summaryrefslogtreecommitdiff
path: root/absl/strings/internal/cord_internal.h
blob: 63a81f4f16189eea2961a87a316954b5111de7da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
// Copyright 2021 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
#define ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_

#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <type_traits>

#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/invoke.h"
#include "absl/base/optimization.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/container/internal/container_memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"

// We can only add poisoning if we can detect consteval executions.
#if defined(ABSL_HAVE_CONSTANT_EVALUATED) && \
    (defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
     defined(ABSL_HAVE_MEMORY_SANITIZER))
#define ABSL_INTERNAL_CORD_HAVE_SANITIZER 1
#endif

#define ABSL_CORD_INTERNAL_NO_SANITIZE \
  ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {

// The overhead of a vtable is too much for Cord, so we roll our own subclasses
// using only a single byte to differentiate classes from each other - the "tag"
// byte.  Define the subclasses first so we can provide downcasting helper
// functions in the base class.
struct CordRep;
struct CordRepConcat;
struct CordRepExternal;
struct CordRepFlat;
struct CordRepSubstring;
struct CordRepCrc;
class CordRepRing;
class CordRepBtree;

class CordzInfo;

// Default feature enable states for cord ring buffers
enum CordFeatureDefaults {
  kCordEnableRingBufferDefault = false,
  kCordShallowSubcordsDefault = false
};

extern std::atomic<bool> cord_ring_buffer_enabled;
extern std::atomic<bool> shallow_subcords_enabled;

// `cord_btree_exhaustive_validation` can be set to force exhaustive validation
// in debug assertions, and code that calls `IsValid()` explicitly. By default,
// assertions should be relatively cheap and AssertValid() can easily lead to
// O(n^2) complexity as recursive / full tree validation is O(n).
extern std::atomic<bool> cord_btree_exhaustive_validation;

inline void enable_cord_ring_buffer(bool enable) {
  cord_ring_buffer_enabled.store(enable, std::memory_order_relaxed);
}

inline void enable_shallow_subcords(bool enable) {
  shallow_subcords_enabled.store(enable, std::memory_order_relaxed);
}

enum Constants {
  // The inlined size to use with absl::InlinedVector.
  //
  // Note: The InlinedVectors in this file (and in cord.h) do not need to use
  // the same value for their inlined size. The fact that they do is historical.
  // It may be desirable for each to use a different inlined size optimized for
  // that InlinedVector's usage.
  //
  // TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
  // the inlined vector size (47 exists for backward compatibility).
  kInlinedVectorSize = 47,

  // Prefer copying blocks of at most this size, otherwise reference count.
  kMaxBytesToCopy = 511
};

// Emits a fatal error "Unexpected node type: xyz" and aborts the program.
ABSL_ATTRIBUTE_NORETURN void LogFatalNodeType(CordRep* rep);

// Fast implementation of memmove for up to 15 bytes. This implementation is
// safe for overlapping regions. If nullify_tail is true, the destination is
// padded with '\0' up to 15 bytes.
template <bool nullify_tail = false>
inline void SmallMemmove(char* dst, const char* src, size_t n) {
  if (n >= 8) {
    assert(n <= 15);
    uint64_t buf1;
    uint64_t buf2;
    memcpy(&buf1, src, 8);
    memcpy(&buf2, src + n - 8, 8);
    if (nullify_tail) {
      memset(dst + 7, 0, 8);
    }
    memcpy(dst, &buf1, 8);
    memcpy(dst + n - 8, &buf2, 8);
  } else if (n >= 4) {
    uint32_t buf1;
    uint32_t buf2;
    memcpy(&buf1, src, 4);
    memcpy(&buf2, src + n - 4, 4);
    if (nullify_tail) {
      memset(dst + 4, 0, 4);
      memset(dst + 7, 0, 8);
    }
    memcpy(dst, &buf1, 4);
    memcpy(dst + n - 4, &buf2, 4);
  } else {
    if (n != 0) {
      dst[0] = src[0];
      dst[n / 2] = src[n / 2];
      dst[n - 1] = src[n - 1];
    }
    if (nullify_tail) {
      memset(dst + 7, 0, 8);
      memset(dst + n, 0, 8);
    }
  }
}

