stream << "Extn, len = " << rep->length;
maybe_dump_data(rep);
}
}
// TODO(b/192061034): add 'bytes to copy' logic to avoid large slop on substring
// small data out of large reps, and general efficiency of 'always copy small
// data'. Consider making this a cord rep internal library function.
CordRepSubstring* CreateSubstring(CordRep* rep, size_t offset, size_t n) {
assert(n != 0);
assert(offset + n <= rep->length);
assert(offset != 0 || n != rep->length);
if (rep->tag == SUBSTRING) {
CordRepSubstring* substring = rep->substring();
offset += substring->start;
rep = CordRep::Ref(substring->child);
CordRep::Unref(substring);
}
assert(rep->IsExternal() || rep->IsFlat());
CordRepSubstring* substring = new CordRepSubstring();
substring->length = n;
substring->tag = SUBSTRING;
substring->start = offset;
substring->child = rep;
return substring;
}
// TODO(b/192061034): consider making this a cord rep library function.
inline CordRep* MakeSubstring(CordRep* rep, size_t offset, size_t n) {
if (n == rep->length) return rep;
if (n == 0) return CordRep::Unref(rep), nullptr;
return CreateSubstring(rep, offset, n);
}
// TODO(b/192061034): consider making this a cord rep library function.
inline CordRep* MakeSubstring(CordRep* rep, size_t offset) {
if (offset == 0) return rep;
return CreateSubstring(rep, offset, rep->length - offset);
}
// Resizes `edge` to the provided `length`. Adopts a reference on `edge`.
// This method directly returns `edge` if `length` equals `edge->length`.
// If `is_mutable` is set to true, this function may return `edge` with
// `edge->length` set to the new length depending on the type and size of
// `edge`. Otherwise, this function returns a new CordRepSubstring value.
// Requires `length > 0 && length <= edge->length`.
CordRep* ResizeEdge(CordRep* edge, size_t length, bool is_mutable) {
assert(length > 0);
assert(length <= edge->length);
assert(IsDataEdge(edge));
if (length >= edge->length) return edge;
if (is_mutable && (edge->tag >= FLAT || edge->tag == SUBSTRING)) {
edge->length = length;
return edge;
}
return CreateSubstring(edge, 0, length);
}
template <EdgeType edge_type>
inline absl::string_view Consume(absl::string_view s, size_t n) {
return edge_type == kBack ? s.substr(n) : s.substr(0, s.size() - n);
}
template <EdgeType edge_type>
inline absl::string_view Consume(char* dst, absl::string_view s, size_t n) {
if (edge_type == kBack) {
memcpy(dst, s.data(), n);
return s.substr(n);
} else {
const size_t offset = s.size() - n;
memcpy(dst, s.data() + offset, n);
return s.substr(0, offset);
}
}
// Known issue / optimization weirdness: the store associated with the
// decrement introduces traffic between cpus (even if the result of that
// traffic does nothing), making this faster than a single call to
// refcount.Decrement() checking the zero refcount condition.
template <typename R, typename Fn>
inline void FastUnref(R* r, Fn&& fn) {
if (r->refcount.IsOne()) {
fn(r);
} else if (!r->refcount.DecrementExpectHighRefcount()) {
fn(r);
}
}
void DeleteSubstring(CordRepSubstring* substring) {
CordRep* rep = substring->child;
if (!rep->refcount.Decrement()) {
if (rep->tag >= FLAT) {
CordRepFlat::Delete(rep->flat());
} else {
assert(rep->tag == EXTERNAL);
CordRepExternal::Delete(rep->external());
}
}
delete substring;
}
// Deletes a leaf node data edge. Requires `IsDataEdge(rep)`.
void DeleteLeafEdge(CordRep* rep) {
assert(IsDataEdge(rep));
if (rep->tag >= FLAT) {
CordRepFlat::Delete(rep->flat());
} else if (rep->tag == EXTERNAL) {
CordRepExternal::Delete(rep->external());
} else {
DeleteSubstring(rep->substring());
}
}
// StackOperations contains the logic to build a left-most or right-most stack
// (leg) down to the leaf level of a btree, and 'unwind' / 'Finalize' methods to
// propagate node changes up the stack.
template <EdgeType edge_type>
struct StackOperations {
// Returns true if the node at 'depth' is not shared, i.e. has a refcount
// of one and all of its parent nodes have a refcount of one.
inline bool owned(int depth) const { return depth < share_depth; }
// Returns the node at 'depth'.
inline CordRepBtree* node(int depth) const { return stack[depth]; }
// Builds a `depth` levels deep stack starting at `tree` recording which nodes
// are private in the form of the 'share depth' where nodes are shared.
