summaryrefslogtreecommitdiff
path: root/absl/random/internal/salted_seed_seq_test.cc
blob: 0bf19a63ef8c5f3fcef9d9f0c147c5db0b7b45a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/random/internal/salted_seed_seq.h"

#include <iterator>
#include <random>
#include <utility>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"

using absl::random_internal::GetSaltMaterial;
using absl::random_internal::MakeSaltedSeedSeq;
using absl::random_internal::SaltedSeedSeq;
using testing::Eq;
using testing::Pointwise;

namespace {

template <typename Sseq>
void ConformsToInterface() {
  // Check that the SeedSequence can be default-constructed.
  { Sseq default_constructed_seq; }
  // Check that the SeedSequence can be constructed with two iterators.
  {
    uint32_t init_array[] = {1, 3, 5, 7, 9};
    Sseq iterator_constructed_seq(std::begin(init_array), std::end(init_array));
  }
  // Check that the SeedSequence can be std::initializer_list-constructed.
  { Sseq list_constructed_seq = {1, 3, 5, 7, 9, 11, 13}; }
  // Check that param() and size() return state provided to constructor.
  {
    uint32_t init_array[] = {1, 2, 3, 4, 5};
    Sseq seq(std::begin(init_array), std::end(init_array));
    EXPECT_EQ(seq.size(), ABSL_ARRAYSIZE(init_array));

    std::vector<uint32_t> state_vector;
    seq.param(std::back_inserter(state_vector));

    EXPECT_EQ(state_vector.size(), ABSL_ARRAYSIZE(init_array));
    for (int i = 0; i < state_vector.size(); i++) {
      EXPECT_EQ(state_vector[i], i + 1);
    }
  }
  // Check for presence of generate() method.
  {
    Sseq seq;
    uint32_t seeds[5];

    seq.generate(std::begin(seeds), std::end(seeds));
  }
}

TEST(SaltedSeedSeq, CheckInterfaces) {
  // Control case
  ConformsToInterface<std::seed_seq>();

  // Abseil classes
  ConformsToInterface<SaltedSeedSeq<std::seed_seq>>();
}

TEST(SaltedSeedSeq, CheckConstructingFromOtherSequence) {
  std::vector<uint32_t> seed_values(10, 1);
  std::seed_seq seq(seed_values.begin(), seed_values.end());
  auto salted_seq = MakeSaltedSeedSeq(std::move(seq));

  EXPECT_EQ(seq.size(), salted_seq.size());

  std::vector<uint32_t> param_result;
  seq.param(std::back_inserter(param_result));

  EXPECT_EQ(seed_values, param_result);
}

TEST(SaltedSeedSeq, SaltedSaltedSeedSeqIsNotDoubleSalted) {
  uint32_t init[] = {1, 3, 5, 7, 9};

  std::seed_seq seq(std::begin(init), std::end(init));

  // The first salting.
  SaltedSeedSeq<std::seed_seq> salted_seq = MakeSaltedSeedSeq(std::move(seq));
  uint32_t a[16];
  salted_seq.generate(std::begin(a), std::end(a));

  // The second salting.
  SaltedSeedSeq<std::seed_seq> salted_salted_seq =
      MakeSaltedSeedSeq(std::move(salted_seq));
  uint32_t b[16];
  salted_salted_seq.generate(std::begin(b), std::end(b));

  // ... both should be equal.
  EXPECT_THAT(b, Pointwise(Eq(), a)) << "a[0] " << a[0];
}

TEST(SaltedSeedSeq, SeedMaterialIsSalted) {
  const size_t kNumBlocks = 16;

  uint32_t seed_material[kNumBlocks];
  std::random_device urandom{"/dev/urandom"};
  for (uint32_t& seed : seed_material) {
    seed = urandom();
  }

  std::seed_seq seq(std::begin(seed_material), std::end(seed_material));
  SaltedSeedSeq<std::seed_seq> salted_seq(std::begin(seed_material),
                                          std::end(seed_material));

  bool salt_is_available = GetSaltMaterial().has_value();

  // If salt is available generated sequence should be different.
  if (salt_is_available) {
    uint32_t outputs[kNumBlocks];
    uint32_t salted_outputs[kNumBlocks];

    seq.generate(std::begin(outputs), std::end(outputs));
    salted_seq.generate(std::begin(salted_outputs), std::end(salted_outputs));

    EXPECT_THAT(outputs, Pointwise(testing::Ne(), salted_outputs));
  }
}

TEST(SaltedSeedSeq, GenerateAcceptsDifferentTypes) {
  const size_t kNumBlocks = 4;

  SaltedSeedSeq<std::seed_seq> seq({1, 2, 3});

  uint32_t expected[kNumBlocks];
  seq.generate(std::begin(expected), std::end(expected));

  // 32-bit outputs
  {
    unsigned long seed_material[kNumBlocks];  // NOLINT(runtime/int)
    seq.generate(std::begin(seed_material), std::end(seed_material));
    EXPECT_THAT(seed_material, Pointwise(Eq(), expected));
  }
  {
    unsigned int seed_material[kNumBlocks];  // NOLINT(runtime/int)
    seq.generate(std::begin(seed_material), std::end(seed_material));
    EXPECT_THAT(seed_material, Pointwise(Eq(), expected));
  }

  // 64-bit outputs.
  {
    uint64_t seed_material[kNumBlocks];
    seq.generate(std::begin(seed_material), std::end(seed_material));
    EXPECT_THAT(seed_material, Pointwise(Eq(), expected));
  }
  {
    int64_t seed_material[kNumBlocks];
    seq.generate(std::begin(seed_material), std::end(seed_material));
    EXPECT_THAT(seed_material, Pointwise(Eq(), expected));
  }
}

}  // namespace