// Compact class for tracking the reference count and state flags for CordRep
// instances.  Data is stored in an atomic int32_t for compactness and speed.
class RefcountAndFlags {
 public:
  constexpr RefcountAndFlags() : count_{kRefIncrement} {}
  struct Immortal {};
  explicit constexpr RefcountAndFlags(Immortal) : count_(kImmortalFlag) {}

  // Increments the reference count. Imposes no memory ordering.
  inline void Increment() {
    count_.fetch_add(kRefIncrement, std::memory_order_relaxed);
  }

  // Asserts that the current refcount is greater than 0. If the refcount is
  // greater than 1, decrements the reference count.
  //
  // Returns false if there are no references outstanding; true otherwise.
  // Inserts barriers to ensure that state written before this method returns
  // false will be visible to a thread that just observed this method returning
  // false.  Always returns false when the immortal bit is set.
  inline bool Decrement() {
    int32_t refcount = count_.load(std::memory_order_acquire) & kRefcountMask;
    assert(refcount > 0 || refcount & kImmortalFlag);
    return refcount != kRefIncrement &&
           (count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) &
            kRefcountMask) != kRefIncrement;
  }

  // Same as Decrement but expect that refcount is greater than 1.
  inline bool DecrementExpectHighRefcount() {
    int32_t refcount =
        count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) &
        kRefcountMask;
    assert(refcount > 0 || refcount & kImmortalFlag);
    return refcount != kRefIncrement;
  }

  // Returns the current reference count using acquire semantics.
  inline size_t Get() const {
    return static_cast<size_t>(count_.load(std::memory_order_acquire) >>
                               kNumFlags);
  }

  // Returns whether the atomic integer is 1.
  // If the reference count is used in the conventional way, a
  // reference count of 1 implies that the current thread owns the
  // reference and no other thread shares it.
  // This call performs the test for a reference count of one, and
  // performs the memory barrier needed for the owning thread
  // to act on the object, knowing that it has exclusive access to the
  // object.  Always returns false when the immortal bit is set.
  inline bool IsOne() {
    return (count_.load(std::memory_order_acquire) & kRefcountMask) ==
           kRefIncrement;
  }

  bool IsImmortal() const {
    return (count_.load(std::memory_order_relaxed) & kImmortalFlag) != 0;
  }

 private:
  // We reserve the bottom bits for flags.
  // kImmortalBit indicates that this entity should never be collected; it is
  // used for the StringConstant constructor to avoid collecting immutable
  // constant cords.
  // kReservedFlag is reserved for future use.
  enum Flags {
    kNumFlags = 2,

    kImmortalFlag = 0x1,
    kReservedFlag = 0x2,
    kRefIncrement = (1 << kNumFlags),

    // Bitmask to use when checking refcount by equality.  This masks out
    // all flags except kImmortalFlag, which is part of the refcount for
    // purposes of equality.  (A refcount of 0 or 1 does not count as 0 or 1
    // if the immortal bit is set.)
    kRefcountMask = ~kReservedFlag,
  };

  std::atomic<int32_t> count_;
};

// Various representations that we allow
enum CordRepKind {
  UNUSED_0 = 0,
  SUBSTRING = 1,
  CRC = 2,
  BTREE = 3,
  RING = 4,
  EXTERNAL = 5,

  // We have different tags for different sized flat arrays,
  // starting with FLAT, and limited to MAX_FLAT_TAG. The below values map to an
  // allocated range of 32 bytes to 256 KB. The current granularity is:
  // - 8 byte granularity for flat sizes in [32 - 512]
  // - 64 byte granularity for flat sizes in (512 - 8KiB]
  // - 4KiB byte granularity for flat sizes in (8KiB, 256 KiB]
  // If a new tag is needed in the future, then 'FLAT' and 'MAX_FLAT_TAG' should
  // be adjusted as well as the Tag <---> Size mapping logic so that FLAT still
  // represents the minimum flat allocation size. (32 bytes as of now).
  FLAT = 6,
  MAX_FLAT_TAG = 248
};