inline CordRepBtree* BuildStack(CordRepBtree* tree, int depth) {
assert(depth <= tree->height());
int current_depth = 0;
while (current_depth < depth && tree->refcount.IsOne()) {
stack[current_depth++] = tree;
tree = tree->Edge(edge_type)->btree();
}
share_depth = current_depth + (tree->refcount.IsOne() ? 1 : 0);
while (current_depth < depth) {
stack[current_depth++] = tree;
tree = tree->Edge(edge_type)->btree();
}
return tree;
}
// Builds a stack with the invariant that all nodes are private owned / not
// shared. This is used in iterative updates where a previous propagation
// guaranteed all nodes are owned / private.
inline void BuildOwnedStack(CordRepBtree* tree, int height) {
assert(height <= CordRepBtree::kMaxHeight);
int depth = 0;
while (depth < height) {
assert(tree->refcount.IsOne());
stack[depth++] = tree;
tree = tree->Edge(edge_type)->btree();
}
assert(tree->refcount.IsOne());
share_depth = depth + 1;
}
// Processes the final 'top level' result action for the tree.
// See the 'Action' enum for the various action implications.
static inline CordRepBtree* Finalize(CordRepBtree* tree, OpResult result) {
switch (result.action) {
case CordRepBtree::kPopped:
tree = edge_type == kBack ? CordRepBtree::New(tree, result.tree)
: CordRepBtree::New(result.tree, tree);
if (ABSL_PREDICT_FALSE(tree->height() > CordRepBtree::kMaxHeight)) {
tree = CordRepBtree::Rebuild(tree);
ABSL_RAW_CHECK(tree->height() <= CordRepBtree::kMaxHeight,
"Max height exceeded");
}
return tree;
case CordRepBtree::kCopied:
CordRep::Unref(tree);
ABSL_FALLTHROUGH_INTENDED;
case CordRepBtree::kSelf:
return result.tree;
}
ABSL_UNREACHABLE();
return result.tree;
}
// Propagate the action result in 'result' up into all nodes of the stack
// starting at depth 'depth'. 'length' contains the extra length of data that
// was added at the lowest level, and is updated into all nodes of the stack.
// See the 'Action' enum for the various action implications.
// If 'propagate' is true, then any copied node values are updated into the
// stack, which is used for iterative processing on the same stack.
template <bool propagate = false>
inline CordRepBtree* Unwind(CordRepBtree* tree, int depth, size_t length,
OpResult result) {
// TODO(mvels): revisit the below code to check if 3 loops with 3
// (incremental) conditions is faster than 1 loop with a switch.
// Benchmarking and perf recordings indicate the loop with switch is
// fastest, likely because of indirect jumps on the tight case values and
// dense branches. But it's worth considering 3 loops, as the `action`
// transitions are mono directional. E.g.:
// while (action == kPopped) {
// ...
// }
// while (action == kCopied) {
// ...
// }
// ...
// We also found that an "if () do {}" loop here seems faster, possibly
// because it allows the branch predictor more granular heuristics on
// 'single leaf' (`depth` == 0) and 'single depth' (`depth` == 1) cases
// which appear to be the most common use cases.
if (depth != 0) {
do {
CordRepBtree* node = stack[--depth];
const bool owned = depth < share_depth;
switch (result.action) {
case CordRepBtree::kPopped:
assert(!propagate);
result = node->AddEdge<edge_type>(owned, result.tree, length);
break;
case CordRepBtree::kCopied:
result = node->SetEdge<edge_type>(owned, result.tree, length);
if (propagate) stack[depth] = result.tree;
break;
case CordRepBtree::kSelf:
node->length += length;
while (depth > 0) {
node = stack[--depth];
node->length += length;
}
return node;
}
} while (depth > 0);
}
return Finalize(tree, result);
}
// Invokes `Unwind` with `propagate=true` to update the stack node values.
inline CordRepBtree* Propagate(CordRepBtree* tree, int depth, size_t length,
OpResult result) {
return Unwind</*propagate=*/true>(tree, depth, length, result);
}
// `share_depth` contains the depth at which the nodes in the stack become
// shared. I.e., if the top most level is shared (i.e.: `!refcount.IsOne()`),
// then `share_depth` is 0. If the 2nd node is shared (and implicitly all
// nodes below that) then `share_depth` is 1, etc. A `share_depth` greater
// than the depth of the stack indicates that none of the nodes in the stack
// are shared.
int share_depth;
NodeStack stack;
};
} // namespace
void CordRepBtree::Dump(const CordRep* rep, absl::string_view label,
bool include_contents, std::ostream& stream) {
stream << "===================================\n";
if (!label.empty()) {
stream << label << '\n';
stream << "-----------------------------------\n";
}
if (rep) {
DumpAll(rep, include_contents, stream);
} else {
stream << "NULL\n";
}
}
void CordRepBtree::Dump(const CordRep* rep, absl::string_view label,
std::ostream& stream) {
Dump(rep, label, false, stream);
}
void CordRepBtree::Dump(const CordRep* rep, std::ostream& stream) {
Dump(rep, absl::string_view(), false, stream);
}
template <size_t size>
static void DestroyTree(CordRepBtree* tree) {
for (CordRep* node : tree->Edges()) {
if (node->refcount.Decrement()) continue;
for (CordRep* edge : node->btree()->Edges()) {
if (edge->refcount.Decrement()) continue;
if (size == 1) {
DeleteLeafEdge(edge);
} else {
CordRepBtree::Destroy(edge->btree());
}
}
CordRepBtree::Delete(node->btree());
}
CordRepBtree::Delete(tree);
}
void CordRepBtree::Destroy(CordRepBtree* tree) {
switch (tree->height()) {
case 0:
for (CordRep* edge : tree->Edges()) {
if (!edge->refcount.Decrement()) {
DeleteLeafEdge(edge);
}
}
return CordRepBtree::Delete(tree);
case 1:
return DestroyTree<1>(tree);
default:
return DestroyTree<2>(tree);
}
}
bool CordRepBtree::IsValid(const CordRepBtree* tree, bool shallow) {
#define NODE_CHECK_VALID(x) \
if (!(x)) { \
ABSL_RAW_LOG(ERROR, "CordRepBtree::CheckValid() FAILED: %s", #x); \
return false; \
}
#define NODE_CHECK_EQ(x, y) \
if ((x) != (y)) { \
ABSL_RAW_LOG(ERROR, \
"CordRepBtree::CheckValid() FAILED: %s != %s (%s vs %s)", #x, \
#y, absl::StrCat(x).c_str(), absl::StrCat(y).c_str()); \
return false; \
}
NODE_CHECK_VALID(tree != nullptr);
NODE_CHECK_VALID(tree->IsBtree());
NODE_CHECK_VALID(tree->height() <= kMaxHeight);
NODE_CHECK_VALID(tree->begin() < tree->capacity());
NODE_CHECK_VALID(tree->end() <= tree->capacity());
NODE_CHECK_VALID(tree->begin() <= tree->end());
size_t child_length = 0;
for (CordRep* edge : tree->Edges()) {
NODE_CHECK_VALID(edge != nullptr);
if (tree->height() > 0) {
NODE_CHECK_VALID(edge->IsBtree());
NODE_CHECK_VALID(edge->btree()->height() == tree->height() - 1);
} else {
NODE_CHECK_VALID(IsDataEdge(edge));
}
child_length += edge->length;
}
NODE_CHECK_EQ(child_length, tree->length);
if ((!shallow || exhaustive_validation()) && tree->height() > 0) {
for (CordRep* edge : tree->Edges()) {
if (!IsValid(edge->btree(), shallow)) return false;
}
}
return true;
#undef NODE_CHECK_VALID
#undef NODE_CHECK_EQ
}
#ifndef NDEBUG
CordRepBtree* CordRepBtree::AssertValid(CordRepBtree* tree, bool shallow) {
if (!IsValid(tree, shallow)) {
Dump(tree, "CordRepBtree validation failed:", false, std::cout);
ABSL_RAW_LOG(FATAL, "CordRepBtree::CheckValid() FAILED");
}
return tree;
}
const CordRepBtree* CordRepBtree::AssertValid(const CordRepBtree* tree,
bool shallow) {
if (!IsValid(tree, shallow)) {
Dump(tree, "CordRepBtree validation failed:", false, std::cout);
ABSL_RAW_LOG(FATAL, "CordRepBtree::CheckValid() FAILED");
}
return tree;
}
#endif // NDEBUG
template <EdgeType edge_type>
inline OpResult CordRepBtree::AddEdge(bool owned, CordRep* edge, size_t delta) {
if (size() >= kMaxCapacity) return {New(edge), kPopped};
OpResult result = ToOpResult(owned);
result.tree->Add<edge_type>(edge);
result.tree->length += delta;
return result;
}
template <EdgeType edge_type>
OpResult CordRepBtree::SetEdge(bool owned, CordRep* edge, size_t delta) {
OpResult result;
const size_t idx = index(edge_type);
if (owned) {
result = {this, kSelf};
CordRep::Unref(edges_[idx]);
} else {
// Create a copy containing all unchanged edges. Unchanged edges are the
// open interval [begin, back) or [begin + 1, end) depending on `edge_type`.