// There are various locations where we want to check if some rep is a 'plain'
// data edge, i.e. an external or flat rep. By having FLAT == EXTERNAL + 1, we
// can perform this check in a single branch as 'tag >= EXTERNAL'
// Likewise, we have some locations where we check for 'ring or external/flat',
// so likewise align RING to EXTERNAL.
// Note that we can leave this optimization to the compiler. The compiler will
// DTRT when it sees a condition like `tag == EXTERNAL || tag >= FLAT`.
static_assert(RING == BTREE + 1, "BTREE and RING not consecutive");
static_assert(EXTERNAL == RING + 1, "BTREE and EXTERNAL not consecutive");
static_assert(FLAT == EXTERNAL + 1, "EXTERNAL and FLAT not consecutive");

struct CordRep {
  // Result from an `extract edge` operation. Contains the (possibly changed)
  // tree node as well as the extracted edge, or {tree, nullptr} if no edge
  // could be extracted.
  // On success, the returned `tree` value is null if `extracted` was the only
  // data edge inside the tree, a data edge if there were only two data edges in
  // the tree, or the (possibly new / smaller) remaining tree with the extracted
  // data edge removed.
  struct ExtractResult {
    CordRep* tree;
    CordRep* extracted;
  };

  CordRep() = default;
  constexpr CordRep(RefcountAndFlags::Immortal immortal, size_t l)
      : length(l), refcount(immortal), tag(EXTERNAL), storage{} {}

  // The following three fields have to be less than 32 bytes since
  // that is the smallest supported flat node size. Some code optimizations rely
  // on the specific layout of these fields. Notably: the non-trivial field
  // `refcount` being preceded by `length`, and being tailed by POD data
  // members only.
  // # LINT.IfChange
  size_t length;
  RefcountAndFlags refcount;
  // If tag < FLAT, it represents CordRepKind and indicates the type of node.
  // Otherwise, the node type is CordRepFlat and the tag is the encoded size.
  uint8_t tag;

  // `storage` provides two main purposes:
  // - the starting point for FlatCordRep.Data() [flexible-array-member]
  // - 3 bytes of additional storage for use by derived classes.
  // The latter is used by CordrepConcat and CordRepBtree. CordRepConcat stores
  // a 'depth' value in storage[0], and the (future) CordRepBtree class stores
  // `height`, `begin` and `end` in the 3 entries. Otherwise we would need to
  // allocate room for these in the derived class, as not all compilers reuse
  // padding space from the base class (clang and gcc do, MSVC does not, etc)
  uint8_t storage[3];
  // # LINT.ThenChange(cord_rep_btree.h:copy_raw)

  // Returns true if this instance's tag matches the requested type.
  constexpr bool IsRing() const { return tag == RING; }
  constexpr bool IsSubstring() const { return tag == SUBSTRING; }
  constexpr bool IsCrc() const { return tag == CRC; }
  constexpr bool IsExternal() const { return tag == EXTERNAL; }
  constexpr bool IsFlat() const { return tag >= FLAT; }
  constexpr bool IsBtree() const { return tag == BTREE; }

  inline CordRepRing* ring();
  inline const CordRepRing* ring() const;
  inline CordRepSubstring* substring();
  inline const CordRepSubstring* substring() const;
  inline CordRepCrc* crc();
  inline const CordRepCrc* crc() const;
  inline CordRepExternal* external();
  inline const CordRepExternal* external() const;
  inline CordRepFlat* flat();
  inline const CordRepFlat* flat() const;
  inline CordRepBtree* btree();
  inline const CordRepBtree* btree() const;

  // --------------------------------------------------------------------
  // Memory management

  // Destroys the provided `rep`.
  static void Destroy(CordRep* rep);

  // Increments the reference count of `rep`.
  // Requires `rep` to be a non-null pointer value.
  static inline CordRep* Ref(CordRep* rep);

  // Decrements the reference count of `rep`. Destroys rep if count reaches
  // zero. Requires `rep` to be a non-null pointer value.
  static inline void Unref(CordRep* rep);
};

struct CordRepSubstring : public CordRep {
  size_t start;  // Starting offset of substring in child
  CordRep* child;