// We conveniently cover both case using a constexpr `shift` being 0 or 1
// as `end :== back + 1`.
result = {CopyRaw(length), kCopied};
constexpr int shift = edge_type == kFront ? 1 : 0;
for (CordRep* r : Edges(begin() + shift, back() + shift)) {
CordRep::Ref(r);
}
}
result.tree->edges_[idx] = edge;
result.tree->length += delta;
return result;
}
template <EdgeType edge_type>
CordRepBtree* CordRepBtree::AddCordRep(CordRepBtree* tree, CordRep* rep) {
const int depth = tree->height();
const size_t length = rep->length;
StackOperations<edge_type> ops;
CordRepBtree* leaf = ops.BuildStack(tree, depth);
const OpResult result =
leaf->AddEdge<edge_type>(ops.owned(depth), rep, length);
return ops.Unwind(tree, depth, length, result);
}
template <>
CordRepBtree* CordRepBtree::NewLeaf<kBack>(absl::string_view data,
size_t extra) {
CordRepBtree* leaf = CordRepBtree::New(0);
size_t length = 0;
size_t end = 0;
const size_t cap = leaf->capacity();
while (!data.empty() && end != cap) {
auto* flat = CordRepFlat::New(data.length() + extra);
flat->length = (std::min)(data.length(), flat->Capacity());
length += flat->length;
leaf->edges_[end++] = flat;
data = Consume<kBack>(flat->Data(), data, flat->length);
}
leaf->length = length;
leaf->set_end(end);
return leaf;
}
template <>
CordRepBtree* CordRepBtree::NewLeaf<kFront>(absl::string_view data,
size_t extra) {
CordRepBtree* leaf = CordRepBtree::New(0);
size_t length = 0;
size_t begin = leaf->capacity();
leaf->set_end(leaf->capacity());
while (!data.empty() && begin != 0) {
auto* flat = CordRepFlat::New(data.length() + extra);
flat->length = (std::min)(data.length(), flat->Capacity());
length += flat->length;
leaf->edges_[--begin] = flat;
data = Consume<kFront>(flat->Data(), data, flat->length);
}
leaf->length = length;
leaf->set_begin(begin);
return leaf;
}
template <>
absl::string_view CordRepBtree::AddData<kBack>(absl::string_view data,
size_t extra) {
assert(!data.empty());
assert(size() < capacity());
AlignBegin();
const size_t cap = capacity();
do {
CordRepFlat* flat = CordRepFlat::New(data.length() + extra);
const size_t n = (std::min)(data.length(), flat->Capacity());
flat->length = n;
edges_[fetch_add_end(1)] = flat;
data = Consume<kBack>(flat->Data(), data, n);
} while (!data.empty() && end() != cap);
return data;
}
template <>
absl::string_view CordRepBtree::AddData<kFront>(absl::string_view data,
size_t extra) {
assert(!data.empty());
assert(size() < capacity());
AlignEnd();
do {
CordRepFlat* flat = CordRepFlat::New(data.length() + extra);
const size_t n = (std::min)(data.length(), flat->Capacity());
flat->length = n;
edges_[sub_fetch_begin(1)] = flat;
data = Consume<kFront>(flat->Data(), data, n);
} while (!data.empty() && begin() != 0);
return data;
}
template <EdgeType edge_type>
CordRepBtree* CordRepBtree::AddData(CordRepBtree* tree, absl::string_view data,
size_t extra) {
if (ABSL_PREDICT_FALSE(data.empty())) return tree;
const size_t original_data_size = data.size();
int depth = tree->height();
StackOperations<edge_type> ops;
CordRepBtree* leaf = ops.BuildStack(tree, depth);
// If there is capacity in the last edge, append as much data
// as possible into this last edge.
if (leaf->size() < leaf->capacity()) {
OpResult result = leaf->ToOpResult(ops.owned(depth));
data = result.tree->AddData<edge_type>(data, extra);
if (data.empty()) {
result.tree->length += original_data_size;
return ops.Unwind(tree, depth, original_data_size, result);
}
// We added some data into this leaf, but not all. Propagate the added
// length to the top most node, and rebuild the stack with any newly copied
// or updated nodes. From this point on, the path (leg) from the top most
// node to the right-most node towards the leaf node is privately owned.
size_t delta = original_data_size - data.size();
assert(delta > 0);
result.tree->length += delta;
tree = ops.Propagate(tree, depth, delta, result);
ops.share_depth = depth + 1;
}
// We were unable to append all data into the existing right-most leaf node.
// This means all remaining data must be put into (a) new leaf node(s) which
// we append to the tree. To make this efficient, we iteratively build full
// leaf nodes from `data` until the created leaf contains all remaining data.
// We utilize the `Unwind` method to merge the created leaf into the first
// level towards root that has capacity. On each iteration with remaining
// data, we rebuild the stack in the knowledge that right-most nodes are
// privately owned after the first `Unwind` completes.
for (;;) {
OpResult result = {CordRepBtree::NewLeaf<edge_type>(data, extra), kPopped};
if (result.tree->length == data.size()) {
return ops.Unwind(tree, depth, result.tree->length, result);
}
data = Consume<edge_type>(data, result.tree->length);
tree = ops.Unwind(tree, depth, result.tree->length, result);
depth = tree->height();
ops.BuildOwnedStack(tree, depth);
}
}
template <EdgeType edge_type>
CordRepBtree* CordRepBtree::Merge(CordRepBtree* dst, CordRepBtree* src) {
assert(dst->height() >= src->height());
// Capture source length as we may consume / destroy `src`.
const size_t length = src->length;
// We attempt to merge `src` at its corresponding height in `dst`.
const int depth = dst->height() - src->height();
StackOperations<edge_type> ops;
CordRepBtree* merge_node = ops.BuildStack(dst, depth);
// If there is enough space in `merge_node` for all edges from `src`, add all
// edges to this node, making a fresh copy as needed if not privately owned.