  // Creates a substring on `child`, adopting a reference on `child`.
  // Requires `child` to be either a flat or external node, and `pos` and `n` to
  // form a non-empty partial sub range of `'child`, i.e.:
  // `n > 0 && n < length && n + pos <= length`
  static inline CordRepSubstring* Create(CordRep* child, size_t pos, size_t n);

  // Creates a substring of `rep`. Does not adopt a reference on `rep`.
  // Requires `IsDataEdge(rep) && n > 0 && pos + n <= rep->length`.
  // If `n == rep->length` then this method returns `CordRep::Ref(rep)`
  // If `rep` is a substring of a flat or external node, then this method will
  // return a new substring of that flat or external node with `pos` adjusted
  // with the original `start` position.
  static inline CordRep* Substring(CordRep* rep, size_t pos, size_t n);
};

// Type for function pointer that will invoke the releaser function and also
// delete the `CordRepExternalImpl` corresponding to the passed in
// `CordRepExternal`.
using ExternalReleaserInvoker = void (*)(CordRepExternal*);

// External CordReps are allocated together with a type erased releaser. The
// releaser is stored in the memory directly following the CordRepExternal.
struct CordRepExternal : public CordRep {
  CordRepExternal() = default;
  explicit constexpr CordRepExternal(absl::string_view str)
      : CordRep(RefcountAndFlags::Immortal{}, str.size()),
        base(str.data()),
        releaser_invoker(nullptr) {}

  const char* base;
  // Pointer to function that knows how to call and destroy the releaser.
  ExternalReleaserInvoker releaser_invoker;

  // Deletes (releases) the external rep.
  // Requires rep != nullptr and rep->IsExternal()
  static void Delete(CordRep* rep);
};

struct Rank1 {};
struct Rank0 : Rank1 {};

template <typename Releaser, typename = ::absl::base_internal::invoke_result_t<
                                 Releaser, absl::string_view>>
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
  ::absl::base_internal::invoke(std::forward<Releaser>(releaser), data);
}

template <typename Releaser,
          typename = ::absl::base_internal::invoke_result_t<Releaser>>
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
  ::absl::base_internal::invoke(std::forward<Releaser>(releaser));
}

// We use CompressedTuple so that we can benefit from EBCO.
template <typename Releaser>
struct CordRepExternalImpl
    : public CordRepExternal,
      public ::absl::container_internal::CompressedTuple<Releaser> {
  // The extra int arg is so that we can avoid interfering with copy/move
  // constructors while still benefitting from perfect forwarding.
  template <typename T>
  CordRepExternalImpl(T&& releaser, int)
      : CordRepExternalImpl::CompressedTuple(std::forward<T>(releaser)) {
    this->releaser_invoker = &Release;
  }

  ~CordRepExternalImpl() {
    InvokeReleaser(Rank0{}, std::move(this->template get<0>()),
                   absl::string_view(base, length));
  }

  static void Release(CordRepExternal* rep) {
    delete static_cast<CordRepExternalImpl*>(rep);
  }
};

inline CordRepSubstring* CordRepSubstring::Create(CordRep* child, size_t pos,
                                                  size_t n) {
  assert(child != nullptr);
  assert(n > 0);
  assert(n < child->length);
  assert(pos < child->length);
  assert(n <= child->length - pos);

  // TODO(b/217376272): Harden internal logic.
  // Move to strategical places inside the Cord logic and make this an assert.
  if (ABSL_PREDICT_FALSE(!(child->IsExternal() || child->IsFlat()))) {
    LogFatalNodeType(child);
  }

  CordRepSubstring* rep = new CordRepSubstring();
  rep->length = n;
  rep->tag = SUBSTRING;
  rep->start = pos;
  rep->child = child;
  return rep;
}

inline CordRep* CordRepSubstring::Substring(CordRep* rep, size_t pos,
                                            size_t n) {
  assert(rep != nullptr);
  assert(n != 0);
  assert(pos < rep->length);
  assert(n <= rep->length - pos);
  if (n == rep->length) return CordRep::Ref(rep);
  if (rep->IsSubstring()) {
    pos += rep->substring()->start;
    rep = rep->substring()->child;
  }
  CordRepSubstring* substr = new CordRepSubstring();
  substr->length = n;
  substr->tag = SUBSTRING;
  substr->start = pos;
  substr->child = CordRep::Ref(rep);
  return substr;
}

inline void CordRepExternal::Delete(CordRep* rep) {
  assert(rep != nullptr && rep->IsExternal());
  auto* rep_external = static_cast<CordRepExternal*>(rep);
  assert(rep_external->releaser_invoker != nullptr);
  rep_external->releaser_invoker(rep_external);
}

template <typename Str>
struct ConstInitExternalStorage {
  ABSL_CONST_INIT static CordRepExternal value;
};

template <typename Str>
ABSL_CONST_INIT CordRepExternal
    ConstInitExternalStorage<Str>::value(Str::value);

enum {
  kMaxInline = 15,
};

constexpr char GetOrNull(absl::string_view data, size_t pos) {
  return pos < data.size() ? data[pos] : '\0';
}

// We store cordz_info as 64 bit pointer value in little endian format. This
// guarantees that the least significant byte of cordz_info matches the first
// byte of the inline data representation in `data`, which holds the inlined
// size or the 'is_tree' bit.
using cordz_info_t = int64_t;

// Assert that the `cordz_info` pointer value perfectly overlaps the last half
// of `data` and can hold a pointer value.
static_assert(sizeof(cordz_info_t) * 2 == kMaxInline + 1, "");
static_assert(sizeof(cordz_info_t) >= sizeof(intptr_t), "");

// LittleEndianByte() creates a little endian representation of 'value', i.e.:
// a little endian value where the first byte in the host's representation
// holds 'value`, with all other bytes being 0.
static constexpr cordz_info_t LittleEndianByte(unsigned char value) {
#if defined(ABSL_IS_BIG_ENDIAN)
  return static_cast<cordz_info_t>(value) << ((sizeof(cordz_info_t) - 1) * 8);
#else
  return value;
#endif
}

class InlineData {
 public:
  // DefaultInitType forces the use of the default initialization constructor.
  enum DefaultInitType { kDefaultInit };

  // kNullCordzInfo holds the little endian representation of intptr_t(1)
  // This is the 'null' / initial value of 'cordz_info'. The null value
  // is specifically big endian 1 as with 64-bit pointers, the last
  // byte of cordz_info overlaps with the last byte holding the tag.
  static constexpr cordz_info_t kNullCordzInfo = LittleEndianByte(1);

  // kTagOffset contains the offset of the control byte / tag. This constant is
  // intended mostly for debugging purposes: do not remove this constant as it
  // is actively inspected and used by gdb pretty printing code.
  static constexpr size_t kTagOffset = 0;

  // Implement `~InlineData()` conditionally: we only need this destructor to
  // unpoison poisoned instances under *SAN, and it will only compile correctly
  // if the current compiler supports `absl::is_constant_evaluated()`.
#ifdef ABSL_INTERNAL_CORD_HAVE_SANITIZER
  ~InlineData() noexcept { unpoison(); }
#endif

  constexpr InlineData() noexcept { poison_this(); }

  explicit InlineData(DefaultInitType) noexcept : rep_(kDefaultInit) {
    poison_this();
  }

  explicit InlineData(CordRep* rep) noexcept : rep_(rep) {
    ABSL_ASSERT(rep != nullptr);
  }

  // Explicit constexpr constructor to create a constexpr InlineData
  // value. Creates an inlined SSO value if `rep` is null, otherwise
  // creates a tree instance value.
  constexpr InlineData(absl::string_view sv, CordRep* rep) noexcept
      : rep_(rep ? Rep(rep) : Rep(sv)) {
    poison();
  }

  constexpr InlineData(const InlineData& rhs) noexcept;
  InlineData& operator=(const InlineData& rhs) noexcept;

  friend bool operator==(const InlineData& lhs, const InlineData& rhs) {
#ifdef ABSL_INTERNAL_CORD_HAVE_SANITIZER
    const Rep l = lhs.rep_.SanitizerSafeCopy();
    const Rep r = rhs.rep_.SanitizerSafeCopy();
    return memcmp(&l, &r, sizeof(l)) == 0;
#else
    return memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
#endif
  }
  friend bool operator!=(const InlineData& lhs, const InlineData& rhs) {
    return !operator==(lhs, rhs);
  }