// If `merge_node` does not have capacity for `src`, we rely on `Unwind` and
// `Finalize` to merge `src` into the first level towards `root` where there
// is capacity for another edge, or create a new top level node.
OpResult result;
if (merge_node->size() + src->size() <= kMaxCapacity) {
result = merge_node->ToOpResult(ops.owned(depth));
result.tree->Add<edge_type>(src->Edges());
result.tree->length += src->length;
if (src->refcount.IsOne()) {
Delete(src);
} else {
for (CordRep* edge : src->Edges()) CordRep::Ref(edge);
CordRepBtree::Unref(src);
}
} else {
result = {src, kPopped};
}
// Unless we merged at the top level (i.e.: src and dst are equal height),
// unwind the result towards the top level, and finalize the result.
if (depth) {
return ops.Unwind(dst, depth, length, result);
}
return ops.Finalize(dst, result);
}
CopyResult CordRepBtree::CopySuffix(size_t offset) {
assert(offset < this->length);
// As long as `offset` starts inside the last edge, we can 'drop' the current
// depth. For the most extreme example: if offset references the last data
// edge in the tree, there is only a single edge / path from the top of the
// tree to that last edge, so we can drop all the nodes except that edge.
// The fast path check for this is `back->length >= length - offset`.
int height = this->height();
CordRepBtree* node = this;
size_t len = node->length - offset;
CordRep* back = node->Edge(kBack);
while (back->length >= len) {
offset = back->length - len;
if (--height < 0) {
return {MakeSubstring(CordRep::Ref(back), offset), height};
}
node = back->btree();
back = node->Edge(kBack);
}
if (offset == 0) return {CordRep::Ref(node), height};
// Offset does not point into the last edge, so we span at least two edges.
// Find the index of offset with `IndexBeyond` which provides us the edge
// 'beyond' the offset if offset is not a clean starting point of an edge.
Position pos = node->IndexBeyond(offset);
CordRepBtree* sub = node->CopyToEndFrom(pos.index, len);
const CopyResult result = {sub, height};
// `pos.n` contains a non zero value if the offset is not an exact starting
// point of an edge. In this case, `pos.n` contains the 'trailing' amount of
// bytes of the edge preceding that in `pos.index`. We need to iteratively
// adjust the preceding edge with the 'broken' offset until we have a perfect
// start of the edge.
while (pos.n != 0) {
assert(pos.index >= 1);
const size_t begin = pos.index - 1;
sub->set_begin(begin);
CordRep* const edge = node->Edge(begin);
len = pos.n;
offset = edge->length - len;
if (--height < 0) {
sub->edges_[begin] = MakeSubstring(CordRep::Ref(edge), offset, len);
return result;
}
node = edge->btree();
pos = node->IndexBeyond(offset);
CordRepBtree* nsub = node->CopyToEndFrom(pos.index, len);
sub->edges_[begin] = nsub;
sub = nsub;
}
sub->set_begin(pos.index);
return result;
}
CopyResult CordRepBtree::CopyPrefix(size_t n, bool allow_folding) {
assert(n > 0);
assert(n <= this->length);
// As long as `n` does not exceed the length of the first edge, we can 'drop'
// the current depth. For the most extreme example: if we'd copy a 1 byte
// prefix from a tree, there is only a single edge / path from the top of the
// tree to the single data edge containing this byte, so we can drop all the
// nodes except the data node.
int height = this->height();
CordRepBtree* node = this;
CordRep* front = node->Edge(kFront);
if (allow_folding) {
while (front->length >= n) {
if (--height < 0) return {MakeSubstring(CordRep::Ref(front), 0, n), -1};
node = front->btree();
front = node->Edge(kFront);
}
}
if (node->length == n) return {CordRep::Ref(node), height};
// `n` spans at least two nodes, find the end point of the span.
Position pos = node->IndexOf(n);
// Create a partial copy of the node up to `pos.index`, with a defined length
// of `n`. Any 'partial last edge' is added further below as needed.