  // Poisons the unused inlined SSO data if the current instance
  // is inlined, else un-poisons the entire instance.
  constexpr void poison();

  // Un-poisons this instance.
  constexpr void unpoison();

  // Poisons the current instance. This is used on default initialization.
  constexpr void poison_this();

  // Returns true if the current instance is empty.
  // The 'empty value' is an inlined data value of zero length.
  bool is_empty() const { return rep_.tag() == 0; }

  // Returns true if the current instance holds a tree value.
  bool is_tree() const { return (rep_.tag() & 1) != 0; }

  // Returns true if the current instance holds a cordz_info value.
  // Requires the current instance to hold a tree value.
  bool is_profiled() const {
    assert(is_tree());
    return rep_.cordz_info() != kNullCordzInfo;
  }

  // Returns true if either of the provided instances hold a cordz_info value.
  // This method is more efficient than the equivalent `data1.is_profiled() ||
  // data2.is_profiled()`. Requires both arguments to hold a tree.
  static bool is_either_profiled(const InlineData& data1,
                                 const InlineData& data2) {
    assert(data1.is_tree() && data2.is_tree());
    return (data1.rep_.cordz_info() | data2.rep_.cordz_info()) !=
           kNullCordzInfo;
  }

  // Returns the cordz_info sampling instance for this instance, or nullptr
  // if the current instance is not sampled and does not have CordzInfo data.
  // Requires the current instance to hold a tree value.
  CordzInfo* cordz_info() const {
    assert(is_tree());
    intptr_t info = static_cast<intptr_t>(absl::little_endian::ToHost64(
        static_cast<uint64_t>(rep_.cordz_info())));
    assert(info & 1);
    return reinterpret_cast<CordzInfo*>(info - 1);
  }

  // Sets the current cordz_info sampling instance for this instance, or nullptr
  // if the current instance is not sampled and does not have CordzInfo data.
  // Requires the current instance to hold a tree value.
  void set_cordz_info(CordzInfo* cordz_info) {
    assert(is_tree());
    uintptr_t info = reinterpret_cast<uintptr_t>(cordz_info) | 1;
    rep_.set_cordz_info(
        static_cast<cordz_info_t>(absl::little_endian::FromHost64(info)));
  }

  // Resets the current cordz_info to null / empty.
  void clear_cordz_info() {
    assert(is_tree());
    rep_.set_cordz_info(kNullCordzInfo);
  }

  // Returns a read only pointer to the character data inside this instance.
  // Requires the current instance to hold inline data.
  const char* as_chars() const {
    assert(!is_tree());
    return rep_.as_chars();
  }

  // Returns a mutable pointer to the character data inside this instance.
  // Should be used for 'write only' operations setting an inlined value.
  // Applications can set the value of inlined data either before or after
  // setting the inlined size, i.e., both of the below are valid:
  //
  //   // Set inlined data and inline size
  //   memcpy(data_.as_chars(), data, size);
  //   data_.set_inline_size(size);
  //
  //   // Set inlined size and inline data
  //   data_.set_inline_size(size);
  //   memcpy(data_.as_chars(), data, size);
  //
  // It's an error to read from the returned pointer without a preceding write
  // if the current instance does not hold inline data, i.e.: is_tree() == true.
  char* as_chars() { return rep_.as_chars(); }

  // Returns the tree value of this value.
  // Requires the current instance to hold a tree value.
  CordRep* as_tree() const {
    assert(is_tree());
    return rep_.tree();
  }

  void set_inline_data(const char* data, size_t n) {
    ABSL_ASSERT(n <= kMaxInline);
    unpoison();
    rep_.set_tag(static_cast<int8_t>(n << 1));
    SmallMemmove<true>(rep_.as_chars(), data, n);
    poison();
  }

  void copy_max_inline_to(char* dst) const {
    assert(!is_tree());
    memcpy(dst, rep_.SanitizerSafeCopy().as_chars(), kMaxInline);
  }

  // Initialize this instance to holding the tree value `rep`,
  // initializing the cordz_info to null, i.e.: 'not profiled'.
  void make_tree(CordRep* rep) {
    unpoison();
    rep_.make_tree(rep);
  }

  // Set the tree value of this instance to 'rep`.
  // Requires the current instance to already hold a tree value.
  // Does not affect the value of cordz_info.
  void set_tree(CordRep* rep) {
    assert(is_tree());
    rep_.set_tree(rep);
  }

  // Returns the size of the inlined character data inside this instance.
  // Requires the current instance to hold inline data.
  size_t inline_size() const { return rep_.inline_size(); }

  // Sets the size of the inlined character data inside this instance.
  // Requires `size` to be <= kMaxInline.
  // See the documentation on 'as_chars()' for more information and examples.
  void set_inline_size(size_t size) {
    unpoison();
    rep_.set_inline_size(size);
    poison();
  }

  // Compares 'this' inlined data  with rhs. The comparison is a straightforward
  // lexicographic comparison. `Compare()` returns values as follows:
  //
  //   -1  'this' InlineData instance is smaller
  //    0  the InlineData instances are equal
  //    1  'this' InlineData instance larger
  int Compare(const InlineData& rhs) const {
    return Compare(rep_.SanitizerSafeCopy(), rhs.rep_.SanitizerSafeCopy());
  }

 private:
  struct Rep {
    // See cordz_info_t for forced alignment and size of `cordz_info` details.
    struct AsTree {
      explicit constexpr AsTree(absl::cord_internal::CordRep* tree)
          : rep(tree) {}
      cordz_info_t cordz_info = kNullCordzInfo;
      absl::cord_internal::CordRep* rep;
    };

    explicit Rep(DefaultInitType) {}
    constexpr Rep() : data{0} {}
    constexpr Rep(const Rep&) = default;
    constexpr Rep& operator=(const Rep&) = default;

    explicit constexpr Rep(CordRep* rep) : as_tree(rep) {}

    explicit constexpr Rep(absl::string_view chars)
        : data{static_cast<char>((chars.size() << 1)),
               GetOrNull(chars, 0),
               GetOrNull(chars, 1),
               GetOrNull(chars, 2),
               GetOrNull(chars, 3),
               GetOrNull(chars, 4),
               GetOrNull(chars, 5),
               GetOrNull(chars, 6),
               GetOrNull(chars, 7),
               GetOrNull(chars, 8),
               GetOrNull(chars, 9),
               GetOrNull(chars, 10),
               GetOrNull(chars, 11),
               GetOrNull(chars, 12),
               GetOrNull(chars, 13),
               GetOrNull(chars, 14)} {}

    // Disable sanitizer as we must always be able to read `tag`.
    ABSL_CORD_INTERNAL_NO_SANITIZE
    int8_t tag() const { return reinterpret_cast<const int8_t*>(this)[0]; }
    void set_tag(int8_t rhs) { reinterpret_cast<int8_t*>(this)[0] = rhs; }

    char* as_chars() { return data + 1; }
    const char* as_chars() const { return data + 1; }

    bool is_tree() const { return (tag() & 1) != 0; }

    size_t inline_size() const {
      ABSL_ASSERT(!is_tree());
      return static_cast<size_t>(tag()) >> 1;
    }

    void set_inline_size(size_t size) {
      ABSL_ASSERT(size <= kMaxInline);
      set_tag(static_cast<int8_t>(size << 1));
    }

    CordRep* tree() const { return as_tree.rep; }
    void set_tree(CordRep* rhs) { as_tree.rep = rhs; }

    cordz_info_t cordz_info() const { return as_tree.cordz_info; }
    void set_cordz_info(cordz_info_t rhs) { as_tree.cordz_info = rhs; }

    void make_tree(CordRep* tree) {
      as_tree.rep = tree;
      as_tree.cordz_info = kNullCordzInfo;
    }

#ifdef ABSL_INTERNAL_CORD_HAVE_SANITIZER
    Rep SanitizerSafeCopy() const {
      Rep res;
      if (is_tree()) {
        res = *this;
      } else {
        res.set_tag(tag());
        memcpy(res.as_chars(), as_chars(), inline_size());
      }
      return res;
    }
#else
    const Rep& SanitizerSafeCopy() const { return *this; }
#endif