CordRepBtree* sub = node->CopyBeginTo(pos.index, n);
const CopyResult result = {sub, height};
// `pos.n` contains the 'offset inside the edge for IndexOf(n)'. As long as
// this is not zero, we don't have a 'clean cut', so we need to make a
// (partial) copy of that last edge, and repeat this until pos.n is zero.
while (pos.n != 0) {
size_t end = pos.index;
n = pos.n;
CordRep* edge = node->Edge(pos.index);
if (--height < 0) {
sub->edges_[end++] = MakeSubstring(CordRep::Ref(edge), 0, n);
sub->set_end(end);
AssertValid(result.edge->btree());
return result;
}
node = edge->btree();
pos = node->IndexOf(n);
CordRepBtree* nsub = node->CopyBeginTo(pos.index, n);
sub->edges_[end++] = nsub;
sub->set_end(end);
sub = nsub;
}
sub->set_end(pos.index);
AssertValid(result.edge->btree());
return result;
}
CordRep* CordRepBtree::ExtractFront(CordRepBtree* tree) {
CordRep* front = tree->Edge(tree->begin());
if (tree->refcount.IsOne()) {
Unref(tree->Edges(tree->begin() + 1, tree->end()));
CordRepBtree::Delete(tree);
} else {
CordRep::Ref(front);
CordRep::Unref(tree);
}
return front;
}
CordRepBtree* CordRepBtree::ConsumeBeginTo(CordRepBtree* tree, size_t end,
size_t new_length) {
assert(end <= tree->end());
if (tree->refcount.IsOne()) {
Unref(tree->Edges(end, tree->end()));
tree->set_end(end);
tree->length = new_length;
} else {
CordRepBtree* old = tree;
tree = tree->CopyBeginTo(end, new_length);
CordRep::Unref(old);
}
return tree;
}
CordRep* CordRepBtree::RemoveSuffix(CordRepBtree* tree, size_t n) {
// Check input and deal with trivial cases 'Remove all/none'
assert(tree != nullptr);
assert(n <= tree->length);
const size_t len = tree->length;
if (ABSL_PREDICT_FALSE(n == 0)) {
return tree;
}
if (ABSL_PREDICT_FALSE(n >= len)) {
CordRepBtree::Unref(tree);
return nullptr;
}
size_t length = len - n;
int height = tree->height();
bool is_mutable = tree->refcount.IsOne();
// Extract all top nodes which are reduced to size = 1
Position pos = tree->IndexOfLength(length);
while (pos.index == tree->begin()) {
CordRep* edge = ExtractFront(tree);
is_mutable &= edge->refcount.IsOne();
if (height-- == 0) return ResizeEdge(edge, length, is_mutable);
tree = edge->btree();
pos = tree->IndexOfLength(length);
}
// Repeat the following sequence traversing down the tree:
// - Crop the top node to the 'last remaining edge' adjusting length.
// - Set the length for down edges to the partial length in that last edge.
// - Repeat this until the last edge is 'included in full'
// - If we hit the data edge level, resize and return the last data edge
CordRepBtree* top = tree = ConsumeBeginTo(tree, pos.index + 1, length);
CordRep* edge = tree->Edge(pos.index);
length = pos.n;
while (length != edge->length) {
// ConsumeBeginTo guarantees `tree` is a clean, privately owned copy.
assert(tree->refcount.IsOne());
const bool edge_is_mutable = edge->refcount.IsOne();
if (height-- == 0) {
tree->edges_[pos.index] = ResizeEdge(edge, length, edge_is_mutable);
return AssertValid(top);
}
if (!edge_is_mutable) {
// We can't 'in place' remove any suffixes down this edge.
// Replace this edge with a prefix copy instead.
tree->edges_[pos.index] = edge->btree()->CopyPrefix(length, false).edge;
CordRep::Unref(edge);
return AssertValid(top);
}
// Move down one level, rinse repeat.
tree = edge->btree();
pos = tree->IndexOfLength(length);
tree = ConsumeBeginTo(edge->btree(), pos.index + 1, length);
edge = tree->Edge(pos.index);
length = pos.n;
}
return AssertValid(top);
}
CordRep* CordRepBtree::SubTree(size_t offset, size_t n) {
assert(n <= this->length);
assert(offset <= this->length - n);
if (ABSL_PREDICT_FALSE(n == 0)) return nullptr;
CordRepBtree* node = this;
int height = node->height();
Position front = node->IndexOf(offset);
CordRep* left = node->edges_[front.index];
while (front.n + n <= left->length) {
if (--height < 0) return MakeSubstring(CordRep::Ref(left), front.n, n);
node = left->btree();
front = node->IndexOf(front.n);
left = node->edges_[front.index];
}
const Position back = node->IndexBefore(front, n);
CordRep* const right = node->edges_[back.index];
assert(back.index > front.index);
// Get partial suffix and prefix entries.