    // If the data has length <= kMaxInline, we store it in `data`, and
    // store the size in the first char of `data` shifted left + 1.
    // Else we store it in a tree and store a pointer to that tree in
    // `as_tree.rep` with a tagged pointer to make `tag() & 1` non zero.
    union {
      char data[kMaxInline + 1];
      AsTree as_tree;
    };
  };

  // Private implementation of `Compare()`
  static inline int Compare(const Rep& lhs, const Rep& rhs) {
    uint64_t x, y;
    memcpy(&x, lhs.as_chars(), sizeof(x));
    memcpy(&y, rhs.as_chars(), sizeof(y));
    if (x == y) {
      memcpy(&x, lhs.as_chars() + 7, sizeof(x));
      memcpy(&y, rhs.as_chars() + 7, sizeof(y));
      if (x == y) {
        if (lhs.inline_size() == rhs.inline_size()) return 0;
        return lhs.inline_size() < rhs.inline_size() ? -1 : 1;
      }
    }
    x = absl::big_endian::FromHost64(x);
    y = absl::big_endian::FromHost64(y);
    return x < y ? -1 : 1;
  }

  Rep rep_;
};

static_assert(sizeof(InlineData) == kMaxInline + 1, "");

#ifdef ABSL_INTERNAL_CORD_HAVE_SANITIZER

constexpr InlineData::InlineData(const InlineData& rhs) noexcept
    : rep_(rhs.rep_.SanitizerSafeCopy()) {
  poison();
}

inline InlineData& InlineData::operator=(const InlineData& rhs) noexcept {
  unpoison();
  rep_ = rhs.rep_.SanitizerSafeCopy();
  poison();
  return *this;
}

constexpr void InlineData::poison_this() {
  if (!absl::is_constant_evaluated()) {
    container_internal::SanitizerPoisonObject(this);
  }
}

constexpr void InlineData::unpoison() {
  if (!absl::is_constant_evaluated()) {
    container_internal::SanitizerUnpoisonObject(this);
  }
}

constexpr void InlineData::poison() {
  if (!absl::is_constant_evaluated()) {
    if (is_tree()) {
      container_internal::SanitizerUnpoisonObject(this);
    } else if (const size_t size = inline_size()) {
      if (size < kMaxInline) {
        const char* end = rep_.as_chars() + size;
        container_internal::SanitizerPoisonMemoryRegion(end, kMaxInline - size);
      }
    } else {
      container_internal::SanitizerPoisonObject(this);
    }
  }
}

#else  // ABSL_INTERNAL_CORD_HAVE_SANITIZER

constexpr InlineData::InlineData(const InlineData&) noexcept = default;
inline InlineData& InlineData::operator=(const InlineData&) noexcept = default;

constexpr void InlineData::poison_this() {}
constexpr void InlineData::unpoison() {}
constexpr void InlineData::poison() {}

#endif  // ABSL_INTERNAL_CORD_HAVE_SANITIZER

inline CordRepSubstring* CordRep::substring() {
  assert(IsSubstring());
  return static_cast<CordRepSubstring*>(this);
}

inline const CordRepSubstring* CordRep::substring() const {
  assert(IsSubstring());
  return static_cast<const CordRepSubstring*>(this);
}

inline CordRepExternal* CordRep::external() {
  assert(IsExternal());
  return static_cast<CordRepExternal*>(this);
}

inline const CordRepExternal* CordRep::external() const {
  assert(IsExternal());
  return static_cast<const CordRepExternal*>(this);
}

inline CordRep* CordRep::Ref(CordRep* rep) {
  // ABSL_ASSUME is a workaround for
  // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105585
  ABSL_ASSUME(rep != nullptr);
  rep->refcount.Increment();
  return rep;
}

inline void CordRep::Unref(CordRep* rep) {
  assert(rep != nullptr);
  // Expect refcount to be 0. Avoiding the cost of an atomic decrement should
  // typically outweigh the cost of an extra branch checking for ref == 1.
  if (ABSL_PREDICT_FALSE(!rep->refcount.DecrementExpectHighRefcount())) {
    Destroy(rep);
  }
}

}  // namespace cord_internal

ABSL_NAMESPACE_END
}  // namespace absl
#endif  // ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_