CopyResult prefix;
CopyResult suffix;
if (height > 0) {
// Copy prefix and suffix of the boundary nodes.
prefix = left->btree()->CopySuffix(front.n);
suffix = right->btree()->CopyPrefix(back.n);
// If there is an edge between the prefix and suffix edges, then the tree
// must remain at its previous (full) height. If we have no edges between
// prefix and suffix edges, then the tree must be as high as either the
// suffix or prefix edges (which are collapsed to their minimum heights).
if (front.index + 1 == back.index) {
height = (std::max)(prefix.height, suffix.height) + 1;
}
// Raise prefix and suffixes to the new tree height.
for (int h = prefix.height + 1; h < height; ++h) {
prefix.edge = CordRepBtree::New(prefix.edge);
}
for (int h = suffix.height + 1; h < height; ++h) {
suffix.edge = CordRepBtree::New(suffix.edge);
}
} else {
// Leaf node, simply take substrings for prefix and suffix.
prefix = CopyResult{MakeSubstring(CordRep::Ref(left), front.n), -1};
suffix = CopyResult{MakeSubstring(CordRep::Ref(right), 0, back.n), -1};
}
// Compose resulting tree.
CordRepBtree* sub = CordRepBtree::New(height);
size_t end = 0;
sub->edges_[end++] = prefix.edge;
for (CordRep* r : node->Edges(front.index + 1, back.index)) {
sub->edges_[end++] = CordRep::Ref(r);
}
sub->edges_[end++] = suffix.edge;
sub->set_end(end);
sub->length = n;
return AssertValid(sub);
}
CordRepBtree* CordRepBtree::MergeTrees(CordRepBtree* left,
CordRepBtree* right) {
return left->height() >= right->height() ? Merge<kBack>(left, right)
: Merge<kFront>(right, left);
}
bool CordRepBtree::IsFlat(absl::string_view* fragment) const {
if (height() == 0 && size() == 1) {
if (fragment) *fragment = Data(begin());
return true;
}
return false;
}
bool CordRepBtree::IsFlat(size_t offset, const size_t n,
absl::string_view* fragment) const {
assert(n <= this->length);
assert(offset <= this->length - n);
if (ABSL_PREDICT_FALSE(n == 0)) return false;
int height = this->height();
const CordRepBtree* node = this;
for (;;) {
const Position front = node->IndexOf(offset);
const CordRep* edge = node->Edge(front.index);
if (edge->length < front.n + n) return false;
if (--height < 0) {
if (fragment) *fragment = EdgeData(edge).substr(front.n, n);
return true;
}
offset = front.n;
node = node->Edge(front.index)->btree();
}
}
char CordRepBtree::GetCharacter(size_t offset) const {
assert(offset < length);
const CordRepBtree* node = this;
int height = node->height();
for (;;) {
Position front = node->IndexOf(offset);
if (--height < 0) return node->Data(front.index)[front.n];
offset = front.n;
node = node->Edge(front.index)->btree();
}
}
Span<char> CordRepBtree::GetAppendBufferSlow(size_t size) {
// The inlined version in `GetAppendBuffer()` deals with all heights <= 3.
assert(height() >= 4);
assert(refcount.IsOne());
// Build a stack of nodes we may potentially need to update if we find a
// non-shared FLAT with capacity at the leaf level.
const int depth = height();
CordRepBtree* node = this;
CordRepBtree* stack[kMaxDepth];
for (int i = 0; i < depth; ++i) {
node = node->Edge(kBack)->btree();
if (!node->refcount.IsOne()) return {};
stack[i] = node;
}
// Must be a privately owned, mutable flat.
CordRep* const edge = node->Edge(kBack);
if (!edge->refcount.IsOne() || edge->tag < FLAT) return {};
// Must have capacity.
const size_t avail = edge->flat()->Capacity() - edge->length;
if (avail == 0) return {};
// Build span on remaining capacity.
size_t delta = (std::min)(size, avail);
Span<char> span = {edge->flat()->Data() + edge->length, delta};
edge->length += delta;
this->length += delta;
for (int i = 0; i < depth; ++i) {
stack[i]->length += delta;
}
return span;
}
CordRepBtree* CordRepBtree::CreateSlow(CordRep* rep) {
if (rep->IsBtree()) return rep->btree();
CordRepBtree* node = nullptr;
auto consume = [&node](CordRep* r, size_t offset, size_t length) {
r = MakeSubstring(r, offset, length);
if (node == nullptr) {
node = New(r);
} else {
node = CordRepBtree::AddCordRep<kBack>(node, r);
}
};
Consume(rep, consume);
return node;
}
CordRepBtree* CordRepBtree::AppendSlow(CordRepBtree* tree, CordRep* rep) {
if (ABSL_PREDICT_TRUE(rep->IsBtree())) {
return MergeTrees(tree, rep->btree());
}
auto consume = [&tree](CordRep* r, size_t offset, size_t length) {
r = MakeSubstring(r, offset, length);
tree = CordRepBtree::AddCordRep<kBack>(tree, r);
};
Consume(rep, consume);
return tree;
}
CordRepBtree* CordRepBtree::PrependSlow(CordRepBtree* tree, CordRep* rep) {
if (ABSL_PREDICT_TRUE(rep->IsBtree())) {
return MergeTrees(rep->btree(), tree);
}
auto consume = [&tree](CordRep* r, size_t offset, size_t length) {
r = MakeSubstring(r, offset, length);
tree = CordRepBtree::AddCordRep<kFront>(tree, r);
};
ReverseConsume(rep, consume);
return tree;
}
CordRepBtree* CordRepBtree::Append(CordRepBtree* tree, absl::string_view data,
size_t extra) {
return CordRepBtree::AddData<kBack>(tree, data, extra);
}
CordRepBtree* CordRepBtree::Prepend(CordRepBtree* tree, absl::string_view data,
size_t extra) {
return CordRepBtree::AddData<kFront>(tree, data, extra);
}
template CordRepBtree* CordRepBtree::AddCordRep<kFront>(CordRepBtree* tree,
CordRep* rep);
template CordRepBtree* CordRepBtree::AddCordRep<kBack>(CordRepBtree* tree,
CordRep* rep);
template CordRepBtree* CordRepBtree::AddData<kFront>(CordRepBtree* tree,
absl::string_view data,
size_t extra);
template CordRepBtree* CordRepBtree::AddData<kBack>(CordRepBtree* tree,
absl::string_view data,
size_t extra);
void CordRepBtree::Rebuild(CordRepBtree** stack, CordRepBtree* tree,
bool consume) {
bool owned = consume && tree->refcount.IsOne();
if (tree->height() == 0) {
for (CordRep* edge : tree->Edges()) {
if (!owned) edge = CordRep::Ref(edge);
size_t height = 0;
size_t length = edge->length;
CordRepBtree* node = stack[0];
OpResult result = node->AddEdge<kBack>(true, edge, length);
while (result.action == CordRepBtree::kPopped) {
stack[height] = result.tree;
if (stack[++height] == nullptr) {
result.action = CordRepBtree::kSelf;
stack[height] = CordRepBtree::New(node, result.tree);
} else {
node = stack[height];
result = node->AddEdge<kBack>(true, result.tree, length);
}
}
while (stack[++height] != nullptr) {
stack[height]->length += length;
}
}
} else {
for (CordRep* rep : tree->Edges()) {
Rebuild(stack, rep->btree(), owned);
}
}
if (consume) {
if (owned) {
CordRepBtree::Delete(tree);
} else {
CordRepBtree::Unref(tree);
}
}
}
CordRepBtree* CordRepBtree::Rebuild(CordRepBtree* tree) {
// Set up initial stack with empty leaf node.
CordRepBtree* node = CordRepBtree::New();
CordRepBtree* stack[CordRepBtree::kMaxDepth + 1] = {node};
// Recursively build the tree, consuming the input tree.
Rebuild(stack, tree, /* consume reference */ true);
// Return top most node
for (CordRepBtree* parent : stack) {
if (parent == nullptr) return node;
node = parent;
}
// Unreachable
assert(false);
return nullptr;
}
CordRepBtree::ExtractResult CordRepBtree::ExtractAppendBuffer(
CordRepBtree* tree, size_t extra_capacity) {
int depth = 0;
NodeStack stack;
// Set up default 'no success' result which is {tree, nullptr}.
ExtractResult result;
result.tree = tree;
result.extracted = nullptr;
// Dive down the right side of the tree, making sure no edges are shared.
while (tree->height() > 0) {
if (!tree->refcount.IsOne()) return result;
stack[depth++] = tree;
tree = tree->Edge(kBack)->btree();
}
if (!tree->refcount.IsOne()) return result;
// Validate we ended on a non shared flat.
CordRep* rep = tree->Edge(kBack);
if (!(rep->IsFlat() && rep->refcount.IsOne())) return result;
// Verify it has at least the requested extra capacity.
CordRepFlat* flat = rep->flat();
const size_t length = flat->length;
const size_t avail = flat->Capacity() - flat->length;
if (extra_capacity > avail) return result;
// Set the extracted flat in the result.
result.extracted = flat;
// Cascading delete all nodes that become empty.
while (tree->size() == 1) {
CordRepBtree::Delete(tree);
if (--depth < 0) {
// We consumed the entire tree: return nullptr for new tree.
result.tree = nullptr;
return result;
}
rep = tree;
tree = stack[depth];
}
// Remove the edge or cascaded up parent node.
tree->set_end(tree->end() - 1);
tree->length -= length;
// Adjust lengths up the tree.
while (depth > 0) {
tree = stack[--depth];
tree->length -= length;
}
// Remove unnecessary top nodes with size = 1. This may iterate all the way
// down to the leaf node in which case we simply return the remaining last
// edge in that node and the extracted flat.
while (tree->size() == 1) {
int height = tree->height();
rep = tree->Edge(kBack);
Delete(tree);
if (height == 0) {
// We consumed the leaf: return the sole data edge as the new tree.
result.tree = rep;
return result;
}
tree = rep->btree();
}
// Done: return the (new) top level node and extracted flat.
result.tree = tree;
return result;
}
} // namespace cord_internal
ABSL_NAMESPACE_END
} // namespace absl
|